1
|
Yang J, Sun W, Sun M, Cui Y, Wang L. Current Research Status of Azaspiracids. Mar Drugs 2024; 22:79. [PMID: 38393050 PMCID: PMC10890026 DOI: 10.3390/md22020079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
The presence and impact of toxins have been detected in various regions worldwide ever since the discovery of azaspiracids (AZAs) in 1995. These toxins have had detrimental effects on marine resource utilization, marine environmental protection, and fishery production. Over the course of more than two decades of research and development, scientists from all over the world have conducted comprehensive studies on the in vivo metabolism, in vitro synthesis methods, pathogenic mechanisms, and toxicology of these toxins. This paper aims to provide a systematic introduction to the discovery, distribution, pathogenic mechanism, in vivo biosynthesis, and in vitro artificial synthesis of AZA toxins. Additionally, it will summarize various detection methods employed over the past 20 years, along with their advantages and disadvantages. This effort will contribute to the future development of rapid detection technologies and the invention of detection devices for AZAs in marine environmental samples.
Collapse
Affiliation(s)
| | | | | | | | - Lianghua Wang
- Basic Medical College, Naval Medical University, Shanghai 200433, China; (J.Y.); (W.S.); (M.S.); (Y.C.)
| |
Collapse
|
2
|
Samdal IA, Sandvik M, Vu J, Sukenthirarasa MS, Kanesamurthy S, Løvberg KLE, Kilcoyne J, Forsyth CJ, Wright EJ, Miles CO. Preparation and characterization of an immunoaffinity column for the selective extraction of azaspiracids. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1207:123360. [PMID: 35839625 DOI: 10.1016/j.jchromb.2022.123360] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/19/2022]
Abstract
The presence of azaspiracids (AZAs) in shellfish may cause food poisoning in humans. AZAs can accumulate in shellfish filtering seawater that contains marine dinoflagellates such as Azadinium and Amphidoma spp. More than 60 AZA analogues have been identified, of which AZA1, AZA2 and AZA3 are regulated in Europe. Shellfish matrices may complicate quantitation by ELISA and LC-MS methods. Polyclonal antibodies have been developed that bind specifically to the C-26-C-40 domain of the AZA structure and could potentially be used for selectively extracting compounds containing this substructure. This includes almost all known analogues of AZAs, including AZA1, AZA2 and AZA3. Here we report preparation of immunoaffinity chromatography (IAC) columns for clean-up and concentration of AZAs. The IAC columns were prepared by coupling polyclonal anti-AZA IgG to CNBr-activated sepharose. The columns were evaluated using shellfish extracts, and the resulting fractions were analyzed by ELISA and LC-MS. The columns selectively bound over 300 ng AZAs per mL of gel without significant leakage, and did not retain the okadaic acid, cyclic imine, pectenotoxin and yessotoxin analogues that were present in the applied samples. Furthermore, 90-92% of the AZAs were recovered by elution with 90% MeOH, and the columns could be re-used without significant loss of performance.
Collapse
Affiliation(s)
- Ingunn A Samdal
- Norwegian Veterinary Institute, P.O. Box 64, 1431 Ås, Norway.
| | - Morten Sandvik
- Norwegian Veterinary Institute, P.O. Box 64, 1431 Ås, Norway
| | - Jennie Vu
- Norwegian Veterinary Institute, P.O. Box 64, 1431 Ås, Norway; Oslo Metropolitan University, P.O. Box 4, St. Olavs plass, N-0130 Oslo, Norway
| | - Merii S Sukenthirarasa
- Norwegian Veterinary Institute, P.O. Box 64, 1431 Ås, Norway; Oslo Metropolitan University, P.O. Box 4, St. Olavs plass, N-0130 Oslo, Norway
| | - Sinthuja Kanesamurthy
- Norwegian Veterinary Institute, P.O. Box 64, 1431 Ås, Norway; Oslo Metropolitan University, P.O. Box 4, St. Olavs plass, N-0130 Oslo, Norway
| | | | - Jane Kilcoyne
- Marine Institute, Rinville, Oranmore H91 R673, County Galway, Ireland
| | - Craig J Forsyth
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43220, United States
| | - Elliott J Wright
- Biotoxin Metrology, National Research Council of Canada, 1411 Oxford Street, Halifax, Nova Scotia B3H 3Z1, Canada
| | - Christopher O Miles
- Norwegian Veterinary Institute, P.O. Box 64, 1431 Ås, Norway; Biotoxin Metrology, National Research Council of Canada, 1411 Oxford Street, Halifax, Nova Scotia B3H 3Z1, Canada
| |
Collapse
|
3
|
McGirr S, Clarke D, Kilcoyne J, Silke J, Touzet N. Co-localisation of Azaspiracid Analogs with the Dinoflagellate Species Azadinium spinosum and Amphidoma languida in the Southwest of Ireland. MICROBIAL ECOLOGY 2022; 83:635-646. [PMID: 34195856 DOI: 10.1007/s00248-021-01777-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 05/17/2021] [Indexed: 06/13/2023]
Abstract
Phytoplankton and biotoxin monitoring programmes have been implemented in many countries to protect human health and to mitigate the impacts of harmful algal blooms (HABs) on the aquaculture industry. Several amphidomatacean species have been confirmed in Irish coastal waters, including the azaspiracid-producing species Azadinium spinosum and Amphidoma languida. Biogeographic distribution studies have been hampered by the fact that these small, armoured dinoflagellates share remarkably similar morphologies when observed by light microscopy. The recent releases of species-specific molecular detection assays have, in this context, been welcome developments. A survey of the south west and west coasts of Ireland was carried out in August 2017 to investigate the late summer distribution of toxic amphidomataceans and azaspiracid toxins. Azadinium spinosum and Am. languida were detected in 83% of samples in the southwest along the Crease Line and Bantry Bay transects between 20 and 70 m depth, with maximal cell concentrations of 7000 and 470,000 cells/L, respectively. Azaspiracid concentrations were well aligned with the distributions of Az. spinosum and Am. languida, up to 1.1 ng/L and 4.9 ng/L for combined AZA-1, -2, -33, and combined AZA-38, -39, respectively. Although a snapshot in time, this survey provides new insights in the late summer prominence of AZAs and AZA-producing species in the southwest of Ireland, where major shellfish aquaculture operations are located. Results showed a substantial overlap in the distribution of amphidomatacean species in the area and provide valuable baseline information in the context of ongoing monitoring efforts of toxigenic amphidomataceans in the region.
