1
|
Kim H, Baek IY, Seong J. Genetically encoded fluorescent biosensors for GPCR research. Front Cell Dev Biol 2022; 10:1007893. [PMID: 36247000 PMCID: PMC9559200 DOI: 10.3389/fcell.2022.1007893] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
G protein-coupled receptors (GPCRs) regulate a wide range of physiological and pathophysiological cellular processes, thus it is important to understand how GPCRs are activated and function in various cellular contexts. In particular, the activation process of GPCRs is dynamically regulated upon various extracellular stimuli, and emerging evidence suggests the subcellular functions of GPCRs at endosomes and other organelles. Therefore, precise monitoring of the GPCR activation process with high spatiotemporal resolution is required to investigate the underlying molecular mechanisms of GPCR functions. In this review, we will introduce genetically encoded fluorescent biosensors that can precisely monitor the real-time GPCR activation process in live cells. The process includes the binding of extracellular GPCR ligands, conformational change of GPCR, recruitment of G proteins or β-arrestin, GPCR internalization and trafficking, and the GPCR-related downstream signaling events. We will introduce fluorescent GPCR biosensors based on a variety of strategies such as fluorescent resonance energy transfer (FRET), bioluminescence resonance energy transfer (BRET), circular permuted fluorescent protein (cpFP), and nanobody. We will discuss the pros and cons of these GPCR biosensors as well as their applications in GPCR research.
Collapse
Affiliation(s)
- Hyunbin Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, South Korea
| | - In-Yeop Baek
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Department of Converging Science and Technology, Kyung Hee University, Seoul, South Korea
| | - Jihye Seong
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, South Korea
- Department of Converging Science and Technology, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
2
|
Bhuckory S, Kays JC, Dennis AM. In Vivo Biosensing Using Resonance Energy Transfer. BIOSENSORS 2019; 9:E76. [PMID: 31163706 PMCID: PMC6628364 DOI: 10.3390/bios9020076] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/20/2019] [Accepted: 05/27/2019] [Indexed: 01/05/2023]
Abstract
Solution-phase and intracellular biosensing has substantially enhanced our understanding of molecular processes foundational to biology and pathology. Optical methods are favored because of the low cost of probes and instrumentation. While chromatographic methods are helpful, fluorescent biosensing further increases sensitivity and can be more effective in complex media. Resonance energy transfer (RET)-based sensors have been developed to use fluorescence, bioluminescence, or chemiluminescence (FRET, BRET, or CRET, respectively) as an energy donor, yielding changes in emission spectra, lifetime, or intensity in response to a molecular or environmental change. These methods hold great promise for expanding our understanding of molecular processes not just in solution and in vitro studies, but also in vivo, generating information about complex activities in a natural, organismal setting. In this review, we focus on dyes, fluorescent proteins, and nanoparticles used as energy transfer-based optical transducers in vivo in mice; there are examples of optical sensing using FRET, BRET, and in this mammalian model system. After a description of the energy transfer mechanisms and their contribution to in vivo imaging, we give a short perspective of RET-based in vivo sensors and the importance of imaging in the infrared for reduced tissue autofluorescence and improved sensitivity.
Collapse
Affiliation(s)
- Shashi Bhuckory
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA.
| | - Joshua C Kays
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA.
| | - Allison M Dennis
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA.
- Division of Materials Science and Engineering, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
3
|
Wright SC, Cañizal MCA, Benkel T, Simon K, Le Gouill C, Matricon P, Namkung Y, Lukasheva V, König GM, Laporte SA, Carlsson J, Kostenis E, Bouvier M, Schulte G, Hoffmann C. FZD 5 is a Gα q-coupled receptor that exhibits the functional hallmarks of prototypical GPCRs. Sci Signal 2018; 11:11/559/eaar5536. [PMID: 30514810 DOI: 10.1126/scisignal.aar5536] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Frizzleds (FZDs) are a group of seven transmembrane-spanning (7TM) receptors that belong to class F of the G protein-coupled receptor (GPCR) superfamily. FZDs bind WNT proteins to stimulate diverse signaling cascades involved in embryonic development, stem cell regulation, and adult tissue homeostasis. Frizzled 5 (FZD5) is one of the most studied class F GPCRs that promote the functional inactivation of the β-catenin destruction complex in response to WNTs. However, whether FZDs function as prototypical GPCRs has been heavily debated and, in particular, FZD5 has not been shown to activate heterotrimeric G proteins. Here, we show that FZD5 exhibited a conformational change after the addition of WNT-5A, which is reminiscent of class A and class B GPCR activation. In addition, we performed several live-cell imaging and spectrometric-based approaches, such as dual-color fluorescence recovery after photobleaching (dcFRAP) and resonance energy transfer (RET)-based assays that demonstrated that FZD5 activated Gαq and its downstream effectors upon stimulation with WNT-5A. Together, these findings suggest that FZD5 is a 7TM receptor with a bona fide GPCR activation profile and suggest novel targets for drug discovery in WNT-FZD signaling.
Collapse
Affiliation(s)
- Shane C Wright
- Section of Receptor Biology and Signaling, Department of Physiology and Pharmacology, Karolinska Institutet, S17165 Stockholm, Sweden.,Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer, University of Montréal, Montréal, QC H3C 3J7, Canada
| | - Maria Consuelo Alonso Cañizal
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Strasse 9, 97078 Würzburg, Germany.,Institute for Molecular Cell Biology, CMB-Center for Molecular Biomedicine, University Hospital Jena, Friedrich-Schiller University Jena, Hans-Knöll-Strasse 2, 07745 Jena, Germany
| | - Tobias Benkel
- Institute for Pharmaceutical Biology, University of Bonn, 53115 Bonn, Germany
| | - Katharina Simon
- Institute for Pharmaceutical Biology, University of Bonn, 53115 Bonn, Germany
| | - Christian Le Gouill
- Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer, University of Montréal, Montréal, QC H3C 3J7, Canada
| | - Pierre Matricon
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, P.O. Box 596, SE-751 24 Uppsala, Sweden
| | - Yoon Namkung
- Department of Medicine, Research Institute of the McGill University Health Center, McGill University, Montréal, QC H4A 3J1, Canada
| | - Viktoria Lukasheva
- Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer, University of Montréal, Montréal, QC H3C 3J7, Canada
| | - Gabriele M König
- Institute for Pharmaceutical Biology, University of Bonn, 53115 Bonn, Germany
| | - Stéphane A Laporte
- Department of Medicine, Research Institute of the McGill University Health Center, McGill University, Montréal, QC H4A 3J1, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Jens Carlsson
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, P.O. Box 596, SE-751 24 Uppsala, Sweden
| | - Evi Kostenis
- Institute for Pharmaceutical Biology, University of Bonn, 53115 Bonn, Germany
| | - Michel Bouvier
- Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer, University of Montréal, Montréal, QC H3C 3J7, Canada
| | - Gunnar Schulte
- Section of Receptor Biology and Signaling, Department of Physiology and Pharmacology, Karolinska Institutet, S17165 Stockholm, Sweden.
