1
|
Procházková M, Kuchovská E, Killinger M, Klepárník K. Novel Förster Resonance Energy Transfer probe with quantum dot for a long-time imaging of active caspases inside individual cells. Anal Chim Acta 2023; 1267:341334. [PMID: 37257963 DOI: 10.1016/j.aca.2023.341334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/28/2023] [Accepted: 05/07/2023] [Indexed: 06/02/2023]
Abstract
With the goal to investigate biological phenomena at a single-cell level, we designed, synthesized and tested a molecular probe based on Förster resonance energy transfer (FRET) between a highly luminescent quantum dot (QD) as a donor and a fluorophore or fluorescence quencher as an acceptor linked by a specific peptide. In principle, QD luminescence, effectively dissipated in the probe, is switched on after the cleavage of the peptide by a protease and the release of the quencher. We proposed a novel synthesis strategy of a probe. A two-step synthesis consists of: (i) Conjugation of CdTe QDs functionalized by -COOH groups of succinic acid on the nanoparticle surface with the designed specific peptide (GTADVEDTSC) using a ligand-exchange approach; (ii) A fast, high-yield reaction of amine-reactive succinimidyl group on the BHQ-2 quencher with N-terminal of the peptide. This way, any crosslinking between individual nanoparticles and any nonspecific conjugation bonds are excluded. The analysis of the product after the first step proved a high reaction yield and nearly no occurrence of unreacted QDs, a prerequisite of the specificity of our luminescent probe. Its parameters evaluated as Michaelis-Menten description of enzymatic kinetics are similar to products published by other groups. Our research is focused on the fluorescence microscopy analyses of biologically active molecules, such as proteolytic active caspases, playing important roles in cell signaling regulations in normal and diseased states. Consequently, they are attractive targets for clinical diagnosis and medical therapy. The ultimate goal of our work was to synthesize a new QD luminescent probe for a long-time quantitative monitoring of active caspase-3/7 distribution in apoptotic osteoblastic MC3T3-E1 cells treated with camptothecin. As a result of comparison, our synthetized luminescent probe provides longer imaging times of caspases than commercial products. The probe proved the stability of the luminescence signal inside cells for more than 14 days.
Collapse
Affiliation(s)
- Markéta Procházková
- Department of Bioanalytical Instrumentation, Institute of Analytical Chemistry, v.v.i., Czech Academy of Sciences, Veveří 97, 602 00, Brno, Czech Republic; Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37, Brno, Czech Republic.
| | - Eliška Kuchovská
- Department of Bioanalytical Instrumentation, Institute of Analytical Chemistry, v.v.i., Czech Academy of Sciences, Veveří 97, 602 00, Brno, Czech Republic.
| | - Michael Killinger
- Department of Bioanalytical Instrumentation, Institute of Analytical Chemistry, v.v.i., Czech Academy of Sciences, Veveří 97, 602 00, Brno, Czech Republic; Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37, Brno, Czech Republic.
| | - Karel Klepárník
- Department of Bioanalytical Instrumentation, Institute of Analytical Chemistry, v.v.i., Czech Academy of Sciences, Veveří 97, 602 00, Brno, Czech Republic.
| |
Collapse
|
2
|
Pavlicek A, Neubauer S, Zafiu C, Huber-Humer M, Ehmoser EK, Part F. The use and detection of quantum dots as nanotracers in environmental fate studies of engineered nanoparticles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120461. [PMID: 36272608 DOI: 10.1016/j.envpol.2022.120461] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Investigations of the behavior and effects of engineered nanoparticles (ENPs) on human health and the environment need detailed knowledge of their fate and transport in environmental compartments. Such studies are highly challenging due to low environmental concentrations, varying size distribution of the particles and the interference with the natural background. A strategy to overcome these limits is to use mimics of ENPs with unique detectable properties that match the properties of the ENPs as nanotracers. A special class of ENPs that can be tracked are quantum dots (QDs). QDs are composed of different metals, metalloids, or more recently also carbon (e.g., graphene), that result in unique optical properties. This allows the tracking of such particles by fluorescence microscopic and photometric techniques. Many types of QDs consist of heavy elements, allowing to track and visualize these particles also by electron microscopy and to quantitate the particles indirectly based on these elements. QDs can also be surface modified in various ways which enable them to be used as a label or as traceable mimics for ENPs. This review reflects a broad range of methods to synthesize and modify QDs based on metals, metalloids, and graphene for studying the environmental fate of nanoparticles and discusses and compares analytical methods that can be used for tracking and quantifying QDs. In addition, we review applications of QDs as ENP mimics in environmental studies of surface waters, soils, microorganisms, and plants with respect to the applied analytical techniques.