Collapse
Affiliation(s)
- Stephen McGirr
- School of Science, Department of Environmental Science, Innovation and Sustainability, Institute of Technology Sligo, Centre for Environmental Research, Ash Lane, Sligo, F91 YW50, Ireland.
| | - Dave Clarke
- Shellfish Safety, Marine Institute, Rinville, Oranmore, Co. Galway, H91 R673, Ireland
| | - Jane Kilcoyne
- Shellfish Safety, Marine Institute, Rinville, Oranmore, Co. Galway, H91 R673, Ireland
| | - Joe Silke
- Shellfish Safety, Marine Institute, Rinville, Oranmore, Co. Galway, H91 R673, Ireland
| | - Nicolas Touzet
- School of Science, Department of Environmental Science, Innovation and Sustainability, Institute of Technology Sligo, Centre for Environmental Research, Ash Lane, Sligo, F91 YW50, Ireland
| |
Collapse
|
4
|
Wright EJ, McCarron P. A mussel tissue certified reference material for multiple phycotoxins. Part 5: profiling by liquid chromatography-high-resolution mass spectrometry. Anal Bioanal Chem 2021; 413:2055-2069. [PMID: 33661347 DOI: 10.1007/s00216-020-03133-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023]
Abstract
A freeze-dried mussel tissue-certified reference material (CRM-FDMT1) was prepared containing the marine algal toxin classes azaspiracids, okadaic acid and dinophysistoxins, yessotoxins, pectenotoxins, cyclic imines, and domoic acid. Thus far, only a limited number of analogues in CRM-FDMT1 have been assigned certified values; however, the complete toxin profile is significantly more complex. Liquid chromatography-high-resolution mass spectrometry was used to profile CRM-FDMT1. Full-scan data was searched against a list of previously reported toxin analogues, and characteristic product ions extracted from all-ion-fragmentation data were used to guide the extent of toxin profiling. A series of targeted and untargeted acquisition MS/MS experiments were then used to collect spectra for analogues. A number of toxins previously reported in the literature but not readily available as standards were tentatively identified including dihydroxy and carboxyhydroxyyessotoxin, azaspiracids-33 and -39, sulfonated pectenotoxin analogues, spirolide variants, and fatty acid acyl esters of okadaic acid and pectenotoxins. Previously unreported toxins were also observed including compounds from the pectenotoxin, azaspiracid, yessotoxin, and spirolide classes. More than one hundred toxin analogues present in CRM-FDMT1 are summarized along with a demonstration of the major acyl ester conjugates of several toxins. Retention index values were assigned for all confirmed or tentatively identified analogues to help with qualitative identification of the broad range of lipophilic toxins present in the material.
Collapse
Affiliation(s)
- Elliott J Wright
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford Street, Halifax, Nova Scotia, B3H 3Z1, Canada
| | - Pearse McCarron
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford Street, Halifax, Nova Scotia, B3H 3Z1, Canada.
| |
Collapse
|
5
|
Qiu J, Wright EJ, Thomas K, Li A, McCarron P, Beach DG. Semiquantitation of Paralytic Shellfish Toxins by Hydrophilic Interaction Liquid Chromatography-Mass Spectrometry Using Relative Molar Response Factors. Toxins (Basel) 2020; 12:toxins12060398. [PMID: 32560098 PMCID: PMC7354571 DOI: 10.3390/toxins12060398] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 12/30/2022] Open
Abstract
Paralytic shellfish toxins (PSTs) are a complex class of analogs of the potent neurotoxin saxitoxin (STX). Since calibration standards are not available for many PSTs, including C-11 hydroxyl analogs called M-toxins, accurate quantitation by liquid chromatography–mass spectrometry (LC-MS) can be challenging. In the absence of standards, PSTs are often semiquantitated using standards of a different analog (e.g., STX), an approach with a high degree of uncertainty due to the highly variable sensitivity between analytes in electrospray ionization. Here, relative molar response factors (RMRs) were investigated for a broad range of PSTs using common LC-MS approaches in order to improve the quantitation of PSTs for which standards are unavailable. First, several M-toxins (M1-M6, M9 and dcM6) were semipurified from shellfish using preparative gel filtration chromatography and quantitated using LC-charged aerosol detection (LC-CAD). The RMRs of PST certified reference materials (CRMs) and M-toxins were then determined using selective reaction monitoring LC-MS/MS and full scan LC-high-resolution MS (LC-HRMS) methods in positive and negative electrospray ionization. In general, RMRs for PSTs with similar chemical structures were comparable, but varied significantly between subclasses, with M-toxins showing the lowest sensitivity. For example, STX showed a greater than 50-fold higher RMR than M4 and M6 by LC-HRMS. The MS instrument, scan mode and polarity also had significant impacts on RMRs and should be carefully considered when semiquantitating PSTs by LC-MS. As a demonstration of their utility, the RMRs determined were applied to the semiquantitation of PSTs in contaminated mussels, showing good agreement with results from calibration with CRMs.
Collapse
Affiliation(s)
- Jiangbing Qiu
- College of Fisheries, Ocean University of China, Qingdao 266003, China;
| | - Elliott J. Wright
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford St, Halifax, NS B3H 3Z1, Canada; (E.J.W.); (K.T.); (P.M.)
| | - Krista Thomas
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford St, Halifax, NS B3H 3Z1, Canada; (E.J.W.); (K.T.); (P.M.)
| | - Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China;
- Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Pearse McCarron
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford St, Halifax, NS B3H 3Z1, Canada; (E.J.W.); (K.T.); (P.M.)
| | - Daniel G. Beach
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford St, Halifax, NS B3H 3Z1, Canada; (E.J.W.); (K.T.); (P.M.)
- Correspondence: ; Tel.: +1-(902)-426-8274
| |
Collapse
|
6
|
Effects of Temperature, Growth Media, and Photoperiod on Growth and Toxin Production of Azadinium spinosum. Mar Drugs 2019; 17:md17090489. [PMID: 31443393 PMCID: PMC6780083 DOI: 10.3390/md17090489] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/13/2019] [Accepted: 08/16/2019] [Indexed: 01/02/2023] Open
Abstract
Azaspiracids (AZAs) are microalgal toxins that can accumulate in shellfish and lead to human intoxications. To facilitate their study and subsequent biomonitoring, purification from microalgae rather than shellfish is preferable; however, challenges remain with respect to maximizing toxin yields. The impacts of temperature, growth media, and photoperiod on cell densities and toxin production in Azadinium spinosum were investigated. Final cell densities were similar at 10 and 18 °C, while toxin cell quotas were higher (~3.5-fold) at 10 °C. A comparison of culture media showed higher cell densities and AZA cell quotas (2.5-5-fold) in f10k compared to f/2 and L1 media. Photoperiod also showed differences, with lower cell densities in the 8:16 L:D treatment, while toxin cell quotas were similar for 12:12 and 8:16 L:D treatments but slightly lower for the 16:8 L:D treatment. AZA1, -2 and -33 were detected during the exponential phase, while some known and new AZAs were only detected once the stationary phase was reached. These compounds were additionally detected in field water samples during an AZA event.
