1
|
Hou C, Yu K, Shi T, Jiang B, Cao L, Wang W, Han M, Tang J, Zhao Y, Pan X, Li J, Lee DJ, Wang L. Biodiversity-safeguarding threshold for urea-fertilizer application on paddy fields: Protozoa-based toxicity tests. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122836. [PMID: 39383750 DOI: 10.1016/j.jenvman.2024.122836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/25/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
Urea is a widely applied fertilizer to enhance crop yields. Ecological risks associated with the excessive application of urea fertilizer threaten the paddy fields' sustainable agriculture and biodiversity preservation. There are no practical thresholds based on proven data on microbial communities. Protozoa are nitrogen-sensitive organisms. For the first time, this study conducted acute and chronic urea toxicity tests on eight species of organisms. The results indicate that Blepharisma sp. is the most sensitive species to urea exposure and is a suitable indicator for determining the safe threshold of urea. This study estimated the predicted no-effect concentration using species sensitivity distribution curves. Subsequently, it established the threshold for urea application in rice fields based on the fields' area and the surface water's height. The short-term safety threshold for urea in the studied paddy field with black soil is 87.7 mg/L, equivalent to 43.85 kg of urea per hectare for a single nitrogen fertilizer application. The long-term safety threshold is 5.02 mg/L, representing the concentration for re-applicating urea. The biodiversity-safeguarding application threshold provides the basis for developing a urea fertilizer reduction protocol to safeguard the paddy fields' biodiversity.
Collapse
Affiliation(s)
- Chunyu Hou
- Laboratory of Protozoa, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China; Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin, 150025, China
| | - Kexin Yu
- Laboratory of Protozoa, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China; Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin, 150025, China
| | - Tianyi Shi
- Laboratory of Protozoa, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China; Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin, 150025, China
| | - Benchao Jiang
- Ecological Environmental Monitoring Central Station of Heilongjiang Province, Harbin, 150056, China
| | - Liangzi Cao
- Institute of Tillage and Cultivation, Heilongjiang Academy of Agricultural Sciences, Harbin, 150088, China; Heilongjiang Rice Quality Improvement and Genetic Breeding Engineering Research Center, Harbin, 150086, China
| | - Wenyuan Wang
- Laboratory of Protozoa, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China; Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin, 150025, China
| | - Mei Han
- Laboratory of Protozoa, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China; Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin, 150025, China
| | - Jing Tang
- Laboratory of Protozoa, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China; Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin, 150025, China
| | - Yuting Zhao
- Laboratory of Protozoa, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China; Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin, 150025, China
| | - Xuming Pan
- Laboratory of Protozoa, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China; Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin, 150025, China
| | - Jianye Li
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China.
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tang, 999077, Hong Kong.
| | - Li Wang
- Laboratory of Protozoa, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China; Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin, 150025, China.
| |
Collapse
|
2
|
Viola RE, Parungao GG, Blumenthal RM. A growth-based assay using fluorescent protein emission to screen for S-adenosylmethionine synthetase inhibitors. Drug Dev Res 2024; 85:e22122. [PMID: 37819020 DOI: 10.1002/ddr.22122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/07/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023]
Abstract
The use of cell growth-based assays to identify inhibitory compounds is straightforward and inexpensive, but is also inherently insensitive and somewhat nonspecific. To overcome these limitations and develop a sensitive, specific cell-based assay, two different approaches were combined. To address the sensitivity limitation, different fluorescent proteins have been introduced into a bacterial expression system to serve as growth reporters. To overcome the lack of specificity, these protein reporters have been incorporated into a plasmid in which they are paired with different orthologs of an essential target enzyme, in this case l-methionine S-adenosyltransferase (MAT, AdoMet synthetase). Screening compounds that serve as specific inhibitors will reduce the growth of only a subset of strains, because these strains are identical, except for which target ortholog they carry. Screening several such strains in parallel not only reveals potential inhibitors but the strains also serve as specificity controls for one another. The present study makes use of an existing Escherichia coli strain that carries a deletion of metK, the gene for MAT. Transformation with these plasmids leads to a complemented strain that no longer requires externally supplied S-adenosylmethionine for growth, but its growth is now dependent on the activity of the introduced MAT ortholog. The resulting fluorescent strains provide a platform to screen chemical compound libraries and identify species-selective inhibitors of AdoMet synthetases. A pilot study of several chemical libraries using this platform identified new lead compounds that are ortholog-selective inhibitors of this enzyme family, some of which target the protozoal human pathogen Cryptosporidium parvum.
Collapse
Affiliation(s)
- Ronald E Viola
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio, USA
| | - Gwenn G Parungao
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, University of Toledo Health Sciences Campus, Toledo, Ohio, USA
| |
Collapse
|
3
|
Hou C, Shi T, Wang W, Han M, Pan X, Wang L, Lee DJ. Toxicological sensitivity of protozoa to pesticides and nanomaterials: A prospect review. CHEMOSPHERE 2023; 339:139749. [PMID: 37549748 DOI: 10.1016/j.chemosphere.2023.139749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/09/2023]
Abstract
Protozoa are sensitive indicators of pollutant toxicity. This review presents and discusses the toxicological studies of protozoa and the toxicological conventional test species (Daphnia magna) by pesticides and nanomaterials, particularly comparing the sensitivity of through relative tolerance analysis, Z-score, and species sensitivity index. The sensitivity of different species of protozoa varies greatly. The protozoa Paramecium sp. and Tetrahymena sp. are not sensitive species; conversely, Urostyla sp. is sensitive to dimethoate and nanomaterials Ag-NPs, respectively ZnO-NPs, and CuO-NPs, fits the use as an indicator species on these substances. The prospects to explore scientific toxicity exposure protocols, expand the protozoan species examined, and screen the sensitive species under the protocols are discussed. This prospect review advances the knowledge for including the sensitive protozoa as an indicator species in comprehensive toxicological analysis for pesticides and nanomaterials.