Collapse
Affiliation(s)
- Anna Pavlicek
- University of Natural Resources and Life Sciences, Department of Nanobiotechnology, Institute for Synthetic Bioarchitectures, Muthgasse 11/II, 1190, Vienna, Austria
| | - Simon Neubauer
- University of Natural Resources and Life Sciences, Department of Water-Atmosphere-Environment, Institute of Waste Management and Circularity, Muthgasse 107, 1190, Vienna, Austria
| | - Christian Zafiu
- University of Natural Resources and Life Sciences, Department of Water-Atmosphere-Environment, Institute of Waste Management and Circularity, Muthgasse 107, 1190, Vienna, Austria.
| | - Marion Huber-Humer
- University of Natural Resources and Life Sciences, Department of Water-Atmosphere-Environment, Institute of Waste Management and Circularity, Muthgasse 107, 1190, Vienna, Austria
| | - Eva-Kathrin Ehmoser
- University of Natural Resources and Life Sciences, Department of Nanobiotechnology, Institute for Synthetic Bioarchitectures, Muthgasse 11/II, 1190, Vienna, Austria
| | - Florian Part
- University of Natural Resources and Life Sciences, Department of Water-Atmosphere-Environment, Institute of Waste Management and Circularity, Muthgasse 107, 1190, Vienna, Austria
| |
Collapse
|
3
|
M V, Bhatt A, Thekkuveettil A, Ganapathy S, Panniyammakal J, Sivadasanpillai H, Gopi M. To evaluate the feasibility of cadmium/tellurium (Cd/Te) quantum dots for developing N-terminal Natriuretic Peptide (NT-proBNP) in-vitro diagnostics. J Immunoassay Immunochem 2023; 44:31-40. [PMID: 35880389 DOI: 10.1080/15321819.2022.2103430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Quantum dots have been widely used for biomedical applications like imaging, targeted drug delivery, and in-vitro diagnostics for better sensitivity. In-vitro diagnostic, lateral flow-based assay systems are gaining attention in the field of biomarker analysis mainly due to ease of test and quick availability of results. In the study, the potential of water-soluble carboxylic (-COOH) functionalized photoluminescent Cadmium Telluride Quantum Dots (CdTe) nanoparticles for lateral flow-based detection of N-terminal Natriuretic Peptide (NT-proBNP) biomarker (for heart failure) detection has been evaluated. Monoclonal antibodies were conjugated with COOH functionalized CdTe with EDC-NHS coupling chemistry, and conjugation was confirmed using FTIR. The CdTe nanoparticle exhibited an emission maximum at 715 nm when it is excited with 375 nm. The COOH functionalized CdTe showed an antigen concentration-dependent linearity in the lateral flow applications when the dye was prepared freshly and used. However, a relative reduction in CdTe quantum dot fluorescence intensity with time was observed. Factors such as low stability could be due to the quenching of the fluorescence of CdTe. This limits its commercial viability as an in-vitro diagnostic tool; thus, modifications of the quantum dots are required to have a stable preparation for its commercial potential for quantifications.