Collapse
|
7
|
Kilcoyne J, McCarron P, Twiner MJ, Rise F, Hess P, Wilkins AL, Miles CO. Identification of 21,22-Dehydroazaspiracids in Mussels ( Mytilus edulis) and in Vitro Toxicity of Azaspiracid-26. JOURNAL OF NATURAL PRODUCTS 2018; 81:885-893. [PMID: 29488755 DOI: 10.1021/acs.jnatprod.7b00973] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Azaspiracids (AZAs) are marine biotoxins produced by the genera Azadinium and Amphidoma, pelagic marine dinoflagellates that may accumulate in shellfish resulting in human illness following consumption. The complexity of these toxins has been well documented, with more than 40 structural variants reported that are produced by dinoflagellates, result from metabolism in shellfish, or are extraction artifacts. Approximately 34 μg of a new AZA with MW 823 Da (AZA26 (3)) was isolated from blue mussels ( Mytilus edulis), and its structure determined by MS and NMR spectroscopy. AZA26, possibly a bioconversion product of AZA5, lacked the C-20-C-21 diol present in all AZAs reported thus far and had a 21,22-olefin and a keto group at C-23. Toxicological assessment of 3 using an in vitro model system based on Jurkat T lymphocyte cells showed the potency to be ∼30-fold lower than that of AZA1. The corresponding 21,22-dehydro-23-oxo-analogue of AZA10 (AZA28) and 21,22-dehydro analogues of AZA3, -4, -5, -6, -9, and -10 (AZA25, -48 (4), -60, -27, -49, and -61, respectively) were also identified by HRMS/MS, periodate cleavage reactivity, conversion from known analogues, and NMR (for 4 that was present in a partially purified sample of AZA7).
Collapse
Affiliation(s)
- Jane Kilcoyne
- Marine Institute , Rinville, Oranmore , Co. Galway H91 R673 , Ireland
| | - Pearse McCarron
- Measurement Science and Standards , National Research Council Canada , Halifax , NS B3H 3Z1 , Canada
| | - Michael J Twiner
- Department of Emergency Medicine, Detroit Receiving Hospital , Wayne State University , Detroit , Michigan 48202 , United States
| | - Frode Rise
- Department of Chemistry , University of Oslo , N-0315 Oslo , Norway
| | - Philipp Hess
- Ifremer, Laboratoire Phycotoxines , Rue de l'Ile d'Yeu , 44311 Nantes , France
| | - Alistair L Wilkins
- Norwegian Veterinary Institute , P.O. Box 750 Sentrum, 0106 Oslo , Norway
| | - Christopher O Miles
- Measurement Science and Standards , National Research Council Canada , Halifax , NS B3H 3Z1 , Canada
- Norwegian Veterinary Institute , P.O. Box 750 Sentrum, 0106 Oslo , Norway
| |
Collapse
|
8
|
Miles CO, Kilcoyne J, McCarron P, Giddings SD, Waaler T, Rundberget T, Samdal IA, Løvberg KE. Selective Extraction and Purification of Azaspiracids from Blue Mussels ( Mytilus edulis) Using Boric Acid Gel. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:2962-2969. [PMID: 29502403 DOI: 10.1021/acs.jafc.8b00346] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Azaspiracids belong to a family of more than 50 polyether toxins originating from marine dinoflagellates such as Azadinium spinosum. All of the azaspiracids reported thus far contain a 21,22-dihydroxy group. Boric acid gel can bind selectively to compounds containing vic-diols or α-hydroxycarboxylic acids via formation of reversible boronate complexes. Here we report use of the gel to selectively capture and release azaspiracids from extracts of blue mussels. Analysis of the extracts and fractions by liquid chromatography-tandem mass spectrometry (LC-MS) showed that this procedure resulted in an excellent cleanup of the azaspiracids in the extract. Analysis by enzyme-linked immunoasorbent assay (ELISA) and LC-MS indicated that most azaspiracid analogues were recovered in good yield by this procedure. The capacity of boric acid gel for azaspiracids was at least 50 μg/g, making this procedure suitable for use in the early stages of preparative purification of azaspiracids. In addition to its potential for concentration of dilute samples, the extensive cleanup provided by boric acid gel fractionation of azaspiracids in mussel samples almost eliminated matrix effects during subsequent LC-MS and could be expected to reduce matrix effects during ELISA analysis. The method may therefore prove useful for quantitative analysis of azaspiracids as part of monitoring programs. Although LC-MS data showed that okadaic acid analogues also bound to the gel, this was much less efficient than for azaspiracids under the conditions used. The boric acid gel methodology is potentially applicable to other important groups of natural toxins containing diols including ciguatoxins, palytoxins, pectenotoxins, tetrodotoxin, trichothecenes, and toxin glycosides.
Collapse
Affiliation(s)
- Christopher O Miles
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum , N-0106 Oslo , Norway
- Measurement Science and Standards , National Research Council , 1411 Oxford Street , Halifax , Nova Scotia B3H 3Z1 , Canada
| | - Jane Kilcoyne
- Marine Institute, Rinville, Oranmore, Co., Galway H91 R673 , Ireland
| | - Pearse McCarron
- Measurement Science and Standards , National Research Council , 1411 Oxford Street , Halifax , Nova Scotia B3H 3Z1 , Canada
| | - Sabrina D Giddings
- Measurement Science and Standards , National Research Council , 1411 Oxford Street , Halifax , Nova Scotia B3H 3Z1 , Canada
| | - Thor Waaler
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum , N-0106 Oslo , Norway
| | - Thomas Rundberget
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum , N-0106 Oslo , Norway
- Norwegian Institute for Water Research , N-0349 Oslo , Norway
| | - Ingunn A Samdal
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum , N-0106 Oslo , Norway
| | - Kjersti E Løvberg
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum , N-0106 Oslo , Norway
| |
Collapse
|
9
|
Kato T, Saito M, Nagae M, Fujita K, Watai M, Igarashi T, Yasumoto T, Inagaki M. Absolute Quantification of Lipophilic Shellfish Toxins by Quantitative Nuclear Magnetic Resonance Using Removable Internal Reference Substance with SI Traceability. ANAL SCI 2018; 32:729-34. [PMID: 27396652 DOI: 10.2116/analsci.32.729] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Okadaic acid (OA), a lipophilic shellfish toxin, was accurately quantified using quantitative nuclear magnetic resonance with internal standards for the development of an authentic reference standard. Pyridine and the residual proton in methanol-d4 were used as removable internal standards to limit any contamination. They were calibrated based on a maleic acid certified reference material. Thus, the concentration of OA was traceable to the SI units through accurate quantitative NMR with an internal reference substance. Signals from the protons on the oxygenated and unsaturated carbons of OA were used for quantification. A reasonable accuracy was obtained by integrating between the lower and upper (13)C satellite signal range when more than 4 mg of OA was used. The best-determined purity was 97.4% (0.16% RSD) when 20 mg of OA was used. Dinophysistoxin-1, a methylated analog of OA having an almost identical spectrum, was also quantified by using the same methodology.