| | - Carsten Hoffmann
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Strasse 9, 97078 Würzburg, Germany. .,Institute for Molecular Cell Biology, CMB-Center for Molecular Biomedicine, University Hospital Jena, Friedrich-Schiller University Jena, Hans-Knöll-Strasse 2, 07745 Jena, Germany
| |
Collapse
|
4
|
Marsango S, Ward RJ, Alvarez-Curto E, Milligan G. Muscarinic receptor oligomerization. Neuropharmacology 2018; 136:401-410. [PMID: 29146505 PMCID: PMC6078712 DOI: 10.1016/j.neuropharm.2017.11.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 11/01/2017] [Accepted: 11/13/2017] [Indexed: 12/30/2022]
Abstract
G protein-coupled receptors (GPCRs) have been classically described as monomeric entities that function by binding in a 1:1 stoichiometric ratio to both ligand and downstream signalling proteins. However, in recent years, a growing number of studies has supported the hypothesis that these receptors can interact to form dimers and higher order oligomers although the molecular basis for these interactions, the overall quaternary arrangements and the functional importance of GPCR oligomerization remain topics of intense speculation. Muscarinic acetylcholine receptors belong to class A of the GPCR family. Each muscarinic receptor subtype has its own particular distribution throughout the central and peripheral nervous systems. In the central nervous system, muscarinic receptors regulate several sensory, cognitive, and motor functions while, in the peripheral nervous system, they are involved in the regulation of heart rate, stimulation of glandular secretion and smooth muscle contraction. Muscarinic acetylcholine receptors have long been used as a model for the study of GPCR structure and function and to address aspects of GPCR dimerization using a broad range of approaches. In this review, the prevailing knowledge regarding the quaternary arrangement for the various muscarinic acetylcholine receptors has been summarized by discussing work ranging from initial results obtained using more traditional biochemical approaches to those generated with more modern biophysical techniques. This article is part of the Special Issue entitled 'Neuropharmacology on Muscarinic Receptors'.
Collapse
Affiliation(s)
- Sara Marsango
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK.
| | - Richard J Ward
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK.
| | - Elisa Alvarez-Curto
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - Graeme Milligan
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| |
Collapse
|
5
|
Ma W, Yang L, He L. Overview of the detection methods for equilibrium dissociation constant KD of drug-receptor interaction. J Pharm Anal 2018; 8:147-152. [PMID: 29922482 PMCID: PMC6004624 DOI: 10.1016/j.jpha.2018.05.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 04/25/2018] [Accepted: 05/04/2018] [Indexed: 01/27/2023] Open
Abstract
Drug-receptor interaction plays an important role in a series of biological effects, such as cell proliferation, immune response, tumor metastasis, and drug delivery. Therefore, the research on drug-receptor interaction is growing rapidly. The equilibrium dissociation constant (KD) is the basic parameter to evaluate the binding property of the drug-receptor. Thus, a variety of analytical methods have been established to determine the KD values, including radioligand binding assay, surface plasmon resonance method, fluorescence energy resonance transfer method, affinity chromatography, and isothermal titration calorimetry. With the invention and innovation of new technology and analysis method, there is a deep exploration and comprehension about drug-receptor interaction. This review discusses the different methods of determining the KD values, and analyzes the applicability and the characteristic of each analytical method. Conclusively, the aim is to provide the guidance for researchers to utilize the most appropriate analytical tool to determine the KD values.
Collapse
Affiliation(s)
| | | | - Langchong He
- School of Pharmacy, Xi’an Jiaotong University Health Science Center, No. 76, Yanta West Street, Xi’an, Shaanxi Province 710061, PR China
| |
Collapse
|
6
|
Tabor A, Weisenburger S, Banerjee A, Purkayastha N, Kaindl JM, Hübner H, Wei L, Grömer TW, Kornhuber J, Tschammer N, Birdsall NJM, Mashanov GI, Sandoghdar V, Gmeiner P. Visualization and ligand-induced modulation of dopamine receptor dimerization at the single molecule level. Sci Rep 2016; 6:33233. [PMID: 27615810 PMCID: PMC5018964 DOI: 10.1038/srep33233] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/23/2016] [Indexed: 12/19/2022] Open
Abstract
G protein–coupled receptors (GPCRs), including dopamine receptors, represent a group of important pharmacological targets. An increased formation of dopamine receptor D2 homodimers has been suggested to be associated with the pathophysiology of schizophrenia. Selective labeling and ligand-induced modulation of dimerization may therefore allow the investigation of the pathophysiological role of these dimers. Using TIRF microscopy at the single molecule level, transient formation of homodimers of dopamine receptors in the membrane of stably transfected CHO cells has been observed. The equilibrium between dimers and monomers was modulated by the binding of ligands; whereas antagonists showed a ratio that was identical to that of unliganded receptors, agonist-bound D2 receptor-ligand complexes resulted in an increase in dimerization. Addition of bivalent D2 receptor ligands also resulted in a large increase in D2 receptor dimers. A physical interaction between the protomers was confirmed using high resolution cryogenic localization microscopy, with ca. 9 nm between the centers of mass.