Collapse
Affiliation(s)
- Vani M
- Division of Artificial Internal Organs, Department of Medical Devices Engineering, BMT Wing, SCTIMST, Trivandrum, India
| | - Anugya Bhatt
- Thrombosis Research Unit, Department of Applied Biology, BMT Wing, SCTIMST, Trivandrum, India
| | - Anoopkumar Thekkuveettil
- Division of Molecular Medicine, Department of Applied Biology, BMT Wing, SCTIMST, Trivandrum, India
| | | | | | | | - Manoj Gopi
- Division of Artificial Internal Organs, Department of Medical Devices Engineering, BMT Wing, SCTIMST, Trivandrum, India
| |
Collapse
|
4
|
Żukowski K, Kosman J, Juskowiak B. Light-Induced Oxidase Activity of DNAzyme-Modified Quantum Dots. Int J Mol Sci 2020; 21:ijms21218190. [PMID: 33139657 PMCID: PMC7662946 DOI: 10.3390/ijms21218190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/23/2020] [Accepted: 10/30/2020] [Indexed: 11/16/2022] Open
Abstract
Here, we report the synthesis of a quantum dot (QD)-DNA covalent conjugate to be used as an H2O2-free DNAzyme system with oxidase activity. Amino-coupling conjugation was carried out between amino-modified oligonucleotides (CatG4-NH2) and carboxylated quantum dots (CdTe@COOH QDs). The obtained products were characterized by spectroscopic methods (UV-Vis, fluorescence, circular dichroizm (CD), and IR) and the transmission electron microscopy (TEM) technique. A QD-DNA system with a low polydispersity and high stability in aqueous solutions was successfully obtained. The catalytic activity of the QD-DNA conjugate was examined with Amplex Red and ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate)) indicators using reactive oxygen species (ROS) generated by visible light irradiation. The synthesized QD-DNAzyme exhibited enhanced catalytic activity compared with the reference system (a mixture of QDs and DNAzyme). This proved the assumption that the covalent attachment of DNAzyme to the surface of QD resulted in a beneficial effect on its catalytic activity. The results proved that the QD-DNAzyme system can be used for generation of the signal by light irradiation. The light-induced oxidase activity of the conjugate was demonstrated, proving that the QD-DNAzyme system can be useful for the development of new cellular bioassays, e.g., for the determination of oxygen radical scavengers.
Collapse
|
5
|
Quantum Dot Bioconjugates for Diagnostic Applications. Top Curr Chem (Cham) 2020; 378:35. [PMID: 32219574 DOI: 10.1007/s41061-020-0296-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 02/29/2020] [Indexed: 01/22/2023]
Abstract
Quantum dots (QDs) are a special type of engineered nanomaterials with outstanding optoelectronic properties that make them as a very promising alternative to conventional luminescent dyes in biomedical applications, including biomolecule (BM) targeting, luminescence imaging and drug delivery. A key parameter to ensure successful biomedical applications of QDs is the appropriate surface modification, i.e. the surface of the nanomaterials should be modified with the appropriate functional groups to ensure stability in aqueous solutions and it should be conjugated with recognition elements capable of ensuring an efficient tagging of the BMs of interest. In this review we summarize the most relevant strategies used for surface modification of QDs and for their conjugation to BMs in preparation of their application in nanoplatforms for luminescent BM sensing and imaging-guided targeting. The applications of conjugations of photoluminescent QDs with different BMs in both in vitro and in vivo chemical sensing, immunoassays or luminescence imaging are reviewed. Recent progress in the application of functionalized QDs in ultrasensitive detection in bioanalysis, diagnostics and imaging strategies are reported. Finally, some key future research goals in the progress of bioconjugation of QDs for diagnosis are identified, including novel synthetic approaches, the need for exhaustive characterization of bioconjugates and the design of signal amplification schemes.
Collapse
|
6
|
|
7
|
Datinská V, Klepárník K, Belšánová B, Minárik M, Foret F. Capillary electrophoresis, a method for the determination of nucleic acid ligands covalently attached to quantum dots representing a donor of Förster resonance energy transfer. J Sep Sci 2018; 41:2961-2968. [PMID: 29742317 DOI: 10.1002/jssc.201800248] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/02/2018] [Accepted: 05/02/2018] [Indexed: 01/24/2023]
Abstract
The synthesis and determination of the structure of a Förster resonance energy transfer probe intended for the detection of specific nucleic acid sequences are described here. The probe is based on the hybridization of oligonucleotide modified quantum dots with a fluorescently labeled nucleic acid sample resulting in changes of the fluorescence emission due to the energy transfer effect. The stoichiometry distribution of oligonucleotides conjugated to quantum dots was determined by capillary electrophoresis separation. The results indicate that one to four molecules of oligonucleotide are conjugated to the surface of a single nanoparticle. This conclusion is confirmed by the course of the dependence of Förster resonance energy transfer efficiency on the concentration of fluorescently labeled complementary single-stranded nucleic acid, showing saturation. While the energy transfer efficiency of the probe hybridized with complementary nucleic acid strands was 30%, negligible efficiency was observed with a noncomplementary strand.