Collapse
|
10
|
Kenton NT, Adu‐Ampratwum D, Okumu AA, McCarron P, Kilcoyne J, Rise F, Wilkins AL, Miles CO, Forsyth CJ. Stereochemical Definition of the Natural Product (6
R
,10
R
,13
R
, 14
R
,16
R
,17
R
,19
S
,20
S
,21
R
,24
S
,25
S
,28
S
,30
S
,32
R
,33
R
,34
R
,36
S
,37
S
,39
R
)‐Azaspiracid‐3 by Total Synthesis and Comparative Analyses. Angew Chem Int Ed Engl 2018; 57:810-813. [DOI: 10.1002/anie.201711008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Nathaniel T. Kenton
- Department of Chemistry and BiochemistryThe Ohio State University 151 W. Woodruff Ave Columbus OH 43210 USA
| | - Daniel Adu‐Ampratwum
- Department of Chemistry and BiochemistryThe Ohio State University 151 W. Woodruff Ave Columbus OH 43210 USA
| | - Antony A. Okumu
- Department of Chemistry and BiochemistryThe Ohio State University 151 W. Woodruff Ave Columbus OH 43210 USA
| | - Pearse McCarron
- Measurement Science and StandardsNational Research Council of Canada 1411 Oxford St. Halifax Nova Scotia B3H 3Z1 Canada
| | - Jane Kilcoyne
- Marine Institute, RinvilleOranmore, Co. Galway Ireland
| | - Frode Rise
- Department of ChemistryUniversity of Oslo 0315 Oslo Norway
| | - Alistair L. Wilkins
- Norwegian Veterinary Institute P.O. Box 750 Sentrum 0106 Oslo Norway
- Chemistry DepartmentUniversity of Waikato Private Bag 3105 3240 Hamilton New Zealand
| | - Christopher O. Miles
- Measurement Science and StandardsNational Research Council of Canada 1411 Oxford St. Halifax Nova Scotia B3H 3Z1 Canada
- Norwegian Veterinary Institute P.O. Box 750 Sentrum 0106 Oslo Norway
| | - Craig J. Forsyth
- Department of Chemistry and BiochemistryThe Ohio State University 151 W. Woodruff Ave Columbus OH 43210 USA
| |
Collapse
|
11
|
Kenton NT, Adu‐Ampratwum D, Okumu AA, Zhang Z, Chen Y, Nguyen S, Xu J, Ding Y, McCarron P, Kilcoyne J, Rise F, Wilkins AL, Miles CO, Forsyth CJ. Total Synthesis of (6
R
,10
R
,13
R
,14
R
,16
R
,17
R
,19
S
,20
R
,21
R
,24
S
, 25
S
,28
S
,30
S
,32
R
,33
R
,34
R
,36
S
,37
S
,39
R
)‐Azaspiracid‐3 Reveals Non‐Identity with the Natural Product. Angew Chem Int Ed Engl 2018; 57:805-809. [DOI: 10.1002/anie.201711006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/16/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Nathaniel T. Kenton
- Department of Chemistry and BiochemistryThe Ohio State University 151 W. Woodruff Ave Columbus OH 43210 USA
| | - Daniel Adu‐Ampratwum
- Department of Chemistry and BiochemistryThe Ohio State University 151 W. Woodruff Ave Columbus OH 43210 USA
| | - Antony A. Okumu
- Department of Chemistry and BiochemistryThe Ohio State University 151 W. Woodruff Ave Columbus OH 43210 USA
| | - Zhigao Zhang
- Shanghai Hengrui Pharmaceutical Inc. No. 279 Wenjing Road Shanghai 200245 P. R. China
| | - Yong Chen
- Asymchem Life Science No. 71 7th Ave., TEDA Tianjin 300000 P. R. China
| | - Son Nguyen
- Johnson Matthey Pharma Services 25 Patton Road Devens MA 01434 USA
| | - Jianyan Xu
- Shanghai Hengrui Pharmaceutical Inc. No. 279 Wenjing Road Shanghai 200245 P. R. China
| | - Yue Ding
- Viva Biotech Ltd. 581 Shenkuo Rd., Pudong District Shanghai 201203 China
| | - Pearse McCarron
- Measurement Science and StandardsNational Research Council of Canada Halifax Nova Scotia B3H 3Z1 Canada
| | - Jane Kilcoyne
- Marine Institute, RinvilleOranmore, Co. Galway Ireland
| | - Frode Rise
- Department of ChemistryUniversity of Oslo 0315 Oslo Norway
| | - Alistair L. Wilkins
- Norwegian Veterinary Institute P.O. Box 750 Sentrum 0106 Oslo Norway
- Chemistry DepartmentUniversity of Waikato Private Bag 3105 3240 Hamilton New Zealand
| | - Christopher O. Miles
- Measurement Science and StandardsNational Research Council of Canada Halifax Nova Scotia B3H 3Z1 Canada
- Norwegian Veterinary Institute P.O. Box 750 Sentrum 0106 Oslo Norway
| | - Craig J. Forsyth
- Department of Chemistry and BiochemistryThe Ohio State University 151 W. Woodruff Ave Columbus OH 43210 USA
| |
Collapse
|
12
|
Kenton NT, Adu‐Ampratwum D, Okumu AA, McCarron P, Kilcoyne J, Rise F, Wilkins AL, Miles CO, Forsyth CJ. Stereochemical Definition of the Natural Product (6
R
,10
R
,13
R
, 14
R
,16
R
,17
R
,19
S
,20
S
,21
R
,24
S
,25
S
,28
S
,30
S
,32
R
,33
R
,34
R
,36
S
,37
S
,39
R
)‐Azaspiracid‐3 by Total Synthesis and Comparative Analyses. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201711008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Nathaniel T. Kenton
- Department of Chemistry and BiochemistryThe Ohio State University 151 W. Woodruff Ave Columbus OH 43210 USA
| | - Daniel Adu‐Ampratwum
- Department of Chemistry and BiochemistryThe Ohio State University 151 W. Woodruff Ave Columbus OH 43210 USA
| | - Antony A. Okumu
- Department of Chemistry and BiochemistryThe Ohio State University 151 W. Woodruff Ave Columbus OH 43210 USA
| | - Pearse McCarron
- Measurement Science and StandardsNational Research Council of Canada 1411 Oxford St. Halifax Nova Scotia B3H 3Z1 Canada
| | - Jane Kilcoyne
- Marine Institute, RinvilleOranmore, Co. Galway Ireland
| | - Frode Rise
- Department of ChemistryUniversity of Oslo 0315 Oslo Norway
| | - Alistair L. Wilkins
- Norwegian Veterinary Institute P.O. Box 750 Sentrum 0106 Oslo Norway
- Chemistry DepartmentUniversity of Waikato Private Bag 3105 3240 Hamilton New Zealand
| | - Christopher O. Miles
- Measurement Science and StandardsNational Research Council of Canada 1411 Oxford St. Halifax Nova Scotia B3H 3Z1 Canada
- Norwegian Veterinary Institute P.O. Box 750 Sentrum 0106 Oslo Norway
| | - Craig J. Forsyth
- Department of Chemistry and BiochemistryThe Ohio State University 151 W. Woodruff Ave Columbus OH 43210 USA
| |
Collapse
|
13
|
Kenton NT, Adu‐Ampratwum D, Okumu AA, Zhang Z, Chen Y, Nguyen S, Xu J, Ding Y, McCarron P, Kilcoyne J, Rise F, Wilkins AL, Miles CO, Forsyth CJ. Total Synthesis of (6
R
,10
R
,13
R
,14
R
,16
R
,17
R
,19
S
,20
R
,21
R
,24
S
, 25
S
,28
S
,30
S
,32
R
,33
R
,34
R
,36
S
,37
S
,39
R
)‐Azaspiracid‐3 Reveals Non‐Identity with the Natural Product. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201711006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Nathaniel T. Kenton
- Department of Chemistry and BiochemistryThe Ohio State University 151 W. Woodruff Ave Columbus OH 43210 USA
| | - Daniel Adu‐Ampratwum