Collapse
Affiliation(s)
- Alina Tabor
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander University, Schuhstraße 19, 91052 Erlangen, Germany
| | - Siegfried Weisenburger
- Max Planck Institute for the Science of Light and Department of Physics, Friedrich-Alexander University, Günther-Scharowsky-Straße 1/ Bldg. 24, 91058 Erlangen, Germany
| | - Ashutosh Banerjee
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander University, Schuhstraße 19, 91052 Erlangen, Germany
| | - Nirupam Purkayastha
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander University, Schuhstraße 19, 91052 Erlangen, Germany
| | - Jonas M Kaindl
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander University, Schuhstraße 19, 91052 Erlangen, Germany
| | - Harald Hübner
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander University, Schuhstraße 19, 91052 Erlangen, Germany
| | - Luxi Wei
- Max Planck Institute for the Science of Light and Department of Physics, Friedrich-Alexander University, Günther-Scharowsky-Straße 1/ Bldg. 24, 91058 Erlangen, Germany
| | - Teja W Grömer
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Nuska Tschammer
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander University, Schuhstraße 19, 91052 Erlangen, Germany
| | - Nigel J M Birdsall
- The Francis Crick Institute, Mill Hill Laboratory, Mill Hill, London NW7 1AA, UK
| | - Gregory I Mashanov
- The Francis Crick Institute, Mill Hill Laboratory, Mill Hill, London NW7 1AA, UK
| | - Vahid Sandoghdar
- Max Planck Institute for the Science of Light and Department of Physics, Friedrich-Alexander University, Günther-Scharowsky-Straße 1/ Bldg. 24, 91058 Erlangen, Germany
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander University, Schuhstraße 19, 91052 Erlangen, Germany
| |
Collapse
|
7
|
Wasilewski T, Gębicki J, Kamysz W. Bioelectronic nose: Current status and perspectives. Biosens Bioelectron 2016; 87:480-494. [PMID: 27592240 DOI: 10.1016/j.bios.2016.08.080] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/23/2016] [Accepted: 08/24/2016] [Indexed: 11/30/2022]
Abstract
A characteristic feature of human and animal organs of smell is the ability to identify hundreds of thousands of odours. It is accompanied by particular smell sensations, which are a basic source of information about odour mixture. The main structural elements of biological smell systems are the olfactory receptors. Small differences in a structure of odorous molecules (odorants) can lead to significant change of odour, which is due to the fact that each of the olfactory receptors is coded with different gene and usually corresponds to different type of odour. Discovery and characterisation of the gene family coding the olfactory receptors contributed to the elaboration and development of the electronic smell systems, the so-called bioelectronic noses. The olfactory receptors are employed as a biological element in this type of instruments. An electronic system includes a converter part, which allows measurement and processing of generated signals. A suitable data analysis system is also required to visualise the results. Application potentialities of the bioelectronic noses are focused on the fields of economy and science where highly selective and sensitive analysis of odorous substances is required. The paper presents a review of the latest achievements and critical evaluation of the state of art in the field of bioelectronic noses.
Collapse
Affiliation(s)
- Tomasz Wasilewski
- Medical University of Gdansk, Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdansk, Poland, Al. Hallera 107, Gdansk 80-416, Poland.
| | - Jacek Gębicki
- Gdańsk University of Technology, Department of Chemical and Process Engineering, Chemical Faculty, Gdańsk University of Technology, Gabriela Narutowicza 11/12 Str., Gdańsk 80-233, Poland
| | - Wojciech Kamysz
- Medical University of Gdansk, Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdansk, Poland, Al. Hallera 107, Gdansk 80-416, Poland
| |
Collapse
|
8
|
Pediani JD, Ward RJ, Godin AG, Marsango S, Milligan G. Dynamic Regulation of Quaternary Organization of the M1 Muscarinic Receptor by Subtype-selective Antagonist Drugs. J Biol Chem 2016; 291:13132-46. [PMID: 27080256 PMCID: PMC4933229 DOI: 10.1074/jbc.m115.712562] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Indexed: 12/14/2022] Open
Abstract
Although rhodopsin-like G protein-coupled receptors can exist as both monomers and non-covalently associated dimers/oligomers, the steady-state proportion of each form and whether this is regulated by receptor ligands are unknown. Herein we address these topics for the M1 muscarinic acetylcholine receptor, a key molecular target for novel cognition enhancers, by using spatial intensity distribution analysis. This method can measure fluorescent particle concentration and assess oligomerization states of proteins within defined regions of living cells. Imaging and analysis of the basolateral surface of cells expressing some 50 molecules·μm−2 human muscarinic M1 receptor identified a ∼75:25 mixture of receptor monomers and dimers/oligomers. Both sustained and shorter term treatment with the selective M1 antagonist pirenzepine resulted in a large shift in the distribution of receptor species to favor the dimeric/oligomeric state. Although sustained treatment with pirenzepine also resulted in marked up-regulation of the receptor, simple mass action effects were not the basis for ligand-induced stabilization of receptor dimers/oligomers. The related antagonist telenzepine also produced stabilization and enrichment of the M1 receptor dimer population, but the receptor subtype non-selective antagonists atropine and N-methylscopolamine did not. In contrast, neither pirenzepine nor telenzepine altered the quaternary organization of the related M3 muscarinic receptor. These data provide unique insights into the selective capacity of receptor ligands to promote and/or stabilize receptor dimers/oligomers and demonstrate that the dynamics of ligand regulation of the quaternary organization of G protein-coupled receptors is markedly more complex than previously appreciated. This may have major implications for receptor function and behavior.