Collapse
Affiliation(s)
- Vladimíra Datinská
- Institute of Analytical Chemistry of the CAS v. v. i., Brno, Czech Republic.,Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Karel Klepárník
- Institute of Analytical Chemistry of the CAS v. v. i., Brno, Czech Republic
| | - Barbora Belšánová
- Center for Applied Genomics of Solid Tumors (CEGES), Genomac Research Institute, Prague, Czech Republic
| | - Marek Minárik
- Center for Applied Genomics of Solid Tumors (CEGES), Genomac Research Institute, Prague, Czech Republic.,Department of Analytical Chemistry, Faculty of Sciences, Charles University, Prague, Czech Republic
| | - František Foret
- Institute of Analytical Chemistry of the CAS v. v. i., Brno, Czech Republic
| |
Collapse
|
8
|
Modlitbová P, Klepárník K, Farka Z, Pořízka P, Skládal P, Novotný K, Kaiser J. Time-Dependent Growth of Silica Shells on CdTe Quantum Dots. NANOMATERIALS 2018; 8:nano8060439. [PMID: 29914152 PMCID: PMC6027165 DOI: 10.3390/nano8060439] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/11/2018] [Accepted: 06/14/2018] [Indexed: 11/16/2022]
Abstract
The purpose of this study is to investigate the time dependent growth of silica shells on CdTe quantum dots to get their optimum thicknesses for practical applications. The core/shell structured silica-coated CdTe quantum dots (CdTe/SiO2 QDs) were synthesized by the Ströber process, which used CdTe QDs co-stabilized by mercaptopropionic acid. The coating procedure used silane primer (3-mercaptopropyltrimethoxysilane) in order to make the quantum dots (QDs) surface vitreophilic. The total size of QDs was dependent on both the time of silica shell growth in the presence of sodium silicate, and on the presence of ethanol during this growth. The size of particles was monitored during the first 72 h using two principally different methods: Dynamic Light Scattering (DLS), and Scanning Electron Microscopy (SEM). The data obtained by both methods were compared and reasons for differences discussed. Without ethanol precipitation, the silica shell thickness grew slowly and increased the nanoparticle total size from approximately 23 nm up to almost 30 nm (DLS data), and up to almost 60 nm (SEM data) in three days. During the same time period but in the presence of ethanol, the size of CdTe/SiO2 QDs increased more significantly: up to 115 nm (DLS data) and up to 83 nm (SEM data). The variances occurring between silica shell thicknesses caused by different methods of silica growth, as well as by different evaluation methods, were discussed.
Collapse
Affiliation(s)
- Pavlína Modlitbová
- Central European Institute of Technology (CEITEC) Brno University of Technology, Technická 3058/10, 61600 Brno, Czech Republic.
| | - Karel Klepárník
- Institute of Analytical Chemistry, Academy of Sciences of the Czech Republic, Veveří 97, 60200 Brno, Czech Republic.
| | - Zdeněk Farka
- Central European Institute of Technology (CEITEC) Masaryk University, Kamenice 5, 62500 Brno, Czech Republic.
| | - Pavel Pořízka
- Central European Institute of Technology (CEITEC) Brno University of Technology, Technická 3058/10, 61600 Brno, Czech Republic.
| | - Petr Skládal
- Central European Institute of Technology (CEITEC) Masaryk University, Kamenice 5, 62500 Brno, Czech Republic.
| | - Karel Novotný
- Central European Institute of Technology (CEITEC) Masaryk University, Kamenice 5, 62500 Brno, Czech Republic.
| | - Jozef Kaiser
- Central European Institute of Technology (CEITEC) Brno University of Technology, Technická 3058/10, 61600 Brno, Czech Republic.