Collapse
Affiliation(s)
- Chunyu Hou
- Laboratory of Protozoa, College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang Province, 150025, China; Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin, Heilongjiang Province, 150025, China
| | - Tianyi Shi
- Laboratory of Protozoa, College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang Province, 150025, China; Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin, Heilongjiang Province, 150025, China
| | - Wenyuan Wang
- Laboratory of Protozoa, College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang Province, 150025, China; Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin, Heilongjiang Province, 150025, China
| | - Mei Han
- Laboratory of Protozoa, College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang Province, 150025, China; Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin, Heilongjiang Province, 150025, China
| | - Xuming Pan
- Laboratory of Protozoa, College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang Province, 150025, China; Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin, Heilongjiang Province, 150025, China
| | - Li Wang
- Laboratory of Protozoa, College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang Province, 150025, China; Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin, Heilongjiang Province, 150025, China.
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tang, 999077, Hong Kong.
| |
Collapse
|
4
|
Tepe U, Aslanbay Guler B, Imamoglu E. Applications and sensory utilizations of magnetic levitation in 3D cell culture for tissue Engineering. Mol Biol Rep 2023; 50:7017-7025. [PMID: 37378748 DOI: 10.1007/s11033-023-08585-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023]
Abstract
3D cell culture approaches are cell culture methods that provide good visualization of interactions between cells while preserving the natural growth pattern. In recent years, several studies have managed to implement magnetic levitation technology on 3D cell culture applications by either combining cells with magnetic nanoparticles (positive magnetophoresis) or applying a magnetic field directly to the cells in a high-intensity medium (negative magnetophoresis). The positive magnetophoresis technique consists of integrating magnetic nanoparticles into the cells, while the negative magnetophoresis technique consists of levitating the cells without labelling them with magnetic nanoparticles. Magnetic levitation methods can be used to manipulate 3D culture, provide more complex habitats and custom control, or display density data as a sensor.The present review aims to show the advantages, limitations, and promises of magnetic 3D cell culture, along with its application methods, tools, and capabilities as a density sensor. In this context, the promising magnetic levitation technique on 3D cell cultures could be fully utilized in further studies with precise control.
Collapse
Affiliation(s)
- Ugur Tepe
- Faculty of Engineering, Department of Bioengineering, Ege University, Izmir, Turkey
| | - Bahar Aslanbay Guler
- Faculty of Engineering, Department of Bioengineering, Ege University, Izmir, Turkey
| | - Esra Imamoglu
- Faculty of Engineering, Department of Bioengineering, Ege University, Izmir, Turkey.
| |
Collapse
|
5
|
Shpakova V, Rukoyatkina N, Al Arawe N, Prilepskaya A, Kharazova A, Sharina I, Gambaryan S, Martin E. ML355 Modulates Platelet Activation and Prevents ABT-737 Induced Apoptosis in Platelets. J Pharmacol Exp Ther 2022; 381:164-175. [PMID: 35197320 PMCID: PMC9073945 DOI: 10.1124/jpet.121.000973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/05/2022] [Indexed: 01/14/2023] Open
Abstract
12-lipoxigenase (12-LOX) is implicated in regulation of platelet activation processes and can be a new promising target for antiplatelet therapy. However, investigations of 12-LOX were restricted by the lack of specific and potent 12-LOX inhibitors and by controversial data concerning the role of 12-LOX metabolites in platelet functions. A novel specific 12-LOX inhibitor ML355 was shown to inhibit platelet aggregation without adverse side effects on hemostasis; however, the molecular mechanisms of its action on platelets are poorly understood. Here, we showed that ML355 inhibited platelet activation induced by thrombin or thromboxane A2, but not by collagen-related peptide. ML355 blocked protein kinase B, phosphoinositide 3-kinase, and extracellular signal-regulated kinase, but not p38 kinase, spleen tyrosine kinase (Syk), or phospholipase Cγ2 phosphorylation in activated platelets. The main inhibitory effect of low doses of ML355 (1-20 μM) on thrombin activated platelets was mediated by the decrease in reactive oxygen species level, whereas high doses of ML355 (50 μM) caused cyclic adenosine monophosphate activation. ML355 did not affect the activity of nitric oxide-dependent soluble guanylyl cyclase, nor did it affect the relaxation of preconstricted aortic rings in mice. ML355 itself did not affect platelet viability, but at 50 μM dose blocked caspase-dependent apoptosis induced by B-cell lymphoma II inhibitor ABT-737. SIGNIFICANCE STATEMENT: The current paper provides novel and original data concerning molecular mechanisms of 12-LOX inhibitor ML355 action on platelets. These data reveal antiplatelet and protective effects of ML355 on platelets and may be of importance for both antiplatelet and anticancer therapy.