Collapse
Affiliation(s)
- John D Pediani
- From the Molecular Pharmacology Group, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom and
| | - Richard J Ward
- From the Molecular Pharmacology Group, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom and
| | - Antoine G Godin
- Institut d'Optique and CNRS, Laboratoire Photonique, Numérique et Nanosciences (LP2N) and Université de Bordeaux, LP2N, F-33405, UMR 5298, 33405 Talence Cedex, France
| | - Sara Marsango
- From the Molecular Pharmacology Group, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom and
| | - Graeme Milligan
- From the Molecular Pharmacology Group, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom and
| |
Collapse
|
9
|
Smirnova DV, Samsonova JV, Ugarova NN. The Bioluminescence Resonance Energy Transfer from Firefly Luciferase to a Synthetic Dye and its Application for the Rapid Homogeneous Immunoassay of Progesterone. Photochem Photobiol 2015; 92:158-65. [DOI: 10.1111/php.12556] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 09/22/2015] [Accepted: 10/16/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Daria V. Smirnova
- Department of Chemistry; Lomonosov Moscow State University; Moscow Russia
| | | | - Natalia N. Ugarova
- Department of Chemistry; Lomonosov Moscow State University; Moscow Russia
| |
Collapse
|
10
|
Röck R, Bachmann V, Bhang HEC, Malleshaiah M, Raffeiner P, Mayrhofer JE, Tschaikner PM, Bister K, Aanstad P, Pomper MG, Michnick SW, Stefan E. In-vivo detection of binary PKA network interactions upon activation of endogenous GPCRs. Sci Rep 2015; 5:11133. [PMID: 26099953 PMCID: PMC4477410 DOI: 10.1038/srep11133] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/14/2015] [Indexed: 12/21/2022] Open
Abstract
Membrane receptor-sensed input signals affect and modulate intracellular protein-protein interactions (PPIs). Consequent changes occur to the compositions of protein complexes, protein localization and intermolecular binding affinities. Alterations of compartmentalized PPIs emanating from certain deregulated kinases are implicated in the manifestation of diseases such as cancer. Here we describe the application of a genetically encoded Protein-fragment Complementation Assay (PCA) based on the Renilla Luciferase (Rluc) enzyme to compare binary PPIs of the spatially and temporally controlled protein kinase A (PKA) network in diverse eukaryotic model systems. The simplicity and sensitivity of this cell-based reporter allows for real-time recordings of mutually exclusive PPIs of PKA upon activation of selected endogenous G protein-coupled receptors (GPCRs) in cancer cells, xenografts of mice, budding yeast, and zebrafish embryos. This extends the application spectrum of Rluc PCA for the quantification of PPI-based receptor-effector relationships in physiological and pathological model systems.
Collapse
Affiliation(s)
- Ruth Röck
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Verena Bachmann
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Hyo-Eun C Bhang
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical School, Baltimore, MD 21287, USA
| | - Mohan Malleshaiah
- Département de Biochimie, Université de Montréal, H3C 3J7 Montréal, Québec, Canada
| | - Philipp Raffeiner
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Johanna E Mayrhofer
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Philipp M Tschaikner
- Institute of Molecular Biology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| | - Klaus Bister
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Pia Aanstad
- Institute of Molecular Biology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| | - Martin G Pomper
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical School, Baltimore, MD 21287, USA
| | - Stephen W Michnick
- Département de Biochimie, Université de Montréal, H3C 3J7 Montréal, Québec, Canada
| | - Eduard Stefan
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| |
Collapse
|
11
|
Liste MJV, Caltabiano G, Ward RJ, Alvarez-Curto E, Marsango S, Milligan G. The molecular basis of oligomeric organization of the human M3 muscarinic acetylcholine receptor. Mol Pharmacol 2015; 87:936-53. [PMID: 25769304 DOI: 10.1124/mol.114.096925] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 03/13/2015] [Indexed: 11/22/2022] Open
Abstract
G protein-coupled receptors, including the M3 muscarinic acetylcholine receptor, can form homo-oligomers. However, the basis of these interactions and the overall organizational structure of such oligomers are poorly understood. Combinations of site-directed mutagenesis and homogenous time-resolved fluorescence resonance energy transfer studies that assessed interactions between receptor protomers at the surface of transfected cells indicated important contributions of regions of transmembrane domains I, IV, V, VI, and VII as well as intracellular helix VIII to the overall organization. Molecular modeling studies based on both these results and an X-ray structure of the inactive state of the M3 receptor bound by the antagonist/inverse agonist tiotropium were then employed. The results could be accommodated fully by models in which a proportion of the cell surface M3 receptor population is a tetramer with rhombic, but not linear, orientation. This is consistent with previous studies based on spectrally resolved, multiphoton fluorescence resonance energy transfer. Modeling studies furthermore suggest an important role for molecules of cholesterol at the dimer + dimer interface of the tetramer, which is consistent with the presence of cholesterol at key locations in many G protein-coupled receptor crystal structures. Mutants that displayed disrupted quaternary organization were often poorly expressed and showed immature N-glycosylation. Sustained treatment of cells expressing such mutants with the muscarinic receptor inverse agonist atropine increased cellular levels and restored both cell surface delivery and quaternary organization to many of the mutants. These observations suggest that organization as a tetramer may occur before plasma membrane delivery and may be a key step in cellular quality control assessment.
Collapse
Affiliation(s)
- María José Varela Liste
- Molecular Pharmacology Group, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom (M.J.V.L., G.C., R.J.W., E.A.-C., S.M., G.M.), and Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain (G.C.)
| | - Gianluigi Caltabiano
- Molecular Pharmacology Group, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom (M.J.V.L., G.C., R.J.W., E.A.-C., S.M., G.M.), and Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain (G.C.)
| | - Richard J Ward
- Molecular Pharmacology Group, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom (M.J.V.L., G.C., R.J.W., E.A.-C., S.M., G.M.), and Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain (G.C.)
| | - Elisa Alvarez-Curto
- Molecular Pharmacology Group, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom (M.J.V.L., G.C., R.J.W., E.A.-C., S.M., G.M.), and Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain (G.C.)
| | - Sara Marsango
- Molecular Pharmacology Group, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom (M.J.V.L., G.C., R.J.W., E.A.-C., S.M., G.M.), and Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain (G.C.)
| | - Graeme Milligan
- Molecular Pharmacology Group, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom (M.J.V.L., G.C., R.J.W., E.A.-C., S.M., G.M.), and Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain (G.C.)
| |
Collapse
|
12
|
Prazeres DMF, Martins SAM. G protein-coupled receptors: an overview of signaling mechanisms and screening assays. Methods Mol Biol 2015; 1272:3-19. [PMID: 25563173 DOI: 10.1007/978-1-4939-2336-6_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The existence of cellular receptors, a group of specialized biomolecules to which endogenous and exogenous compounds bind and exert an effect, is one of the most exciting aspects of cell biology. Among the different receptor types recognized today, G-protein-coupled receptors (GPCRs) constitute, undoubtedly, one of the most important classes, in part due to their versatility, but particularly, due to their central role in a multitude of physiological states. The unveiling of GPCR function and mode of action is a challenging task that prevails until our days, as the full potential of these receptors is far from being established. Such an undertaking calls for a joint effort of multidisciplinary teams that must combine state-of-the-art technologies with in-depth knowledge of cell biology to probe such specialized molecules. This review provides a concise coverage of the scientific progress that has been made in GPCR research to provide researchers with an updated overview of the field. A brief outline of the historical breakthroughs is followed by a discussion of GPCR signaling mechanisms and by a description of the role played by assay technologies.