| |
Collapse
|
9
|
Modlitbová P, Novotný K, Pořízka P, Klus J, Lubal P, Zlámalová-Gargošová H, Kaiser J. Comparative investigation of toxicity and bioaccumulation of Cd-based quantum dots and Cd salt in freshwater plant Lemna minor L. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 147:334-341. [PMID: 28858706 DOI: 10.1016/j.ecoenv.2017.08.053] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 08/17/2017] [Accepted: 08/21/2017] [Indexed: 06/07/2023]
Abstract
The purpose of this study was to determine the toxicity of two different sources of cadmium, i.e. CdCl2 and Cd-based Quantum Dots (QDs), for freshwater model plant Lemna minor L. Cadmium telluride QDs were capped with two coating ligands: glutathione (GSH) or 3-mercaptopropionic acid (MPA). Growth rate inhibition and final biomass inhibition of L. minor after 168-h exposure were monitored as toxicity endpoints. Dose-response curves for Cd toxicity and EC50168h values were statistically evaluated for all sources of Cd to uncover possible differences among the toxicities of tested compounds. Total Cd content and its bioaccumulation factors (BAFs) in L. minor after the exposure period were also determined to distinguish Cd bioaccumulation patterns with respect to different test compounds. Laser-Induced Breakdown Spectroscopy (LIBS) with lateral resolution of 200µm was employed in order to obtain two-dimensional maps of Cd spatial distribution in L. minor fronds. Our results show that GSH- and MPA-capped Cd-based QDs have similar toxicity for L. minor, but are significantly less toxic than CdCl2. However, both sources of Cd lead to similar patterns of Cd bioaccumulation and distribution in L. minor fronds. Our results are in line with previous reports that the main mediators of Cd toxicity and bioaccumulation in aquatic plants are Cd2+ ions dissolved from Cd-based QDs.
Collapse
Affiliation(s)
- Pavlína Modlitbová
- Central European Institute of Technology (CEITEC) Brno University of Technology, Technická 3058/10, 616 00 Brno, Czech Republic.
| | - Karel Novotný
- Central European Institute of Technology (CEITEC) Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Pavel Pořízka
- Central European Institute of Technology (CEITEC) Brno University of Technology, Technická 3058/10, 616 00 Brno, Czech Republic
| | - Jakub Klus
- Central European Institute of Technology (CEITEC) Brno University of Technology, Technická 3058/10, 616 00 Brno, Czech Republic
| | - Přemysl Lubal
- Central European Institute of Technology (CEITEC) Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Helena Zlámalová-Gargošová
- Faculty of Chemistry - The Institute of Chemistry and Technology of Environmental Protection, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Jozef Kaiser
- Central European Institute of Technology (CEITEC) Brno University of Technology, Technická 3058/10, 616 00 Brno, Czech Republic
| |
Collapse
|
10
|
Studying of quantum dot luminescence quenching effect caused by covalent conjugation with protein. MONATSHEFTE FUR CHEMIE 2017. [DOI: 10.1007/s00706-017-2038-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
11
|
Adam V, Vaculovicova M. Capillary electrophoresis and nanomaterials - Part I: Capillary electrophoresis of nanomaterials. Electrophoresis 2017; 38:2389-2404. [DOI: 10.1002/elps.201700097] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/02/2017] [Accepted: 06/22/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Vojtech Adam
- Department of Chemistry and Biochemistry; Mendel University in Brno; Brno Czech Republic
- Central European Institute of Technology; Brno University of Technology; Brno Czech Republic
| | - Marketa Vaculovicova
- Department of Chemistry and Biochemistry; Mendel University in Brno; Brno Czech Republic
- Central European Institute of Technology; Brno University of Technology; Brno Czech Republic
| |
Collapse
|
12
|
Klepárník K, Datinská V, Voráčová I, Lišková M. Analysis of quantum dots and their conjugates by capillary electrophoresis with detection of laser-induced luminescence. Methods Mol Biol 2015; 1199:33-54. [PMID: 25103798 DOI: 10.1007/978-1-4939-1280-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In many bioanalytical applications, important molecules such as DNA, proteins, and antibodies are routinely conjugated with fluorescent tags to reach an extraordinary sensitivity of analyses. Semiconductor nanoparticles, quantum dots, have already proved to be suitable components of highly luminescent tags, probes, and sensors with a broad applicability in analytical chemistry. Quantum dots provide high extinction coefficients together with a wide range of excitation wavelengths, size- and composition-tunable emissions, narrow and symmetric emission spectra, good quantum yields, relatively long size-dependent luminescence lifetime, and practically no photobleaching. Most of these properties are superior when compared with conventional organic fluorescent dyes. In this chapter, optimized procedures for the preparation of water-dispersed cadmium telluride (CdTe) quantum dots, conjugating reactions with antibodies, DNA, and macrocycles as well as their analyses by capillary electrophoresis are described. The potential of capillary electrophoresis for fast analyses of nanoparticles, their conjugates with antibodies, and immunocomplexes with targeted antigens is demonstrated on examples.
