1
|
Meng WQ, Sedgwick AC, Kwon N, Sun M, Xiao K, He XP, Anslyn EV, James TD, Yoon J. Fluorescent probes for the detection of chemical warfare agents. Chem Soc Rev 2023; 52:601-662. [PMID: 36149439 DOI: 10.1039/d2cs00650b] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Chemical warfare agents (CWAs) are toxic chemicals that have been intentionally developed for targeted and deadly use on humans. Although intended for military targets, the use of CWAs more often than not results in mass civilian casualties. To prevent further atrocities from occurring during conflicts, a global ban was implemented through the chemical weapons convention, with the aim of eliminating the development, stockpiling, and use of CWAs. Unfortunately, because of their relatively low cost, ease of manufacture and effectiveness on mass populations, CWAs still exist in today's world. CWAs have been used in several recent terrorist-related incidents and conflicts (e.g., Syria). Therefore, they continue to remain serious threats to public health and safety and to global peace and stability. Analytical methods that can accurately detect CWAs are essential to global security measures and for forensic analysis. Small molecule fluorescent probes have emerged as attractive chemical tools for CWA detection, due to their simplicity, ease of use, excellent selectivity and high sensitivity, as well as their ability to be translated into handheld devices. This includes the ability to non-invasively image CWA distribution within living systems (in vitro and in vivo) to permit in-depth evaluation of their biological interactions and allow potential identification of therapeutic countermeasures. In this review, we provide an overview of the various reported fluorescent probes that have been designed for the detection of CWAs. The mechanism for CWA detection, change in optical output and application for each fluorescent probe are described in detail. The limitations and challenges of currently developed fluorescent probes are discussed providing insight into the future development of this research area. We hope the information provided in this review will give readers a clear understanding of how to design a fluorescent probe for the detection of a specific CWA. We anticipate that this will advance our security systems and provide new tools for environmental and toxicology monitoring.
Collapse
Affiliation(s)
- Wen-Qi Meng
- Department of Protective Medicine Against Chemical Agents, Faculty of Naval Medicine, Naval Medical University, 800 Xiangying Rd., Shanghai 200433, China.
| | - Adam C Sedgwick
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, OX1 3TA, UK
| | - Nahyun Kwon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 120-750, Korea.
| | - Mingxue Sun
- Department of Protective Medicine Against Chemical Agents, Faculty of Naval Medicine, Naval Medical University, 800 Xiangying Rd., Shanghai 200433, China.
| | - Kai Xiao
- Department of Protective Medicine Against Chemical Agents, Faculty of Naval Medicine, Naval Medical University, 800 Xiangying Rd., Shanghai 200433, China.
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China. .,The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China.,National Center for Liver Cancer, Shanghai 200438, China
| | - Eric V Anslyn
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK. .,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 120-750, Korea.
| |
Collapse
|
2
|
Zuccarello P, Carnazza G, Raffino C, Barbera N. Diagnosis of lethal cyanide poisoning. Analysis by Anion-Exchange Chromatography with Pulsed Amperometric Detection. J Forensic Sci 2022; 67:1617-1623. [PMID: 35478404 PMCID: PMC9322444 DOI: 10.1111/1556-4029.15046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/02/2022] [Accepted: 04/12/2022] [Indexed: 11/27/2022]
Abstract
Cyanide is a poison widely used in cases of suicide or homicide. Although various methods to identify and quantify this substance are reported in the literature, they are mainly validated on biological fluids (e.g., blood and urine). In the present study, the Anion‐Exchange Liquid Chromatography with Pulsed Amperometric Detection (IC‐PAD) method was validated on blood and, for the first time, on gastric content, and organs (brain, lung, and liver). For each matrix, linearity, accuracy, precision, limit of detection (LOD), lower limit of quantification (LLOQ), matrix interferences, and carryover were assessed. The samples were extracted by steam distillation in acid environment for the following analysis by IC‐PAD. Furthermore, cyanide values found in two real poisoning cases are reported. For each investigated matrix, the analytical method satisfied all acceptance criteria for validation: it showed a good precision and accuracy, selectivity, and sensitivity with no carryover and matrix interference. The extraction by steam distillation in acid environment REDUCED the interference of the matrices and ALLOWED to perform the analysis with good precision and accuracy. In case #1, analysis showed a blood cyanide concentration of 0.99 μg/ml. In case #2, cyanide concentrations were 1.3 μg/g in brain, 0.8 μg/g in lung, 1.6 μg/g in liver, and 1.2 μg/g in gastric content. The cyanide concentrations found in the two reported cases have been suitable to cause death by poisoning.
Collapse
Affiliation(s)
- Pietro Zuccarello
- Department "G.F. Ingrassia", Laboratory of Forensic Toxicology, University of Catania, Catania, Italy
| | - Giulia Carnazza
- Department "G.F. Ingrassia", Laboratory of Forensic Toxicology, University of Catania, Catania, Italy
| | | | - Nunziata Barbera
- Department "G.F. Ingrassia", Laboratory of Forensic Toxicology, University of Catania, Catania, Italy
| |
Collapse
|
3
|
Sim J, Kim M, Kim S, Yang W. A novel method for cyanide quantification in human whole blood using ion chromatography with amperometric detection and its application to cyanide intoxication cases. J Forensic Sci 2021; 67:353-357. [PMID: 34585376 DOI: 10.1111/1556-4029.14896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/12/2021] [Accepted: 09/10/2021] [Indexed: 11/30/2022]
Abstract
Cyanide is a highly toxic agent that has been frequently used for suicide in South Korea. It is also used in various industrial fields, such as metal plating, in which many accidental cyanide intoxications have occurred. To overcome the disadvantages of conventional cyanide analysis methods, a simple and fast method for the analysis of cyanide in whole blood using ion chromatography (IC) with amperometric detection was developed in this study. Whole blood samples were deproteinized, diluted, and analyzed using an IC-amperometric detection system. The limits of detection and quantitation were 0.1 and 0.2 mg/L, respectively. The method showed good linearity in the range of 0.2 to 50 mg/L with R2 > 0.99. The intra- and inter-assay precision and accuracy values were <10%. The established method was successfully applied to analyze whole blood samples from three cyanide intoxication cases.