Collapse
Affiliation(s)
- Duarte Miguel F Prazeres
- IBB - Institute for Biotechnology and Bioengineering, Av. Rovisco Pais, 1049-001, Lisbon, Portugal,
| | | |
Collapse
|
13
|
Zakrys L, Ward RJ, Pediani JD, Godin AG, Graham GJ, Milligan G. Roundabout 1 exists predominantly as a basal dimeric complex and this is unaffected by binding of the ligand Slit2. Biochem J 2014; 461:61-73. [PMID: 24673457 DOI: 10.1042/bj20140190] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Robo (Roundabout) receptors and their Slit polypeptide ligands are known to play key roles in neuronal development and have been implicated in both angiogenesis and cancer. Like the other family members, Robo1 is a large single transmembrane domain polypeptide containing a series of well-defined extracellular elements. However, the intracellular domain lacks structural definition and little is known about the quaternary structure of Robo receptors or how binding of a Slit might affect this. To address these questions combinations of both autofluorescent protein-based FRET imaging and time-resolved FRET were employed. Both approaches identified oligomeric organization of Robo1 that did not require the presence of the intracellular domain. SpIDA (spatial intensity distribution analysis) of eGFP-tagged forms of Robo1 indicated that for a C-terminally deleted version approximately two-thirds of the receptor was present as a dimer and one-third as a monomer. By contrast, full-length Robo1 was present almost exclusively as a dimer. In each case this was unaffected by the addition of Slit2, although parallel studies demonstrated the biological activity of Slit2 and its interaction with Robo1. Deletion of both the immunoglobulin and fibronectin type III extracellular repeats prevented dimer formation, with the immunoglobulin repeats providing the bulk of the protein-protein interaction affinity.
Collapse
Affiliation(s)
| | - Richard J Ward
- *Molecular Pharmacology Group, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K
| | - John D Pediani
- *Molecular Pharmacology Group, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K
| | - Antoine G Godin
- ‡Laboratoire Photonique, Numérique et Nanosciences (LP2N) Institut d'Optique Graduate School, CNRS and Université Bordeaux, 351 cours de la libération, 33405 Talence Cedex, France
| | - Gerard J Graham
- †Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K
| | - Graeme Milligan
- *Molecular Pharmacology Group, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K
| |
Collapse
|
14
|
Heterodimerization of mouse orexin type 2 receptor variants and the effects on signal transduction. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:652-63. [PMID: 24368186 DOI: 10.1016/j.bbamcr.2013.12.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 12/09/2013] [Accepted: 12/13/2013] [Indexed: 02/03/2023]
Abstract
Orexin-A and Orexin-B play important roles in many physiological processes in which Orexins orchestrate diverse downstream effects via two G-protein coupled receptors: Orexin1R and Orexin2R. Two alternative C-terminus splice variants of the mouse Orexin receptors mOX2alphaR and mOX2betaR have recently been identified. This study explored the possibility of heterodimerization between mOX2alphaR and mOX2betaR, and investigated novel signal transduction characteristics after stimulation. The dimerization of mOX2alphaR and mOX2betaR was confirmed by BRET and co-immunoprecipitation assays. Meanwhile, in HEK293 cells, co-expression of mOX2alphaR and mOX2betaR resulted in a strengthened increase in activation of ERK1/2, with maximal activation at 5 min and 100 nM. Furthermore, heterodimerization also elicits stronger intracellular Ca2+ elevation after Orexin(s) stimulation, followed by a slower decline in intracellular Ca2+ to a steady endpoint Protein Kinase C Inhibitor significantly inhibited these downstream effects. In addition, the cAMP response element reporter activities were significantly reduced, whereas the serum response element luciferase and the T-lymphocyte activation of nuclear factor-responsive element reporter activity were significantly up-regulated after Orexin(s) stimulation. Besides, Orexin-A/-B induced a significantly higher rate of HEK293 cell proliferation in cells co-expressing mOX2alphaR/mOX2betaR compared to the control group. Taken together, we provide conclusive evidence that mOX2alphaR can form a functional heterodimer with mOX2betaR and this leads to increased PKC and decreased protein kinase A activity by ERK signal pathway leading to a significant increase in cell proliferation. The nature of this signaling pathway has significant implications for the role of Orexin in the regulation of physiological processes including the homeostasis of feeding.
Collapse
|
15
|
Langdon BB, Kastantin M, Walder R, Schwartz DK. Interfacial protein-protein associations. Biomacromolecules 2013; 15:66-74. [PMID: 24274729 DOI: 10.1021/bm401302v] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
While traditional models of protein adsorption focus primarily on direct protein-surface interactions, recent findings suggest that protein-protein interactions may play a central role. Using high-throughput intermolecular resonance energy transfer (RET) tracking, we directly observed dynamic, protein-protein associations of bovine serum albumin on polyethylene glycol modified surfaces. The associations were heterogeneous and reversible, and associating molecules resided on the surface for longer times. The appearance of three distinct RET states suggested a spatially heterogeneous surface - with areas of high protein density (i.e., strongly interacting clusters) coexisting with mobile monomers. Distinct association states exhibited characteristic behavior, i.e., partial-RET (monomer-monomer) associations were shorter-lived than complete-RET (protein-cluster) associations. While the fractional surface area covered by regions with high protein density (i.e., clusters) increased with increasing concentration, the distribution of contact times between monomers and clusters was independent of solution concentration, suggesting that associations were a local phenomenon, and independent of the global surface coverage.