Collapse
Affiliation(s)
- Karel Klepárník
- Institute of Analytical Chemistry, Czech Academy of Sciences, Veveří 97, 602 00, Brno, Czech Republic,
| | | | | | | |
Collapse
|
13
|
Voráčová I, Klepárník K, Lišková M, Foret F. Determination of ζ-potential, charge, and number of organic ligands on the surface of water soluble quantum dots by capillary electrophoresis. Electrophoresis 2015; 36:867-74. [DOI: 10.1002/elps.201400459] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 12/04/2014] [Accepted: 12/10/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Ivona Voráčová
- Institute of Analytical Chemistry; Czech Academy of Sciences; Brno Czech Republic
| | - Karel Klepárník
- Institute of Analytical Chemistry; Czech Academy of Sciences; Brno Czech Republic
| | - Marcela Lišková
- Institute of Analytical Chemistry; Czech Academy of Sciences; Brno Czech Republic
| | - František Foret
- Institute of Analytical Chemistry; Czech Academy of Sciences; Brno Czech Republic
| |
Collapse
|
14
|
Stanisavljevic M, Vaculovicova M, Kizek R, Adam V. Capillary electrophoresis of quantum dots: Minireview. Electrophoresis 2014; 35:1929-37. [DOI: 10.1002/elps.201400033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 02/17/2014] [Accepted: 03/13/2014] [Indexed: 12/11/2022]
Affiliation(s)
- Maja Stanisavljevic
- Department of Chemistry and Biochemistry, Faculty of Agronomy; Mendel University in Brno; Brno Czech Republic
| | - Marketa Vaculovicova
- Department of Chemistry and Biochemistry, Faculty of Agronomy; Mendel University in Brno; Brno Czech Republic
- Central European Institute of Technology; Brno University of Technology; Brno Czech Republic
| | - Rene Kizek
- Department of Chemistry and Biochemistry, Faculty of Agronomy; Mendel University in Brno; Brno Czech Republic
- Central European Institute of Technology; Brno University of Technology; Brno Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of Agronomy; Mendel University in Brno; Brno Czech Republic
- Central European Institute of Technology; Brno University of Technology; Brno Czech Republic
| |
Collapse
|
15
|
Sang F, Huang X, Ren J. Characterization and separation of semiconductor quantum dots and their conjugates by capillary electrophoresis. Electrophoresis 2014; 35:793-803. [DOI: 10.1002/elps.201300528] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/03/2013] [Accepted: 12/03/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Fuming Sang
- School of Marine Science and Technology; Harbin Institute of Technology; Weihai P. R. China
| | - Xiangyi Huang
- College of Chemistry & Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Jiaotong University; Shanghai P. R. China
| | - Jicun Ren
- College of Chemistry & Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Jiaotong University; Shanghai P. R. China
| |
Collapse
|
16
|
Berlina AN, Taranova NA, Zherdev AV, Sankov MN, Andreev IV, Martynov AI, Dzantiev BB. Quantum-dot-based immunochromatographic assay for total IgE in human serum. PLoS One 2013; 8:e77485. [PMID: 24204841 PMCID: PMC3813722 DOI: 10.1371/journal.pone.0077485] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 09/02/2013] [Indexed: 11/21/2022] Open
Abstract
To rapidly quantify total immunoglobulin E levels in human serum, we developed a novel quantum-dot-based immunochromatographic assay that employs digital recording of fluorescence. It can detect IgE levels of 5-1000 kU/L, with a coefficient of variation ranging from 2.0 to 9.5%. The assay can be processed in 10 min. The developed assay was tested on 95 serum samples. The correlation coefficient between the IgE values obtained by the proposed assay and those obtained by a commercial ELISA kit was 0.9884. Our assay thus shows promise as a new diagnostic tool for IgE detection.