Collapse
Affiliation(s)
- Valentina Shpakova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, Russia (V.S., N.R., S.G.); Saint Petersburg State University, Saint Petersburg, Russia (N.A.A., A.P., A.K.); and Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School, Houston, Texas (I.S., E.M.)
| | - Natalia Rukoyatkina
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, Russia (V.S., N.R., S.G.); Saint Petersburg State University, Saint Petersburg, Russia (N.A.A., A.P., A.K.); and Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School, Houston, Texas (I.S., E.M.)
| | - Nada Al Arawe
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, Russia (V.S., N.R., S.G.); Saint Petersburg State University, Saint Petersburg, Russia (N.A.A., A.P., A.K.); and Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School, Houston, Texas (I.S., E.M.)
| | - Anna Prilepskaya
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, Russia (V.S., N.R., S.G.); Saint Petersburg State University, Saint Petersburg, Russia (N.A.A., A.P., A.K.); and Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School, Houston, Texas (I.S., E.M.)
| | - Alexandra Kharazova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, Russia (V.S., N.R., S.G.); Saint Petersburg State University, Saint Petersburg, Russia (N.A.A., A.P., A.K.); and Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School, Houston, Texas (I.S., E.M.)
| | - Iraida Sharina
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, Russia (V.S., N.R., S.G.); Saint Petersburg State University, Saint Petersburg, Russia (N.A.A., A.P., A.K.); and Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School, Houston, Texas (I.S., E.M.)
| | - Stepan Gambaryan
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, Russia (V.S., N.R., S.G.); Saint Petersburg State University, Saint Petersburg, Russia (N.A.A., A.P., A.K.); and Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School, Houston, Texas (I.S., E.M.)
| | - Emil Martin
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, Russia (V.S., N.R., S.G.); Saint Petersburg State University, Saint Petersburg, Russia (N.A.A., A.P., A.K.); and Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School, Houston, Texas (I.S., E.M.)
| |
Collapse
|
6
|
Non-destructive investigation of extracellular enzyme activities and kinetics in intact freshwater biofilms with mineral beads as carriers. Appl Microbiol Biotechnol 2021; 106:425-440. [PMID: 34910241 DOI: 10.1007/s00253-021-11712-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 10/19/2022]
Abstract
Current procedures for fluorometric detection of extracellular hydrolytic enzyme activities in intact aquatic biofilms are very laborious and insufficiently standardized. To facilitate the direct determination of a multitude of enzymatic parameters without biofilm disintegration, a new approach was followed. Beads made of different mineral materials were subjected to biofilm growth in various aquatic environments. After biofilm coating, the beads were singly placed in microplate wells, containing the required liquid analytical medium and a fluorogenic substrate. Based on fluorometric detection of the enzymatically generated reaction products, enzyme activities and kinetics were determined. Mean enzymatic activities of ceramic bead-attached biofilms grown in a natural stream followed the decreasing sequence L-alanine aminopeptidase > L-leucine aminopeptidase > phosphomonoesterase > β-glucosidase > phosphodiesterase > α-glucosidase > sulfatase. After one week of exposure, the relative standard deviations of enzyme activities ranged from 21 to 67%. Sintered glass bead-associated biofilms displayed the lowest standard deviations ranging from 19 to 34% in all experiments. This material proved to be suitable for short-time experiments in stagnant media. Ceramic beads were stable during more than three weeks of exposure in a natural stream. Biofilm formation was inhomogeneous or poorly visible on glass and lava beads accompanied by high variations of enzyme activities. The applicability of the method to study enzyme inhibition reactions was successfully proven by the determination of inhibition effects of caffeine on biofilm-associated phosphodiesterase.Key points• Optimized method to determine enzymatic parameters in aquatic biofilms• Direct investigation of bead-bound biofilms without biofilm disintegration• Fluorometric detection offers high sensitivity and sample throughput.
Collapse
|
7
|
Delikoyun K, Yaman S, Yilmaz E, Sarigil O, Anil-Inevi M, Telli K, Yalcin-Ozuysal O, Ozcivici E, Tekin HC. HologLev: A Hybrid Magnetic Levitation Platform Integrated with Lensless Holographic Microscopy for Density-Based Cell Analysis. ACS Sens 2021; 6:2191-2201. [PMID: 34124887 DOI: 10.1021/acssensors.0c02587] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In clinical practice, a variety of diagnostic applications require the identification of target cells. Density has been used as a physical marker to distinguish cell populations since metabolic activities could alter the cell densities. Magnetic levitation offers great promise for separating cells at the single cell level within heterogeneous populations with respect to cell densities. Traditional magnetic levitation platforms need bulky and precise optical microscopes to visualize levitated cells. Moreover, the evaluation process of cell densities is cumbersome, which also requires trained personnel for operation. In this work, we introduce a device (HologLev) as a fusion of the magnetic levitation principle and lensless digital inline holographic microscopy (LDIHM). LDIHM provides ease of use by getting rid of bulky and expensive optics. By placing an imaging sensor just beneath the microcapillary channel without any lenses, recorded holograms are processed for determining cell densities through a fully automated digital image processing scheme. The device costs less than $100 and has a compact design that can fit into a pocket. We perform viability tests on the device by levitating three different cell lines (MDA-MB-231, U937, D1 ORL UVA) and comparing them against their dead correspondents. We also tested the differentiation of mouse osteoblastic (7F2) cells by monitoring characteristic variations in their density. Last, the response of MDA-MB-231 cancer cells to a chemotherapy drug was demonstrated in our platform. HologLev provides cost-effective, label-free, fully automated cell analysis in a compact design that could be highly desirable for laboratory and point-of-care testing applications.