Collapse
Affiliation(s)
- Blake B Langdon
- Department of Chemical and Biological Engineering, University of Colorado Boulder , Boulder, Colorado 80309, United States
| | | | | | | |
Collapse
|
16
|
Milligan G. The prevalence, maintenance, and relevance of G protein-coupled receptor oligomerization. Mol Pharmacol 2013; 84:158-69. [PMID: 23632086 DOI: 10.1124/mol.113.084780] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Over the past decade, ideas and experimental support for the hypothesis that G protein-coupled receptors may exist as dimeric or oligomeric complexes moved initially from heresy to orthodoxy, to the current situation in which the capacity of such receptors to interact is generally accepted but the prevalence, maintenance, and relevance of such interactions to both pharmacology and function remain unclear. A vast body of data obtained following transfection of cultured cells is still to be translated to native systems and, even where this has been attempted, results often remain controversial and contradictory. This review will consider approaches that are currently being applied and why these might be challenging to interpret, and will suggest means to overcome these limitations.
Collapse
Affiliation(s)
- Graeme Milligan
- Molecular Pharmacology Group, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom.
| |
Collapse
|
17
|
Stender AS, Marchuk K, Liu C, Sander S, Meyer MW, Smith EA, Neupane B, Wang G, Li J, Cheng JX, Huang B, Fang N. Single cell optical imaging and spectroscopy. Chem Rev 2013; 113:2469-527. [PMID: 23410134 PMCID: PMC3624028 DOI: 10.1021/cr300336e] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Anthony S. Stender
- Department of Chemistry, Iowa State University and Ames Laboratory, U. S. Department of Energy, Ames, IA 50011, USA
| | - Kyle Marchuk
- Department of Chemistry, Iowa State University and Ames Laboratory, U. S. Department of Energy, Ames, IA 50011, USA
| | - Chang Liu
- Department of Chemistry, Iowa State University and Ames Laboratory, U. S. Department of Energy, Ames, IA 50011, USA
| | - Suzanne Sander
- Department of Chemistry, Iowa State University and Ames Laboratory, U. S. Department of Energy, Ames, IA 50011, USA
| | - Matthew W. Meyer
- Department of Chemistry, Iowa State University and Ames Laboratory, U. S. Department of Energy, Ames, IA 50011, USA
| | - Emily A. Smith
- Department of Chemistry, Iowa State University and Ames Laboratory, U. S. Department of Energy, Ames, IA 50011, USA
| | - Bhanu Neupane
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Gufeng Wang
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Junjie Li
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907
| | - Ji-Xin Cheng
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907
| | - Bo Huang
- Department of Pharmaceutical Chemistry and Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158
| | - Ning Fang
- Department of Chemistry, Iowa State University and Ames Laboratory, U. S. Department of Energy, Ames, IA 50011, USA
| |
Collapse
|
18
|
Roszik J, Tóth G, Szöllősi J, Vereb G. Validating pharmacological disruption of protein-protein interactions by acceptor photobleaching FRET imaging. Methods Mol Biol 2013; 986:165-178. [PMID: 23436412 DOI: 10.1007/978-1-62703-311-4_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Proteins are the major targets of drug discovery and many of the new drugs are designed to exert their effect by disrupting protein-protein interactions. Validation of the inhibition of molecular interactions is generally done by biochemical methods, however, these are often not feasible when the interaction is not stable enough. Fluorescence resonance energy transfer (FRET) is an excellent tool for determining direct molecular interactions between two molecules in the cell membrane or inside cells in their natural state. Although originally established as a flow cytometric approach, FRET has been adapted for microscopy, allowing for analysis of sub-cellular co-localization at the single cell level. In this chapter, we provide theoretical introduction to the phenomenon of FRET, and a protocol - including labeling techniques, measurement, and evaluation of microscopy images - of the simplest microscopic FRET approach, acceptor photobleaching FRET. This technique is generally usable for studying protein interactions and requires only a standard confocal laser scanning microscope. To demonstrate the value of image based FRET for testing pharmacological disruption of protein-protein interactions, we show how inhibition of the hetero-dimerization of ErbB2 and ErbB1 by the humanized monoclonal antibody pertuzumab can be validated using this technique.
Collapse
Affiliation(s)
- Janos Roszik
- Department of Biophysics and Cell Biology, University of Debrecen, Debrecen, Hungary
| | | | | | | |
Collapse
|
19
|
Maggio R, Rocchi C, Scarselli M. Experimental strategies for studying G protein-coupled receptor homo- and heteromerization with radioligand binding and signal transduction methods. Methods Enzymol 2013; 521:295-310. [PMID: 23351746 DOI: 10.1016/b978-0-12-391862-8.00016-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Before the molecular biology era, functional experiments on isolated organs and radioligand binding and biochemical experiments on animal tissues were widely used to characterize G protein-coupled receptors (GPCRs). The introduction of recombinant cell lines expressing a single GPCR type has been a big step forward for studying both drug-receptor interactions and signal transduction. Before the introduction of the concept of receptor oligomerization, all data generated were attributed to the interaction of drugs with receptor monomers. Now, considerable data must be reinterpreted in light of receptor homo- and heteromerization. In this chapter, we will review some of the methods used to study radioligand binding and signal transduction modifications induced by GPCR homo- and heteromerization.
Collapse
Affiliation(s)
- Roberto Maggio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| | | | | |
Collapse
|
20
|
Abstract
The effects of oligomerization of G protein-coupled receptors (GPCRs) upon their trafficking around the cell are considerable, and this raises the potential of significant impact upon the use of existing pharmacological agents and the development of new ones. Herein, we describe a number of different techniques that can be used to study receptor dimerization/oligomerization and trafficking, beginning with a cellular system which allows the expression of two GPCRs simultaneously, one under inducible control. Subsequently, we describe means to visualize and monitor the movement of GPCRs within the cell, detect oligomerization by both resonance energy transfer and more traditional biochemical approaches, and to measure the internalization of GPCRs as part of the process of receptor regulation.