- Department of Chemistry and BiochemistryThe Ohio State University 151 W. Woodruff Ave Columbus OH 43210 USA
| | - Antony A. Okumu
- Department of Chemistry and BiochemistryThe Ohio State University 151 W. Woodruff Ave Columbus OH 43210 USA
| | - Zhigao Zhang
- Shanghai Hengrui Pharmaceutical Inc. No. 279 Wenjing Road Shanghai 200245 P. R. China
| | - Yong Chen
- Asymchem Life Science No. 71 7th Ave., TEDA Tianjin 300000 P. R. China
| | - Son Nguyen
- Johnson Matthey Pharma Services 25 Patton Road Devens MA 01434 USA
| | - Jianyan Xu
- Shanghai Hengrui Pharmaceutical Inc. No. 279 Wenjing Road Shanghai 200245 P. R. China
| | - Yue Ding
- Viva Biotech Ltd. 581 Shenkuo Rd., Pudong District Shanghai 201203 China
| | - Pearse McCarron
- Measurement Science and StandardsNational Research Council of Canada Halifax Nova Scotia B3H 3Z1 Canada
| | - Jane Kilcoyne
- Marine Institute, RinvilleOranmore, Co. Galway Ireland
| | - Frode Rise
- Department of ChemistryUniversity of Oslo 0315 Oslo Norway
| | - Alistair L. Wilkins
- Norwegian Veterinary Institute P.O. Box 750 Sentrum 0106 Oslo Norway
- Chemistry DepartmentUniversity of Waikato Private Bag 3105 3240 Hamilton New Zealand
| | - Christopher O. Miles
- Measurement Science and StandardsNational Research Council of Canada Halifax Nova Scotia B3H 3Z1 Canada
- Norwegian Veterinary Institute P.O. Box 750 Sentrum 0106 Oslo Norway
| | - Craig J. Forsyth
- Department of Chemistry and BiochemistryThe Ohio State University 151 W. Woodruff Ave Columbus OH 43210 USA
| |
Collapse
|
14
|
Zendong Z, Sibat M, Herrenknecht C, Hess P, McCarron P. Relative molar response of lipophilic marine algal toxins in liquid chromatography/electrospray ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2017; 31:1453-1461. [PMID: 28582796 DOI: 10.1002/rcm.7918] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/01/2017] [Accepted: 06/01/2017] [Indexed: 06/07/2023]
Abstract
RATIONALE Accurate quantitative analysis of lipophilic toxins by liquid chromatography/mass spectrometry (LC/MS) requires calibration solution reference materials (RMs) for individual toxin analogs. Untargeted analysis is aimed at identifying a vast number of compounds and thus validation of fully quantitative untargeted methods is not feasible. However, a semi-quantitative approach allowing for profiling is still required and will be strengthened by knowledge of the relative molar response (RMR) of analogs in LC/MS with electrospray ionization (ESI). METHODS RMR factors were evaluated for toxins from the okadaic acid (OA/DTXs), yessotoxin (YTX), pectenotoxin (PTX), azaspiracid (AZA) and cyclic imine (CI) toxin groups, in both solvent standards and environmental sample extracts. Since compound ionization and fragmentation influences the MS response of toxins, RMRs were assessed under different chromatographic conditions (gradient, isocratic) and MS acquisition modes (SIM, SRM, All-ion, target MS/MS) on low- and high-resolution mass spectrometers. RESULTS In general, RMRs were not significantly impacted by chromatographic conditions (isocratic vs gradient), with the exception of DTX1. MS acquisition modes had a more significant impact, with PnTX-G and SPX differing notably. For a given toxin group, response factors were generally in the range of 0.5 to 2. The cyclic imines were an exception. CONCLUSIONS Differences in RMRs between toxins of a same chemical base structure were not significant enough to indicate major issues for non-targeted semi-quantitative analysis, where there is limited or no availability of standards for many compounds, and where high degrees of accuracy are not required. Differences in RMRs should be considered when developing methods that use a standard of a single analogue to quantitate other toxins from the same group.
Collapse
Affiliation(s)
- Zita Zendong
- Ifremer, Laboratoire Phycotoxines, Nantes, France
| | | | | | - Philipp Hess
- Ifremer, Laboratoire Phycotoxines, Nantes, France
| | - Pearse McCarron
- Measurement Science and Standards, National Research Council Canada, Halifax, NS, Canada
| |
Collapse
|
15
|
Chen J, Wang Y, Pan L, Shen H, Fu D, Fu B, Sun C, Zheng L. Separation and purification of two minor typical diarrhetic shellfish poisoning toxins from harmful marine microalgae via combined liquid chromatography with mass spectrometric detection. J Sep Sci 2017; 40:2906-2913. [PMID: 28513110 DOI: 10.1002/jssc.201700125] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 05/08/2017] [Accepted: 05/12/2017] [Indexed: 01/22/2023]
Abstract
A novel method was developed for the purification of two typical diarrhetic shellfish poisoning toxins from toxin-producing marine microalgae using macroporous resin, high-speed countercurrent chromatography-mass spectrometry, and semipreparative high-performance liquid chromatography-mass spectrometry. Analytical high-performance liquid chromatography-mass spectrometry was used for identification and purity analysis of okadaic acid and dinophysistoxin-1 because they exhibit no visible or ultraviolet absorption. First, four kinds of macroporous resins were investigated, and HP-20 macroporous resin was selected for the preenrichment and cleanup of the two target toxins. Second, the resin-purified sample was further purified using high-speed countercurrent chromatography coupled with a mass spectrometer. The purities of the obtained okadaic acid and dinophysistoxin-1 were 89.0 and 83.0%, respectively, as determined through analytical high-performance liquid chromatography-mass spectrometry. Finally, further purification was carried out using semipreparative high-performance liquid chromatography with mass spectrometry, and the purities of the final okadaic acid and dinophysistoxin-1 products were both over 98.0% based on the analytical high-performance liquid chromatography-mass spectrometry chromatograms and fraction spectra. This work demonstrates that the proposed purification process is a powerful method for the preparation of high-purity okadaic acid and dinophysistoxin-1 from toxin-producing marine microalgae. Moreover, it is particularly important for the purification and preparation of minor toxins that exhibit no visible or ultraviolet absorption from harmful marine algae.