Collapse
Affiliation(s)
- Kerem Delikoyun
- Faculty of Engineering, Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir 35430, Turkey
| | - Sena Yaman
- Faculty of Engineering, Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir 35430, Turkey
| | - Esra Yilmaz
- Faculty of Engineering, Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir 35430, Turkey
| | - Oyku Sarigil
- Faculty of Engineering, Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir 35430, Turkey
| | - Muge Anil-Inevi
- Faculty of Engineering, Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir 35430, Turkey
| | - Kubra Telli
- Faculty of Science, Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir 35430, Turkey
| | - Ozden Yalcin-Ozuysal
- Faculty of Science, Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir 35430, Turkey
| | - Engin Ozcivici
- Faculty of Engineering, Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir 35430, Turkey
| | - H. Cumhur Tekin
- Faculty of Engineering, Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir 35430, Turkey
- METU MEMS Center, Ankara 06520, Turkey
| |
Collapse
|
8
|
Miceli M, Casati S, Ottria R, Di Leo S, Eberini I, Palazzolo L, Parravicini C, Ciuffreda P. Set-Up and Validation of a High Throughput Screening Method for Human Monoacylglycerol Lipase (MAGL) Based on a New Red Fluorescent Probe. Molecules 2019; 24:molecules24122241. [PMID: 31208066 PMCID: PMC6631453 DOI: 10.3390/molecules24122241] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/06/2019] [Accepted: 06/14/2019] [Indexed: 12/15/2022] Open
Abstract
Monoacylglycerol lipase (MAGL) is a serine hydrolase that has a key regulatory role in controlling the levels of 2-arachidonoylglycerol (2-AG), the main signaling molecule in the endocannabinoid system. Identification of selective modulators of MAGL enables both to provide new tools for investigating pathophysiological roles of 2-AG, and to discover new lead compounds for drug design. The development of sensitive and reliable methods is crucial to evaluate this modulatory activity. In the current study, we report readily synthesized long-wavelength putative fluorogenic substrates with different acylic side chains to find a new probe for MAGL activity. 7-Hydroxyresorufinyl octanoate proved to be the best substrate thanks to the highest rate of hydrolysis and the best Km and Vmax values. In addition, in silico evaluation of substrates interaction with the active site of MAGL confirms octanoate resorufine derivative as the molecule of choice. The well-known MAGL inhibitors URB602 and methyl arachidonylfluorophosphonate (MAFP) were used for the assay validation. The assay was highly reproducible with an overall average Z′ value of 0.86. The fast, sensitive and accurate method described in this study is suitable for low-cost high-throughput screening (HTS) of MAGL modulators and is a powerful new tool for studying MAGL activity.
Collapse
Affiliation(s)
- Matteo Miceli
- Dipartimento di Scienze Biomediche e Cliniche "Luigi Sacco", Università degli Studi di Milano, Via G.B. Grassi 74, 20157 Milano, Italy.
| | - Silvana Casati
- Dipartimento di Scienze Biomediche e Cliniche "Luigi Sacco", Università degli Studi di Milano, Via G.B. Grassi 74, 20157 Milano, Italy.
| | - Roberta Ottria
- Dipartimento di Scienze Biomediche e Cliniche "Luigi Sacco", Università degli Studi di Milano, Via G.B. Grassi 74, 20157 Milano, Italy.
| | - Simone Di Leo
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Via Fratelli Cervi 93, 20090 Segrate (MI), Italy.
| | - Ivano Eberini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy.
| | - Luca Palazzolo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy.
| | - Chiara Parravicini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy.
| | - Pierangela Ciuffreda
- Dipartimento di Scienze Biomediche e Cliniche "Luigi Sacco", Università degli Studi di Milano, Via G.B. Grassi 74, 20157 Milano, Italy.
| |
Collapse
|
9
|
Sassano MF, Davis ES, Keating JE, Zorn BT, Kochar TK, Wolfgang MC, Glish GL, Tarran R. Evaluation of e-liquid toxicity using an open-source high-throughput screening assay. PLoS Biol 2018; 16:e2003904. [PMID: 29584716 PMCID: PMC5870948 DOI: 10.1371/journal.pbio.2003904] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 02/21/2018] [Indexed: 01/08/2023] Open
Abstract
The e-liquids used in electronic cigarettes (E-cigs) consist of propylene glycol (PG), vegetable glycerin (VG), nicotine, and chemical additives for flavoring. There are currently over 7,700 e-liquid flavors available, and while some have been tested for toxicity in the laboratory, most have not. Here, we developed a 3-phase, 384-well, plate-based, high-throughput screening (HTS) assay to rapidly triage and validate the toxicity of multiple e-liquids. Our data demonstrated that the PG/VG vehicle adversely affected cell viability and that a large number of e-liquids were more toxic than PG/VG. We also performed gas chromatography-mass spectrometry (GC-MS) analysis on all tested e-liquids. Subsequent nonmetric multidimensional scaling (NMDS) analysis revealed that e-liquids are an extremely heterogeneous group. Furthermore, these data indicated that (i) the more chemicals contained in an e-liquid, the more toxic it was likely to be and (ii) the presence of vanillin was associated with higher toxicity values. Further analysis of common constituents by electron ionization revealed that the concentration of cinnamaldehyde and vanillin, but not triacetin, correlated with toxicity. We have also developed a publicly available searchable website (www.eliquidinfo.org). Given the large numbers of available e-liquids, this website will serve as a resource to facilitate dissemination of this information. Our data suggest that an HTS approach to evaluate the toxicity of multiple e-liquids is feasible. Such an approach may serve as a roadmap to enable bodies such as the Food and Drug Administration (FDA) to better regulate e-liquid composition.