Collapse
Affiliation(s)
- Richard J Ward
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | | |
Collapse
|
21
|
Kayani AA, Khoshmanesh K, Ward SA, Mitchell A, Kalantar-Zadeh K. Optofluidics incorporating actively controlled micro- and nano-particles. BIOMICROFLUIDICS 2012; 6:31501. [PMID: 23864925 PMCID: PMC3411552 DOI: 10.1063/1.4736796] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 06/25/2012] [Indexed: 05/05/2023]
Abstract
The advent of optofluidic systems incorporating suspended particles has resulted in the emergence of novel applications. Such systems operate based on the fact that suspended particles can be manipulated using well-appointed active forces, and their motions, locations and local concentrations can be controlled. These forces can be exerted on both individual and clusters of particles. Having the capability to manipulate suspended particles gives users the ability for tuning the physical and, to some extent, the chemical properties of the suspension media, which addresses the needs of various advanced optofluidic systems. Additionally, the incorporation of particles results in the realization of novel optofluidic solutions used for creating optical components and sensing platforms. In this review, we present different types of active forces that are used for particle manipulations and the resulting optofluidic systems incorporating them. These systems include optical components, optofluidic detection and analysis platforms, plasmonics and Raman systems, thermal and energy related systems, and platforms specifically incorporating biological particles. We conclude the review with a discussion of future perspectives, which are expected to further advance this rapidly growing field.
Collapse
Affiliation(s)
- Aminuddin A Kayani
- School of Electrical and Computer Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | | | | | | | | |
Collapse
|
22
|
James ML, Gambhir SS. A molecular imaging primer: modalities, imaging agents, and applications. Physiol Rev 2012; 92:897-965. [PMID: 22535898 DOI: 10.1152/physrev.00049.2010] [Citation(s) in RCA: 702] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Molecular imaging is revolutionizing the way we study the inner workings of the human body, diagnose diseases, approach drug design, and assess therapies. The field as a whole is making possible the visualization of complex biochemical processes involved in normal physiology and disease states, in real time, in living cells, tissues, and intact subjects. In this review, we focus specifically on molecular imaging of intact living subjects. We provide a basic primer for those who are new to molecular imaging, and a resource for those involved in the field. We begin by describing classical molecular imaging techniques together with their key strengths and limitations, after which we introduce some of the latest emerging imaging modalities. We provide an overview of the main classes of molecular imaging agents (i.e., small molecules, peptides, aptamers, engineered proteins, and nanoparticles) and cite examples of how molecular imaging is being applied in oncology, neuroscience, cardiology, gene therapy, cell tracking, and theranostics (therapy combined with diagnostics). A step-by-step guide to answering biological and/or clinical questions using the tools of molecular imaging is also provided. We conclude by discussing the grand challenges of the field, its future directions, and enormous potential for further impacting how we approach research and medicine.
Collapse
Affiliation(s)
- Michelle L James
- Molecular Imaging Program, Department of Radiology, Stanford University, Palo Alto, CA 94305, USA
| | | |
Collapse
|
23
|
Xu TR, Ward RJ, Pediani JD, Milligan G. Intramolecular fluorescence resonance energy transfer (FRET) sensors of the orexin OX1 and OX2 receptors identify slow kinetics of agonist activation. J Biol Chem 2012; 287:14937-49. [PMID: 22389503 DOI: 10.1074/jbc.m111.334300] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Intramolecular fluorescence resonance energy transfer (FRET) sensors able to detect changes in distance or orientation between the 3rd intracellular loop and C-terminal tail of the human orexin OX(1) and OX(2) G protein-coupled receptors following binding of agonist ligands were produced and expressed stably. These were directed to the plasma membrane and, despite the substantial sequence alterations introduced, in each case were able to elevate [Ca(2+)](i), promote phosphorylation of the ERK1/2 MAP kinases and become internalized effectively upon addition of the native orexin peptides. Detailed characterization of the OX(1) sensor demonstrated that it was activated with rank order of potency orexin A > orexin B > orexin A 16-33, that it bound antagonist ligands with affinity similar to the wild-type receptor, and that mutation of a single residue, D203A, greatly reduced the binding and function of orexin A but not antagonist ligands. Addition of orexin A to individual cells expressing an OX(1) sensor resulted in a time- and concentration-dependent reduction in FRET signal consistent with mass-action and potency/affinity estimates for the peptide. Compared with the response kinetics of a muscarinic M(3) acetylcholine receptor sensor upon addition of agonist, response of the OX(1) and OX(2) sensors to orexin A was slow, consistent with a multistep binding and activation process. Such sensors provide means to assess the kinetics of receptor activation and how this may be altered by mutation and sequence variation of the receptors.
Collapse
Affiliation(s)
- Tian-Rui Xu
- Molecular Pharmacology Group, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | | | | | | |
Collapse
|
24
|
Pou C, Mannoury la Cour C, Stoddart LA, Millan MJ, Milligan G. Functional homomers and heteromers of dopamine D2L and D3 receptors co-exist at the cell surface. J Biol Chem 2012; 287:8864-78. [PMID: 22291025 DOI: 10.1074/jbc.m111.326678] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human dopamine D(2long) and D(3) receptors were modified by N-terminal addition of SNAP or CLIP forms of O(6)-alkylguanine-DNA-alkyltransferase plus a peptide epitope tag. Cells able to express each of these four constructs only upon addition of an antibiotic were established and used to confirm regulated and inducible control of expression, the specificity of SNAP and CLIP tag covalent labeling reagents, and based on homogenous time-resolved fluorescence resonance energy transfer, the presence of cell surface D(2long) and D(3) receptor homomers. Following constitutive expression of reciprocal constructs, potentially capable of forming and reporting the presence of cell surface D(2long)-D(3) heteromers, individual clones were assessed for levels of expression of the constitutively expressed protomer. This was unaffected by induction of the partner protomer and the level of expression of the partner required to generate detectable cell surface D(2long)-D(3) heteromers was defined. Such homomers and heteromers were found to co-exist and using a reconstitution of function approach both homomers and heteromers of D(2long) and D(3) receptors were shown to be functional, potentially via trans-activation of associated G protein. These studies demonstrate the ability of dopamine D(2long) and D(3) receptors to form both homomers and heteromers, and show that in cells expressing each subtype a complex mixture of homomers and heteromers co-exists at steady state. These data are of potential importance both to disorders in which D(2long) and D(3) receptors are implicated, like schizophrenia and Parkinson disease, and also to drugs exerting their actions via these sites.