Collapse
Affiliation(s)
- Junhui Chen
- Qingdao Key Laboratory of Analytical Technology Development and Standardization of Chinese Medicines, The First Institute of Oceanography, State Oceanic Administration, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yanlong Wang
- Qingdao Key Laboratory of Analytical Technology Development and Standardization of Chinese Medicines, The First Institute of Oceanography, State Oceanic Administration, Qingdao, China
| | - Lei Pan
- College of Chemistry and Molecular Engineering, Qingdao Technology University of Shandong, Qingdao, China
| | - Huihui Shen
- School of Ocean Sciences, China University of Geosciences, Beijing, China
| | - Dan Fu
- Qingdao Key Laboratory of Analytical Technology Development and Standardization of Chinese Medicines, The First Institute of Oceanography, State Oceanic Administration, Qingdao, China
| | - Boqiang Fu
- Division of Medical and Biological Measurements Laboratory of Biological Analysis and Cell Technology, National Institute of Metrology, Beijing, China
| | - Chengjun Sun
- Qingdao Key Laboratory of Analytical Technology Development and Standardization of Chinese Medicines, The First Institute of Oceanography, State Oceanic Administration, Qingdao, China
| | - Li Zheng
- Qingdao Key Laboratory of Analytical Technology Development and Standardization of Chinese Medicines, The First Institute of Oceanography, State Oceanic Administration, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
16
|
Kilcoyne J, McCarron P, Hess P, Miles CO. Effects of Heating on Proportions of Azaspiracids 1-10 in Mussels (Mytilus edulis) and Identification of Carboxylated Precursors for Azaspiracids 5, 10, 13, and 15. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:10980-10987. [PMID: 26631586 DOI: 10.1021/acs.jafc.5b04609] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Azaspiracids (AZAs) are marine biotoxins that induce human illness following the consumption of contaminated shellfish. European Union regulation stipulates that only raw shellfish are tested, yet shellfish are often cooked prior to consumption. Analysis of raw and heat-treated mussels (Mytilus edulis) naturally contaminated with AZAs revealed significant differences (up to 4.6-fold) in AZA1-3 (1-3) and 6 (6) values due to heat-induced chemical conversions. Consistent with previous studies, high levels of 3 and 6 were detected in some samples that were otherwise below the limit of quantitation before heating. Relative to 1, in heat-treated mussels the average (n = 40) levels of 3 (range, 11-502%) and 6 (range, 3-170%) were 62 and 31%, respectively. AZA4 (4) (range, <1-27%), AZA5 (5) (range, 1-21%), and AZA8 (8) (range, 1-27%) were each ∼5%, whereas AZA7 (7), AZA9 (9), and AZA10 (10) (range, <1-8%) were each under 1.5%. Levels of 5, 10, AZA13 (13), and AZA15 (15) increased after heating, leading to the identification of novel carboxylated AZA precursors in raw shellfish extracts, which were shown by deuterium labeling to be precursors for 5, 10, 13, and 15.
Collapse
Affiliation(s)
- Jane Kilcoyne
- Marine Institute , Rinville, Oranmore, Co. Galway, Ireland
| | - Pearse McCarron
- Measurement Science and Standards, National Research Council Canada , Halifax, Nova Scotia B3H 3Z1, Canada
| | - Philipp Hess
- Laboratoire Phycotoxines, Ifremer , Rue de l'Ile d'Yeu, 44311 Nantes, France
| | | |
Collapse
|
17
|
Kilcoyne J, Nulty C, Jauffrais T, McCarron P, Herve F, Foley B, Rise F, Crain S, Wilkins AL, Twiner MJ, Hess P, Miles CO. Isolation, structure elucidation, relative LC-MS response, and in vitro toxicity of azaspiracids from the dinoflagellate Azadinium spinosum. JOURNAL OF NATURAL PRODUCTS 2014; 77:2465-2474. [PMID: 25356854 DOI: 10.1021/np500555k] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We identified three new azaspiracids (AZAs) with molecular weights of 715, 815, and 829 (AZA33 (3), AZA34 (4), and AZA35, respectively) in mussels, seawater, and Azadinium spinosum culture. Approximately 700 μg of 3 and 250 μg of 4 were isolated from a bulk culture of A. spinosum, and their structures determined by MS and NMR spectroscopy. These compounds differ significantly at the carboxyl end of the molecule from known AZA analogues and therefore provide valuable information on structure-activity relationships. Initial toxicological assessment was performed using an in vitro model system based on Jurkat T lymphocyte cytotoxicity, and the potencies of 3 and 4 were found to be 0.22- and 5.5-fold that of AZA1 (1), respectively. Thus, major changes in the carboxyl end of 1 resulted in significant changes in toxicity. In mussel extracts, 3 was detected at low levels, whereas 4 and AZA35 were detected only at extremely low levels or not at all. The structures of 3 and 4 are consistent with AZAs being biosynthetically assembled from the amino end.
Collapse
Affiliation(s)
- Jane Kilcoyne
- Marine Institute , Rinville, Oranmore, Galway, Ireland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
McCarron P, Giddings SD, Reeves KL, Hess P, Quilliam MA. A mussel (Mytilus edulis) tissue certified reference material for the marine biotoxins azaspiracids. Anal Bioanal Chem 2014; 407:2985-96. [PMID: 25335820 DOI: 10.1007/s00216-014-8250-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/02/2014] [Accepted: 10/07/2014] [Indexed: 11/28/2022]
Abstract
Azaspiracids (AZAs) are lipophilic biotoxins produced by marine algae that can contaminate shellfish and cause human illness. The European Union (EU) regulates the level of AZAs in shellfish destined for the commercial market, with liquid chromatography-mass spectrometry (LC-MS) being used as the official reference method for regulatory analysis. Certified reference materials (CRMs) are essential tools for the development, validation, and quality control of LC-MS methods. This paper describes the work that went into the planning, preparation, characterization, and certification of CRM-AZA-Mus, a tissue matrix CRM, which was prepared as a wet homogenate from mussels (Mytilus edulis) naturally contaminated with AZAs. The homogeneity and stability of CRM-AZA-Mus were evaluated, and the CRM was found to be fit for purpose. Extraction and LC-MS/MS methods were developed to accurately certify the concentrations of AZA1 (1.16 mg/kg), AZA2 (0.27 mg/kg), and AZA3 (0.21 mg/kg) in the CRM. Quantitation methods based on standard addition and matrix-matched calibration were used to compensate for the matrix effects in LC-MS/MS. Other toxins present in this CRM at lower levels were also measured with information values reported for okadaic acid, dinophysistoxin-2, yessotoxin, and several spirolides.
Collapse
Affiliation(s)
- Pearse McCarron
- National Research Council of Canada, Measurement Science and Standards, Biotoxin Metrology, 1411 Oxford Street, Halifax, NS, B3H 3Z1, Canada,
| | | | | | | | | |
Collapse
|
19
|
Kilcoyne J, McCarron P, Twiner MJ, Nulty C, Crain S, Quilliam MA, Rise F, Wilkins AL, Miles CO. Epimers of azaspiracids: Isolation, structural elucidation, relative LC-MS response, and in vitro toxicity of 37-epi-azaspiracid-1. Chem Res Toxicol 2014; 27:587-600. [PMID: 24506502 DOI: 10.1021/tx400434b] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Since azaspiracid-1 (AZA1) was identified in 1998, the number of AZA analogues has increased to over 30. The development of an LC-MS method using a neutral mobile phase led to the discovery of isomers of AZA1, AZA2, and AZA3, present at ~2-16% of the parent analogues in phytoplankton and shellfish samples. Under acidic mobile phase conditions, isomers and their parents are not separated. Stability studies showed that these isomers were spontaneous epimerization products whose formation is accelerated with the application of heat. The AZA1 isomer was isolated from contaminated shellfish and identified as 37-epi-AZA1 by nuclear magnetic resonance (NMR) spectroscopy and chemical analyses. Similar analysis indicated that the isomers of AZA2 and AZA3 corresponded to 37-epi-AZA2 and 37-epi-AZA3, respectively. The 37-epimers were found to exist in equilibrium with the parent compounds in solution. 37-epi-AZA1 was quantitated by NMR, and relative molar response studies were performed to determine the potential differences in LC-MS response of AZA1 and 37-epi-AZA1. Toxicological effects were determined using Jurkat T lymphocyte cells as an in vitro cell model. Cytotoxicity experiments employing a metabolically based dye (i.e., MTS) indicated that 37-epi-AZA1 elicited a lethal response that was both concentration- and time-dependent, with EC50 values in the subnanomolar range. On the basis of EC50 comparisons, 37-epi-AZA1 was 5.1-fold more potent than AZA1. This data suggests that the presence of these epimers in seafood products should be considered in the analysis of AZAs for regulatory purposes.