Collapse
Affiliation(s)
- M. Flori Sassano
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Eric S. Davis
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - James E. Keating
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Bryan T. Zorn
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Tavleen K. Kochar
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Matthew C. Wolfgang
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Gary L. Glish
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Robert Tarran
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- * E-mail:
| |
Collapse
|
10
|
Cytotoxicity Test Based on Human Cells Labeled with Fluorescent Proteins: Fluorimetry, Photography, and Scanning for High-Throughput Assay. Mol Imaging Biol 2017; 20:368-377. [DOI: 10.1007/s11307-017-1152-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
11
|
Rönkkö S, Vellonen KS, Järvinen K, Toropainen E, Urtti A. Human corneal cell culture models for drug toxicity studies. Drug Deliv Transl Res 2017; 6:660-675. [PMID: 27613190 PMCID: PMC5097077 DOI: 10.1007/s13346-016-0330-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In vivo toxicity and absorption studies of topical ocular drugs are problematic, because these studies involve invasive tissue sampling and toxic effects in animal models. Therefore, different human corneal models ranging from simple monolayer cultures to three-dimensional models have been developed for toxicological prediction with in vitro models. Each system has its own set of advantages and disadvantages. Use of non-corneal cells, inadequate characterization of gene-expression profiles, and accumulation of genomic aberrations in human corneal models are typical drawbacks that decrease their reliability and predictive power. In the future, further improvements are needed for verifying comparable expression profiles and cellular properties of human corneal models with their in vivo counterparts. A rapidly expanding stem cell technology combined with tissue engineering may give future opportunities to develop new tools in drug toxicity studies. One approach may be the production of artificial miniature corneas. In addition, there is also a need to use large-scale profiling approaches such as genomics, transcriptomics, proteomics, and metabolomics for understanding of the ocular toxicity.
Collapse
Affiliation(s)
- Seppo Rönkkö
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O.Box 1627, 70211, Kuopio, Finland
| | - Kati-Sisko Vellonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O.Box 1627, 70211, Kuopio, Finland
| | - Kristiina Järvinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O.Box 1627, 70211, Kuopio, Finland
| | - Elisa Toropainen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O.Box 1627, 70211, Kuopio, Finland
| | - Arto Urtti
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O.Box 1627, 70211, Kuopio, Finland. .,Centre for Drug Research, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland.
| |
Collapse
|
12
|
Almeida AC, Gomes T, Langford K, Thomas KV, Tollefsen KE. Oxidative stress in the algae Chlamydomonas reinhardtii exposed to biocides. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 189:50-59. [PMID: 28582701 DOI: 10.1016/j.aquatox.2017.05.014] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/26/2017] [Accepted: 05/27/2017] [Indexed: 06/07/2023]
Abstract
The toxicity of biocides can be associated with the formation of reactive oxygen species (ROS) and subsequent oxidative damage, interfering with the normal function of photosynthetic organisms. This study investigated the formation and effects of ROS in the unicellular green algae Chlamydomonas reinhardtii exposed to three environmentally relevant biocides, aclonifen, dichlofluanid and triclosan. After a first screening to identify which biocides induced ROS, a 24h multi-endpoint analysis was used to verify the possible consequences. A battery of high-throughput methods was applied in algae for measuring ROS formation, reduced glutathione (GSH), lipid peroxidation (LPO), photosystem (PS) II performance and pigments (chlorophylls a, b and carotenoids). Results show that only aclonifen induced ROS after the first 6h exposure, with the other two biocides not showing any ROS formation. Aclonifen, a Protox and carotenoid inhibitor, induced a concentration-dependent ROS formation, LPO and interfered with algae pigments content, while no alterations were detected in GSH content. A significant effect was also seen in the photosynthetic process, especially a reduction in the maximum and effective quantum yields, accompanied by alterations in energy dissipation in PSII reaction centers and the impairment of the electron transport rate. This study demonstrated the successful use of a battery of high-throughput methods for quickly screening biocides capacity to induce the formation of ROS and the subsequent effects in C. reinhardtii, thus revealing their mode of action (MoA) at concentrations before an impact on growth can become effective.
Collapse
Affiliation(s)
| | - Tânia Gomes
- Norwegian Institute for Water Research, Gaustadalléen 21, 0349 Oslo, Norway; Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post Box 5003, N-1432 Ås, Norway
| | - Katherine Langford
- Norwegian Institute for Water Research, Gaustadalléen 21, 0349 Oslo, Norway
| | - Kevin V Thomas
- Norwegian Institute for Water Research, Gaustadalléen 21, 0349 Oslo, Norway
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research, Gaustadalléen 21, 0349 Oslo, Norway; Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post Box 5003, N-1432 Ås, Norway
| |
Collapse
|
13
|
Hong HJ, Koom WS, Koh WG. Cell Microarray Technologies for High-Throughput Cell-Based Biosensors. SENSORS (BASEL, SWITZERLAND) 2017; 17:E1293. [PMID: 28587242 PMCID: PMC5492771 DOI: 10.3390/s17061293] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/24/2017] [Accepted: 05/31/2017] [Indexed: 12/27/2022]
Abstract
Due to the recent demand for high-throughput cellular assays, a lot of efforts have been made on miniaturization of cell-based biosensors by preparing cell microarrays. Various microfabrication technologies have been used to generate cell microarrays, where cells of different phenotypes are immobilized either on a flat substrate (positional array) or on particles (solution or suspension array) to achieve multiplexed and high-throughput cell-based biosensing. After introducing the fabrication methods for preparation of the positional and suspension cell microarrays, this review discusses the applications of the cell microarray including toxicology, drug discovery and detection of toxic agents.