Collapse
Affiliation(s)
- Chantevy Pou
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | | | | | | | | |
Collapse
|
25
|
Couturier C, Deprez B. Setting Up a Bioluminescence Resonance Energy Transfer High throughput Screening Assay to Search for Protein/Protein Interaction Inhibitors in Mammalian Cells. Front Endocrinol (Lausanne) 2012; 3:100. [PMID: 22973258 PMCID: PMC3438444 DOI: 10.3389/fendo.2012.00100] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Accepted: 07/31/2012] [Indexed: 12/14/2022] Open
Abstract
Each step of the cell life and its response or adaptation to its environment are mediated by a network of protein/protein interactions termed "interactome." Our knowledge of this network keeps growing due to the development of sensitive techniques devoted to study these interactions. The bioluminescence resonance energy transfer (BRET) technique was primarily developed to allow the dynamic monitoring of protein/protein interactions (PPI) in living cells, and has widely been used to study receptor activation by intra- or extra-molecular conformational changes within receptors and activated complexes in mammal cells. Some interactions are described as crucial in human pathological processes, and a new class of drugs targeting them has recently emerged. The BRET method is well suited to identify inhibitors of PPI and here is described why and how to set up and optimize a high throughput screening assay based on BRET to search for such inhibitory compounds. The different parameters to take into account when developing such BRET assays in mammal cells are reviewed to give general guidelines: considerations on the targeted interaction, choice of BRET version, inducibility of the interaction, kinetic of the monitored interaction, and of the BRET reading, influence of substrate concentration, number of cells and medium composition used on the Z' factor, and expected interferences from colored or fluorescent compounds.
Collapse
Affiliation(s)
- Cyril Couturier
- Univ Lille Nord de FranceLille, France
- INSERM U761, Biostructures and Drug DiscoveryLille, France
- Université du Droit et de la Santé de LilleLille, France
- Institut Pasteur LilleLille, France
- Pôle de Recherche Interdisciplinaire sur le MédicamentLille, France
- *Correspondence: Cyril Couturier, UMR 761, Biostructure and Drug Discovery, Institut Pasteur de Lille, Université Lille 2, 1 rue du Pr Calmette, 59000 Lille, France. e-mail:
| | - Benoit Deprez
- Univ Lille Nord de FranceLille, France
- INSERM U761, Biostructures and Drug DiscoveryLille, France
- Université du Droit et de la Santé de LilleLille, France
- Institut Pasteur LilleLille, France
- Pôle de Recherche Interdisciplinaire sur le MédicamentLille, France
| |
Collapse
|
26
|
The orexin OX(1) receptor exists predominantly as a homodimer in the basal state: potential regulation of receptor organization by both agonist and antagonist ligands. Biochem J 2011; 439:171-83. [PMID: 21770891 DOI: 10.1042/bj20110230] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
It is unclear what proportion of a G-protein-coupled receptor is present in cells as dimers or oligomers. Saturation bioluminescence resonance energy transfer studies demonstrated the orexin OX(1) receptor to be present in such complexes. Forms of this receptor containing a minimal epitope tag, with the C-terminus linked to yellow fluorescent protein or modified at the N-terminus to incorporate a SNAP tag, migrated in SDS/PAGE gels as monomers, indicating a lack of covalent interactions. Solubilization with dodecylmaltoside, followed by Blue native-PAGE, indicated that the receptor constructs migrated predominantly as anticipated for dimeric species with evidence for further, higher-order, complexes, and this was true over a wide range of expression levels. Addition of SDS prior to separation by Blue native-PAGE resulted in much of the previously dimeric, and all of the higher-order, complexes being dissociated and now migrating at the size predicted for monomeric species. Expression of forms of the OX(1) receptor capable of generating enzyme complementation confirmed that solubilization itself did not result in interaction artefacts. Addition of the endogenous agonist orexin A enhanced the proportion of higher-order OX(1) receptor complexes, whereas selective OX(1) antagonists increased the proportion the OX(1) receptor migrating in Blue native-PAGE as a monomer. The antagonist effects were produced in a concentration-dependent manner, consistent with the affinity of the ligands for the receptor. Homogeneous time-resolved fluorescence resonance energy transfer studies using Tag-Lite™ reagents on cells expressing the SNAP-tagged OX(1) receptor identified cell-surface OX(1) homomers. Predominantly at low receptor expression levels, orexin A increased such fluorescence resonance energy transfer signals, also consistent with ligand-induced reorganization of the homomeric complex.
Collapse
|
27
|
Smith NJ, Milligan G. Allostery at G protein-coupled receptor homo- and heteromers: uncharted pharmacological landscapes. Pharmacol Rev 2011; 62:701-25. [PMID: 21079041 DOI: 10.1124/pr.110.002667] [Citation(s) in RCA: 211] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
For many years seven transmembrane domain G protein-coupled receptors (GPCRs) were thought to exist and function exclusively as monomeric units. However, evidence both from native cells and heterologous expression systems has demonstrated that GPCRs can both traffic and signal within higher-order complexes. As for other protein-protein interactions, conformational changes in one polypeptide, including those resulting from binding of pharmacological ligands, have the capacity to alter the conformation and therefore the response of the interacting protein(s), a process known as allosterism. For GPCRs, allosterism across homo- or heteromers, whether dimers or higher-order oligomers, represents an additional topographical landscape that must now be considered pharmacologically. Such effects may offer the opportunity for novel therapeutic approaches. Allosterism at GPCR heteromers is particularly exciting in that it offers additional scope to provide receptor subtype selectivity and tissue specificity as well as fine-tuning of receptor signal strength. Herein, we introduce the concept of allosterism at both GPCR homomers and heteromers and discuss the various questions that must be addressed before significant advances can be made in drug discovery at these GPCR complexes.
Collapse
Affiliation(s)
- Nicola J Smith
- Molecular Pharmacology Laboratory,University Avenue, University of Glasgow, Glasgow, Scotland
| | | |
Collapse
|
28
|
Hu PP, Chen LQ, Liu C, Zhen SJ, Xiao SJ, Peng L, Li YF, Huang CZ. Ultra-sensitive detection of prion protein with a long range resonance energy transfer strategy. Chem Commun (Camb) 2010; 46:8285-7. [DOI: 10.1039/c0cc02600j] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|