Collapse
Affiliation(s)
- Jane Kilcoyne
- Marine Institute, Rinville, Oranmore, County, Galway, Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Jauffrais T, Kilcoyne J, Herrenknecht C, Truquet P, Séchet V, Miles CO, Hess P. Dissolved azaspiracids are absorbed and metabolized by blue mussels (Mytilus edulis). Toxicon 2013; 65:81-9. [DOI: 10.1016/j.toxicon.2013.01.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 01/05/2013] [Accepted: 01/15/2013] [Indexed: 11/16/2022]
|
21
|
Aune T, Espenes A, Aasen JAB, Quilliam MA, Hess P, Larsen S. Study of possible combined toxic effects of azaspiracid-1 and okadaic acid in mice via the oral route. Toxicon 2012; 60:895-906. [PMID: 22750012 DOI: 10.1016/j.toxicon.2012.06.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 06/13/2012] [Indexed: 11/16/2022]
Abstract
Toxins from the okadaic acid (OA) and azaspiracid (AZA) group cause considerable negative health effects in consumers when present in shellfish above certain levels. The main symptoms, dominated by diarrhoea, are caused by damage to the gastrointestinal (GI) tract. Even though OA and AZAs exert toxicity via different mechanisms, it is important to find out whether they may enhance the health effects if present together since they act on the same organs and are regulated individually. In this study, the main issue was the possibility of enhanced lethality in mice upon combined oral exposure to OA and AZA1. In addition, pathological effects in several organs and effects on absorption from the GI tract were studied. Although the number of mice was small due to low availability of AZA1, the results indicate no additive or synergistic effect on lethality when AZA1 and OA were given together. Similar lack of increased toxicity was observed concerning pathological effects that were restricted to the GI-tract. OA and AZA1 were absorbed from the GI-tract to a very low degree, and when given together, uptake was reduced. Taken together, these results indicate that the present practice of regulating toxins from the OA and AZA group individually does not present an unwanted increased risk for consumers of shellfish.
Collapse
Affiliation(s)
- Tore Aune
- Department of Food Safety and Infection Biology, Norwegian School of Veterinary Science, P.O.Box 8146 Dep., 0033 Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
22
|
Jauffrais T, Kilcoyne J, Séchet V, Herrenknecht C, Truquet P, Hervé F, Bérard JB, Nulty C, Taylor S, Tillmann U, Miles CO, Hess P. Production and isolation of azaspiracid-1 and -2 from Azadinium spinosum culture in pilot scale photobioreactors. Mar Drugs 2012; 10:1360-1382. [PMID: 22822378 PMCID: PMC3397445 DOI: 10.3390/md10061360] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 06/01/2012] [Accepted: 06/04/2012] [Indexed: 11/22/2022] Open
Abstract
Azaspiracid (AZA) poisoning has been reported following consumption of contaminated shellfish, and is of human health concern. Hence, it is important to have sustainable amounts of the causative toxins available for toxicological studies and for instrument calibration in monitoring programs, without having to rely on natural toxin events. Continuous pilot scale culturing was carried out to evaluate the feasibility of AZA production using Azadinium spinosum cultures. Algae were harvested using tangential flow filtration or continuous centrifugation. AZAs were extracted using solid phase extraction (SPE) procedures, and subsequently purified. When coupling two stirred photobioreactors in series, cell concentrations reached 190,000 and 210,000 cell·mL−1 at steady state in bioreactors 1 and 2, respectively. The AZA cell quota decreased as the dilution rate increased from 0.15 to 0.3 day−1, with optimum toxin production at 0.25 day−1. After optimization, SPE procedures allowed for the recovery of 79 ± 9% of AZAs. The preparative isolation procedure previously developed for shellfish was optimized for algal extracts, such that only four steps were necessary to obtain purified AZA1 and -2. A purification efficiency of more than 70% was achieved, and isolation from 1200 L of culture yielded 9.3 mg of AZA1 and 2.2 mg of AZA2 of >95% purity. This work demonstrated the feasibility of sustainably producing AZA1 and -2 from A. spinosum cultures.
Collapse
Affiliation(s)
- Thierry Jauffrais
- Ifremer, EMP/PHYC Laboratory, Rue de l'Ile d'Yeu, 44311 Nantes, France; (V.S.); (P.T.); (F.H.); (S.T.)
- Authors to whom correspondence should be addressed; (T.J.); (P.H.); Tel.: +33-2-40-37-40-00 (T.J.); Fax: +33-2-40-37-40-73 (T.J.); Tel.: +33-2-40-37-42-57 (P.H.); Fax: +33-2-40-37-40-26 (P.H.)
| | - Jane Kilcoyne
- Marine Institute, Rinville, Oranmore, Co., Galway, Ireland; (J.K.); (C.N.)
| | - Véronique Séchet
- Ifremer, EMP/PHYC Laboratory, Rue de l'Ile d'Yeu, 44311 Nantes, France; (V.S.); (P.T.); (F.H.); (S.T.)
| | | | - Philippe Truquet
- Ifremer, EMP/PHYC Laboratory, Rue de l'Ile d'Yeu, 44311 Nantes, France; (V.S.); (P.T.); (F.H.); (S.T.)
| | - Fabienne Hervé
- Ifremer, EMP/PHYC Laboratory, Rue de l'Ile d'Yeu, 44311 Nantes, France; (V.S.); (P.T.); (F.H.); (S.T.)
| | | | - Cíara Nulty
- Marine Institute, Rinville, Oranmore, Co., Galway, Ireland; (J.K.); (C.N.)
| | - Sarah Taylor
- Ifremer, EMP/PHYC Laboratory, Rue de l'Ile d'Yeu, 44311 Nantes, France; (V.S.); (P.T.); (F.H.); (S.T.)
| | - Urban Tillmann
- Alfred Wegener Institute, Am Handelshafen 12, D-27570 Bremerhaven, Germany;
| | | | - Philipp Hess
- Ifremer, EMP/PHYC Laboratory, Rue de l'Ile d'Yeu, 44311 Nantes, France; (V.S.); (P.T.); (F.H.); (S.T.)