Collapse
Affiliation(s)
- Hye Jin Hong
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Korea.
| | - Woong Sub Koom
- Department of Radiation Oncology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Korea.
| | - Won-Gun Koh
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Korea.
| |
Collapse
|
14
|
Seebeck F, März M, Meyer AW, Reuter H, Vogg MC, Stehling M, Mildner K, Zeuschner D, Rabert F, Bartscherer K. Integrins are required for tissue organization and restriction of neurogenesis in regenerating planarians. Development 2017; 144:795-807. [PMID: 28137894 PMCID: PMC5374344 DOI: 10.1242/dev.139774] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 01/11/2017] [Indexed: 12/13/2022]
Abstract
Tissue regeneration depends on proliferative cells and on cues that regulate cell division, differentiation, patterning and the restriction of these processes once regeneration is complete. In planarians, flatworms with high regenerative potential, muscle cells express some of these instructive cues. Here, we show that members of the integrin family of adhesion molecules are required for the integrity of regenerating tissues, including the musculature. Remarkably, in regenerating β1-integrin RNAi planarians, we detected increased numbers of mitotic cells and progenitor cell types, as well as a reduced ability of stem cells and lineage-restricted progenitor cells to accumulate at wound sites. These animals also formed ectopic spheroid structures of neural identity in regenerating heads. Interestingly, those polarized assemblies comprised a variety of neural cells and underwent continuous growth. Our study indicates that integrin-mediated cell adhesion is required for the regenerative formation of organized tissues and for restricting neurogenesis during planarian regeneration. Highlighted article: Integrin signaling acts to recruit and localize progenitor cells following injury, thereby promoting the correct organization of regenerating planarian tissue.
Collapse
Affiliation(s)
- Florian Seebeck
- Max Planck Research Group Stem Cells & Regeneration, Max Planck Institute for Molecular Biomedicine, Von-Esmarch-Str. 54, Münster 48149, Germany.,Medical Faculty, University of Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Martin März
- Max Planck Research Group Stem Cells & Regeneration, Max Planck Institute for Molecular Biomedicine, Von-Esmarch-Str. 54, Münster 48149, Germany.,Medical Faculty, University of Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Anna-Wiebke Meyer
- Max Planck Research Group Stem Cells & Regeneration, Max Planck Institute for Molecular Biomedicine, Von-Esmarch-Str. 54, Münster 48149, Germany.,Medical Faculty, University of Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Hanna Reuter
- Max Planck Research Group Stem Cells & Regeneration, Max Planck Institute for Molecular Biomedicine, Von-Esmarch-Str. 54, Münster 48149, Germany.,Medical Faculty, University of Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Matthias C Vogg
- Max Planck Research Group Stem Cells & Regeneration, Max Planck Institute for Molecular Biomedicine, Von-Esmarch-Str. 54, Münster 48149, Germany.,Medical Faculty, University of Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Martin Stehling
- Flow Cytometry Unit, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, Münster 48149, Germany
| | - Karina Mildner
- Electron Microscopy Unit, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, Münster 48149, Germany
| | - Dagmar Zeuschner
- Electron Microscopy Unit, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, Münster 48149, Germany
| | - Franziska Rabert
- Max Planck Research Group Stem Cells & Regeneration, Max Planck Institute for Molecular Biomedicine, Von-Esmarch-Str. 54, Münster 48149, Germany.,Medical Faculty, University of Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Kerstin Bartscherer
- Max Planck Research Group Stem Cells & Regeneration, Max Planck Institute for Molecular Biomedicine, Von-Esmarch-Str. 54, Münster 48149, Germany .,Medical Faculty, University of Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| |
Collapse
|
15
|
Yang B, Zou Q, Lin L, Li L, Zuo Y, Li Y. Synthesis and characterization of fluorescein-grafted polyurethane for potential application in biomedical tracing. J Biomater Appl 2016; 31:901-910. [PMID: 27932701 DOI: 10.1177/0885328216681893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Redesigned multifunctional biopolymers represent a novel building bridge for interdisciplinary collaborations in biomaterials development. We prepared fluorescein-grafted polyurethane scaffolds (PU-C1, PU-C5, and PU-B1) to meet both clinical needs and biological safety evaluations, using different contents of calcein and different synthesis procedures for potential biomedical tracing. X-ray diffraction, infrared, X-ray photoelectron spectroscopy, nuclear magnetic resonance, scanning electron microscopy, and light microscopy were used to analyze the composition and structure of polyurethanes, as well as to observe their morphology with and without biomarkers. Fluorescence spectrophotometer and fluorescence microscopy were used to detect the fluorescence characteristics. The results showed that the grafting of calcein significantly affected the chemical structure and fluorescence sensitivities of copolymers. When compared to calcein, which was added before synthesis (PU-C1), the marker that was added during the extender process (PU-B1) presented higher fluorescence efficiency. Both PU-C5 and PU-B1 exhibited strong fluorescent response and good cytocompatibility in vitro and in vivo, with no interference from the autofluorescence of tissues after 4 weeks of implantation. The fluorescence-marked material can be used to continuously and noninvasively monitor the dynamic changes in polymers, which provides a way to clearly trace the material or to distinguish between the material and tissue in vivo.