Collapse
Affiliation(s)
- Anna N. Berlina
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Nadezhda A. Taranova
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Anatoly V. Zherdev
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Mikhail N. Sankov
- Institute of Immunology, Russian Federal Medico-Biological Agency, Moscow, Russia
| | - Igor V. Andreev
- Institute of Immunology, Russian Federal Medico-Biological Agency, Moscow, Russia
| | - Alexandr I. Martynov
- Institute of Immunology, Russian Federal Medico-Biological Agency, Moscow, Russia
| | - Boris B. Dzantiev
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
17
|
Shrestha D, Bagosi A, Szöllősi J, Jenei A. Comparative study of the three different fluorophore antibody conjugation strategies. Anal Bioanal Chem 2012; 404:1449-63. [PMID: 22797718 DOI: 10.1007/s00216-012-6232-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 06/22/2012] [Accepted: 06/26/2012] [Indexed: 10/28/2022]
Abstract
The progression in bioconjugational chemistry has significantly contributed to the evolution and success of protein biology. Mainly, antibody chemistry has been a subject of intensive study owing to the expansion of research areas warranted by using various derivatives of conjugated antibodies. Three reactive moieties (amine, sulfhydryl and carbohydrate) in the antibodies are chiefly favored for the conjugational purpose. This feature is known for decades, nevertheless, amine based conjugation is still the most preferred strategy despite the appreciation the other two methods receive in conserving the antigen binding affinity (ABA). No single report has been published, according to our knowledge, where these three conjugation strategies were applied to the same fluorophore antibody systems. In this study, we evaluated conjugation yield, time demand and cost efficiency of these conjugation procedures. Our results showed that amine based conjugations was by far the best technique due to its simplicity, rapidity, ease of operation, higher conjugate yield, cheaper cost and potential for larger fluorophore/protein labeling ratio without having much effect in ABA. Furthermore, sulfhydryl labeling clearly excelled in terms of reduced non-specific binding and mild effect in ABA but was usually complicated by an asymmetric antibody reduction due to mercaptoethylamine while carbohydrate oxidation based strategy performed the worst during our experiment.
Collapse
Affiliation(s)
- Dilip Shrestha
- Department of Biophysics and Cell Biology, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | | | | | | |
Collapse
|
18
|
Application of quantum dots as analytical tools in automated chemical analysis: a review. Anal Chim Acta 2012; 735:9-22. [PMID: 22713912 DOI: 10.1016/j.aca.2012.04.042] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 04/24/2012] [Accepted: 04/27/2012] [Indexed: 01/09/2023]
Abstract
Colloidal semiconductor nanocrystals or quantum dots (QDs) are one of the most relevant developments in the fast-growing world of nanotechnology. Initially proposed as luminescent biological labels, they are finding new important fields of application in analytical chemistry, where their photoluminescent properties have been exploited in environmental monitoring, pharmaceutical and clinical analysis and food quality control. Despite the enormous variety of applications that have been developed, the automation of QDs-based analytical methodologies by resorting to automation tools such as continuous flow analysis and related techniques, which would allow to take advantage of particular features of the nanocrystals such as the versatile surface chemistry and ligand binding ability, the aptitude to generate reactive species, the possibility of encapsulation in different materials while retaining native luminescence providing the means for the implementation of renewable chemosensors or even the utilisation of more drastic and even stability impairing reaction conditions, is hitherto very limited. In this review, we provide insights into the analytical potential of quantum dots focusing on prospects of their utilisation in automated flow-based and flow-related approaches and the future outlook of QDs applications in chemical analysis.
Collapse
|
19
|
Bai Y, Du F, Yang Y, Bai Y, Liu H. In-capillary non-covalent labeling and determination of tomato systemin with quantum dots in capillary electrophoresis with laser-induced fluorescence detection. J Sep Sci 2011; 34:2893-900. [DOI: 10.1002/jssc.201100551] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2011] [Revised: 07/23/2011] [Accepted: 07/23/2011] [Indexed: 11/06/2022]
|