- Authors to whom correspondence should be addressed; (T.J.); (P.H.); Tel.: +33-2-40-37-40-00 (T.J.); Fax: +33-2-40-37-40-73 (T.J.); Tel.: +33-2-40-37-42-57 (P.H.); Fax: +33-2-40-37-40-26 (P.H.)
| |
Collapse
|
23
|
Kilcoyne J, Keogh A, Clancy G, LeBlanc P, Burton I, Quilliam MA, Hess P, Miles CO. Improved isolation procedure for azaspiracids from shellfish, structural elucidation of azaspiracid-6, and stability studies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:2447-2455. [PMID: 22329755 DOI: 10.1021/jf2048788] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Azaspiracids are a group of lipophilic polyether toxins produced by the small dinoflagellate Azadinium spinosum. They may accumulate in shellfish and can result in illnesses when consumed by humans. Research into analytical methods, chemistry, metabolism, and toxicology of azaspiracids has been severely constrained by the scarcity of high-purity azaspiracids. Consequently, since their discovery in 1995, considerable efforts have been made to develop methods for the isolation of azaspiracids in sufficient amounts and purities for toxicological studies, in addition to the preparation of standard reference materials. A seven-step procedure was improved for the isolation of azaspiracids-1-3 (1, 2, and 3) increasing recoveries 2-fold as compared to previous methods and leading to isolation of sufficiently purified azaspiracid-6 (6) for structural determination by NMR spectroscopy. The procedure, which involved a series of partitioning and column chromatography steps, was performed on 500 g of Mytilus edulis hepatopancreas tissue containing ~14 mg of 1. Overall yields of 1 (52%), 2 (43%), 3 (43%), and 6 (38%) were good, and purities were confirmed by NMR spectroscopy. The structure of 6 was determined by one- and two-dimensional NMR spectroscopy and mass spectrometry. The stability of 6 relative to 1 was also assessed in three solvents in a short-term study that demonstrated the greatest stability in aqueous acetonitrile.
Collapse
Affiliation(s)
- Jane Kilcoyne
- Marine Institute, Renville, Oranmore, County Galway, Ireland.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Twiner MJ, El-Ladki R, Kilcoyne J, Doucette GJ. Comparative Effects of the Marine Algal Toxins Azaspiracid-1, -2, and -3 on Jurkat T Lymphocyte Cells. Chem Res Toxicol 2012; 25:747-54. [DOI: 10.1021/tx200553p] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Michael J. Twiner
- Department
of Natural Sciences, University of Michigan—Dearborn, Dearborn, Michigan,
United States
| | - Racha El-Ladki
- Department
of Natural Sciences, University of Michigan—Dearborn, Dearborn, Michigan,
United States
| | - Jane Kilcoyne
- Marine Institute, Renville, Oranmore, Co. Galway, Ireland
| | - Gregory J. Doucette
- Marine Biotoxins Program, NOAA/National Ocean Service, Charleston, South Carolina,
United States
| |
Collapse
|
25
|
Derivatization of azaspiracid biotoxins for analysis by liquid chromatography with fluorescence detection. J Chromatogr A 2011; 1218:8089-96. [DOI: 10.1016/j.chroma.2011.09.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Revised: 08/17/2011] [Accepted: 09/06/2011] [Indexed: 11/17/2022]
|
26
|
Aasen JAB, Espenes A, Miles CO, Samdal IA, Hess P, Aune T. Combined oral toxicity of azaspiracid-1 and yessotoxin in female NMRI mice. Toxicon 2011; 57:909-17. [PMID: 21426911 DOI: 10.1016/j.toxicon.2011.03.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 03/10/2011] [Accepted: 03/15/2011] [Indexed: 11/16/2022]
Abstract
For many years, the presence of yessotoxins (YTXs) in shellfish has contributed to the outcome of the traditional mouse bioassay and has on many occasions caused closure of shellfisheries. Since YTXs do not appear to cause diarrhoea in man and exert low oral toxicity in animal experiments, it has been suggested that they should be removed from regulation. Before doing so, it is important to determine whether the oral toxicity of YTXs is enhanced when present together with shellfish toxins known to cause damage to the gastrointestinal tract. Consequently, mice were given high doses of YTX, at 1 or 5 mg/kg body weight, either alone or together with azaspiracid-1 (AZA1) at 200 μg/kg. The latter has been shown to induce damage to the small intestine at this level. The combined exposure caused no clinical effects, and no pathological changes were observed in internal organs. These results correspond well with the very low levels of YTX detected in internal organs by means of LC-MS/MS and ELISA after dosing. Indeed, the very low absorption of YTX when given alone remained largely unchanged when YTX was administered in combination with AZA1. Thus, the oral toxicity of YTX is not enhanced in the presence of sub-lethal levels of AZA1.
Collapse
Affiliation(s)
- John A B Aasen
- Norwegian School of Veterinary Science, Department of Food Safety and Infection Biology, P.O. Box 8146 Dep., 0033 Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
27
|
Blay P, Hui JPM, Chang J, Melanson JE. Screening for multiple classes of marine biotoxins by liquid chromatography-high-resolution mass spectrometry. Anal Bioanal Chem 2011; 400:577-85. [PMID: 21347673 DOI: 10.1007/s00216-011-4772-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 02/02/2011] [Accepted: 02/03/2011] [Indexed: 10/18/2022]
Abstract
Marine biotoxins pose a significant food safety risk when bioaccumulated in shellfish, and adequate testing for biotoxins in shellfish is required to ensure public safety and long-term viability of commercial shellfish markets. This report describes the use of a benchtop Orbitrap system for liquid chromatography-mass spectrometry (LC-MS) screening of multiple classes of biotoxins commonly found in shellfish. Lipophilic toxins such as dinophysistoxins, pectenotoxins, and azaspiracids were separated by reversed phase LC in less than 7 min prior to MS data acquisition at 2 Hz with alternating positive and negative scans. This approach resulted in mass accuracy for analytes detected in positive mode (gymnodimine, 13-desmethyl spirolide C, pectenotoxin-2, and azaspiracid-1, -2, and -3) of less than 1 ppm, while those analytes detected in negative mode (yessotoxin, okadaic acid, and dinophysistoxin-1 and -2) exhibited mass errors between 2 and 4 ppm. Hydrophilic toxins such as domoic acid, saxitoxin, and gonyautoxins were separated by hydrophilic interaction LC (HILIC) in less than 4 min, and MS data was collected at 1 Hz in positive mode, yielding mass accuracy of less than 1 ppm error at a resolving power of 100,000 for the analytes studied (m/z 300-500). Data were processed by extracting 5 ppm mass windows centered around the calculated masses of the analytes. Limits of detection (LOD) for the lipophilic toxins ranged from 0.041 to 0.10 μg/L (parts per billion) for the positive ions, 1.6-5.1 μg/L for those detected in negative mode, while the domoic acid and paralytic shellfish toxins yielded LODs ranging from 3.4 to 14 μg/L. Toxins were detected in mussel tissue extracts free of interference in all cases.
Collapse
Affiliation(s)
- Pearl Blay
- National Research Council of Canada, Institute for Marine Biosciences, 1411 Oxford Street, Halifax, NS B3H 3Z1, Canada
| | | | | | | |
Collapse
|