Collapse
Affiliation(s)
- Boyuan Yang
- Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, China
| | - Qin Zou
- Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, China
| | - Lili Lin
- Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, China
| | - Limei Li
- Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, China
| | - Yi Zuo
- Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, China
| | - Yubao Li
- Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, China
| |
Collapse
|
16
|
Zhang Y, Cuyt A, Lee WS, Lo Bianco G, Wu G, Chen Y, Li DDU. Towards unsupervised fluorescence lifetime imaging using low dimensional variable projection. OPTICS EXPRESS 2016; 24:26777-26791. [PMID: 27857408 DOI: 10.1364/oe.24.026777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Analyzing large fluorescence lifetime imaging (FLIM) data is becoming overwhelming; the latest FLIM systems easily produce massive amounts of data, making an efficient analysis more challenging than ever. In this paper we propose the combination of a custom-fit variable projection method, with a Laguerre expansion based deconvolution, to analyze bi-exponential data obtained from time-domain FLIM systems. Unlike nonlinear least squares methods, which require a suitable initial guess from an experienced researcher, the new method is free from manual interventions and hence can support automated analysis. Monte Carlo simulations are carried out on synthesized FLIM data to demonstrate the performance compared to other approaches. The performance is also illustrated on real-life FLIM data obtained from the study of autofluorescence of daisy pollen and the endocytosis of gold nanorods (GNRs) in living cells. In the latter, the fluorescence lifetimes of the GNRs are much shorter than the full width at half maximum of the instrument response function. Overall, our proposed method contains simple steps and shows great promise in realising automated FLIM analysis of large data sets.
Collapse
|
17
|
Fluorescence-based assay as a new screening tool for toxic chemicals. Sci Rep 2016; 6:33922. [PMID: 27653274 PMCID: PMC5031998 DOI: 10.1038/srep33922] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 08/23/2016] [Indexed: 01/08/2023] Open
Abstract
Our study involves development of fluorescent cell-based diagnostic assay as a new approach in high-throughput screening method. This highly sensitive optical assay operates similarly to e-noses and e-tongues which combine semi-specific sensors and multivariate data analysis for monitoring biochemical processes. The optical assay consists of a mixture of environmental-sensitive fluorescent dyes and human skin cells that generate fluorescence spectra patterns distinctive for particular physico-chemical and physiological conditions. Using chemometric techniques the optical signal is processed providing qualitative information about analytical characteristics of the samples. This integrated approach has been successfully applied (with sensitivity of 93% and specificity of 97%) in assessing whether particular chemical agents are irritating or not for human skin. It has several advantages compared with traditional biochemical or biological assays and can impact the new way of high-throughput screening and understanding cell activity. It also can provide reliable and reproducible method for assessing a risk of exposing people to different harmful substances, identification active compounds in toxicity screening and safety assessment of drugs, cosmetic or their specific ingredients.
Collapse
|
18
|
Lauria S, Casati S, Ciuffreda P. Synthesis and characterization of a new fluorogenic substrate for monoacylglycerol lipase and application to inhibition studies. Anal Bioanal Chem 2015; 407:8163-7. [PMID: 26329281 DOI: 10.1007/s00216-015-8991-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/03/2015] [Accepted: 08/18/2015] [Indexed: 11/24/2022]
Abstract
Human monoacylglycerol lipase (MAGL), a soluble serine hydrolase that belongs to the α/β hydrolase fold superfamily, regulates 2-arachidonoyl glycerol level in the endocannabinoid system, which is implicated in a number of severe diseases, and therefore, inhibition of MAGL activity is crucial in the treatment of these diseases. We have synthesized a red fluorogenic substrate, 7-hydroxyresorufinyl-arachidonate (7-HRA), for a new MAGL assay. This assay is simple, sensitive, and reliable and useful for identifying compounds that modulate MAGL activity. In addition, the assay emits red fluorescence, which can significantly reduce interference due to compound fluorescence and dust or lint, all of which fluoresce in the blue wavelength. MAGL catalyzes the hydrolysis of 7-HRA to generate arachidonic acid and a highly red fluorescent resorufin, excitation at 571 nm and emission at 588 nm, with a Km of 0.87 μM and Vmax of 26 nmol min(-1) mg protein(-1). The known MAGL inhibitors URB602, methyl arachidonyl fluorophosphonate, and JZL184 were used to validate the test assay. The assay was highly reproducible with an overall average Z' value of 0.80. This new red fluorogenic substrate and the resulting enzyme assay could be used in high-throughput screening to identify and develop new potential MAGL inhibitors.
Collapse
Affiliation(s)
- Simone Lauria
- Dipartimento di Scienze Biomediche e Cliniche "Luigi Sacco", Università degli Studi di Milano, via G. B. Grassi 74, 20157, Milan, Italy
| | - Silvana Casati
- Dipartimento di Scienze Biomediche e Cliniche "Luigi Sacco", Università degli Studi di Milano, via G. B. Grassi 74, 20157, Milan, Italy
| | - Pierangela Ciuffreda
- Dipartimento di Scienze Biomediche e Cliniche "Luigi Sacco", Università degli Studi di Milano, via G. B. Grassi 74, 20157, Milan, Italy.
| |
Collapse
|
19
|
Jung J, Kim K, Yu H, Lee K, Lee S, Nahm S, Park H, Park Y. Biomedical applications of holographic microspectroscopy [invited]. APPLIED OPTICS 2014; 53:G111-22. [PMID: 25322118 DOI: 10.1364/ao.53.00g111] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The identification and quantification of specific molecules are crucial for studying the pathophysiology of cells, tissues, and organs as well as diagnosis and treatment of diseases. Recent advances in holographic microspectroscopy, based on quantitative phase imaging or optical coherence tomography techniques, show promise for label-free noninvasive optical detection and quantification of specific molecules in living cells and tissues (e.g., hemoglobin protein). To provide important insight into the potential employment of holographic spectroscopy techniques in biological research and for related practical applications, we review the principles of holographic microspectroscopy techniques and highlight recent studies.
Collapse
|
20
|
Kye EJ, Kim SJ, Park MH, Moon HJ, Ryu KH, Jeong B. Differentiation of Tonsil-Tissue-Derived Mesenchymal Stem Cells Controlled by Surface-Functionalized Microspheres in PEG-Polypeptide Thermogels. Biomacromolecules 2014; 15:2180-7. [DOI: 10.1021/bm500342r] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Eun Jeong Kye
- Department
of Chemistry and Nano Science, Ewha Global Top 5 Research Program, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 120-750, Korea
| | - Seung-Jin Kim
- Department
of Chemistry and Nano Science, Ewha Global Top 5 Research Program, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 120-750, Korea
| | - Min Hee Park
- Department
of Chemistry and Nano Science, Ewha Global Top 5 Research Program, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 120-750, Korea
| | - Hyo Jung Moon
- Department
of Chemistry and Nano Science, Ewha Global Top 5 Research Program, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 120-750, Korea
| | - Kyung Ha Ryu
- Departments
of Molecular Medicine, Otorhinolaryngology—Head and Neck Surgery
and Pediatrics, School of Medicine Ewha Womans University, Ewha Global Top 5
Research Program, Seoul, Korea
| | - Byeongmoon Jeong
- Department
of Chemistry and Nano Science, Ewha Global Top 5 Research Program, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 120-750, Korea
| |
Collapse
|
21
|
Kummrow A, Frankowski M, Bock N, Werner C, Dziekan T, Neukammer J. Quantitative assessment of cell viability based on flow cytometry and microscopy. Cytometry A 2012; 83:197-204. [PMID: 23081720 DOI: 10.1002/cyto.a.22213] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 09/06/2012] [Accepted: 09/12/2012] [Indexed: 11/05/2022]
Abstract
We compare flow cytometric and microscopic determination of cell viability by fluorescence labeling using calcein acetoxy-methyl-ester and ethidium homodimer-1 as live and dead stain, respectively. Peripheral blood monocytes served as model system and were accumulated applying density gradients. Subsequently, monocytes were further enriched by magnetic-activated or fluorescence-activated cell sorting (MACS, FACS) targeting the antigen CD14. Identical samples were used for flow cytometric and microscopic analysis to allow direct comparison of both analysis methods. More than 1,000 cells were measured for each sample to minimize the measurement uncertainty caused by counting statistics. We observed good agreement of flow cytometric and microscopic viability measurements. On average, the difference in viability measured by flow cytometry and microscopy amounted to (2.7 ± 1.4)% for live staining and (1.7 ± 1.2)% for dead staining. These deviations were similar to the uncertainty of measurement for cell viability, thus demonstrating that both methods delivered equal results. Besides monocytes, comparison of flow cytometric and microscopy viability for MACS enriched CD34-positive cells also showed consistent results.
Collapse
Affiliation(s)
- A Kummrow
- Physikalisch-Technische Bundesanstalt, 10587 Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
22
|
Development of a short-term assay based on the evaluation of the plasma membrane integrity of the alga Pseudokirchneriella subcapitata. Appl Microbiol Biotechnol 2012; 95:1035-42. [DOI: 10.1007/s00253-012-4185-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 05/11/2012] [Accepted: 05/15/2012] [Indexed: 10/28/2022]
|
23
|
Zhang L, Qu F, Hu M, Ding J, Lou B. Capillary zone electrophoresis-based cytotoxicity analysis of Caco-2 cells. Electrophoresis 2012; 33:834-40. [DOI: 10.1002/elps.201100382] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Lu Zhang
- School of Life Science, Beijing Institute of Technology; Beijing; China
| | - Feng Qu
- School of Life Science, Beijing Institute of Technology; Beijing; China
| | - Meiling Hu
- School of Life Science, Beijing Institute of Technology; Beijing; China
| | - Jinmei Ding
- School of Life Science, Beijing Institute of Technology; Beijing; China
| | - Beilei Lou
- School of Life Science, Beijing Institute of Technology; Beijing; China
| |
Collapse
|
24
|
Mandenius CF, Steel D, Noor F, Meyer T, Heinzle E, Asp J, Arain S, Kraushaar U, Bremer S, Class R, Sartipy P. Cardiotoxicity testing using pluripotent stem cell-derived human cardiomyocytes and state-of-the-art bioanalytics: a review. J Appl Toxicol 2011; 31:191-205. [DOI: 10.1002/jat.1663] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 12/30/2010] [Accepted: 12/31/2010] [Indexed: 12/13/2022]
Affiliation(s)
| | | | - Fozia Noor
- Biochemical Engineering; Saarland University; Saarbruecken; Germany
| | | | - Elmar Heinzle
- Biochemical Engineering; Saarland University; Saarbruecken; Germany
| | - Julia Asp
- Department of Clinical Chemistry and Transfusion Medicine; Institute of Biomedicine; the Sahlgrenska Academy; University of Gothenburg; Göteborg; Sweden
| | | | - Udo Kraushaar
- Natural and Medical Sciences Institute at the University of Tübingen; Germany
| | - Susanne Bremer
- ECVAM; Institute for Health and Consumer Protection (IHCP); European Commission Joint Research Center; Ispra; Italy
| | | | | |
Collapse
|