Collapse
Affiliation(s)
- Juhyun Sim
- National Forensic Service, Wonju, Gangwon-do, Korea
| | - Minyoul Kim
- National Forensic Service, Wonju, Gangwon-do, Korea
| | - Suncheun Kim
- National Forensic Service, Wonju, Gangwon-do, Korea
| | | |
Collapse
|
4
|
Morikawa Y, Nishiwaki K, Suzuki S, Yasaka N, Okada Y, Nakanishi I. A new chemosensor for cyanide in blood based on the Pd complex of 2-(5-bromo-2-pyridylazo)-5-[ N-n-propyl- N-(3-sulfopropyl)amino]phenol. Analyst 2021; 145:7759-7764. [PMID: 33006340 DOI: 10.1039/d0an01554g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new indirect chemosensor for the detection of cyanide in blood is developed. 2-(5-Bromo-2-pyridylazo)-5-[N-n-propyl-N-(3-sulfopropyl)amino]phenol, a yellow dye, forms a blue-coloured complex with palladium ions. The yellow colour of this complex is regained upon reaction with cyanide ions. The complex shows high selectivity for the detection of cyanide over 16 other anions. The system was applied to two different methods for the detection of cyanide in human whole blood. As a quantitative absorbance method, blood samples were mixed with acid, and the resulting vaporised hydrogen cyanide was absorbed in an alkaline solution containing the complex in a Conway cell. The resulting absorbance response of the solution at 450 nm is linear over the range 4-40 μM (R2 = 1.000), and the limit of detection is 0.6 μM. Furthermore, the complex-soaked paper is applicable as a test strip for cyanide detection. When a test strip is used with 0.5 mL of blood, the limit of detection is 15 μM. The detection limits of these two methods are below the toxic blood cyanide concentration (19 μM). Therefore, both methods allow the quantification and screening of cyanide in blood samples. Furthermore, the test strip is low cost and enables on-site analysis.
Collapse
Affiliation(s)
- Yasuhiro Morikawa
- Forensic Science Laboratory, Kyoto Prefectural Police H.Q., 85-3, 85-4, Yabunouchi-cho, Kamigyo-ku, Kyoto, Japan 602-8550.
| | | | | | | | | | | |
Collapse
|
5
|
Colorimetric ‘naked eye’ sensor for fluoride ion based on isatin hydrazones via hydrogen bond formation: Design, synthesis and characterization ascertained by Nuclear Magnetic Resonance, Ultraviolet–Visible, Computational and Electrochemical studies. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108216] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Park JH, Manivannan R, Jayasudha P, Son YA. Selective detection of cyanide ion in 100 % water by indolium based dual reactive binding site optical sensor. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112571] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
HCN emission by a Polydesmid Millipede Detected Remotely by Reactive Adsorption on Gold Nanoparticles Followed by Laser Desorption/Ionization Mass Spectrometry (LDI-MS). J Chem Ecol 2020; 46:455-460. [PMID: 32323125 DOI: 10.1007/s10886-020-01177-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/14/2020] [Accepted: 03/26/2020] [Indexed: 12/15/2022]
Abstract
Hydrocyanic acid (HCN) is a well-known defensive allomone in the chemical arsenal of millipedes in the order Polydesmida. The presence of HCN in the headspace vapor of adult Xystocheir dissecta (Wood, 1867), a common millipede from the San Francisco Bay Area, was traced by laser desorption/ionization-mass spectrometry (LDI-MS). To accomplish this, the headspace vapor surrounding caged, live millipedes was allowed to diffuse passively over gold-nanoparticle (AuNP) deposits placed at various distances from the emitting source. The stainless steel plates with AuNP deposits were removed and irradiated by a 355-nm laser. The gaseous ions generated in this way were detected by time-of-flight mass spectrometry. The intensity of the mass spectrometric peak detected at m/z 249 for the Au(CN)2- complex anion was compared to that of the residual Au- signal (m/z 197). Using this procedure, HCN vapors produced by the live millipedes could be detected up to 50 cm away from the source. Furthermore, the addition of H2O2, as an internal oxygen source for the gold cyanidation reaction that takes place in the AuNP deposits, significantly increased the detection sensitivity. Using the modified H2O2 addition procedure, HCN could now be detected at 80 cm from the source. Moreover, we found a decreasing intensity ratio of the Au(CN)2-/Au- signals as the distance from the emitting source increased, following an exponential-decay distribution as predicted by Fick's law of diffusion. Graphical abstract.
Collapse
|
8
|
Pavlov J, Attygalle AB. Gold Nanoparticles (AuNPs) as Reactive Matrix for Detection of Trace Levels of HCN in Air by Laser Desorption/Ionization Mass Spectrometry (LDI-MS). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:806-813. [PMID: 30847834 DOI: 10.1007/s13361-018-02131-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 12/28/2018] [Indexed: 06/09/2023]
Abstract
Under direct laser desorption/ionization mass spectrometric conditions, the irradiation of target spots made of gold nanoparticle residues generates a series of peaks at m/z 197, 394, 591… representing Aun- ions (n = 1-3). In contrast, spectra recorded from gold nanoparticles directly mixed with an alkali cyanide exhibited an additional peak at m/z 249, indicating an abundant generation of gaseous [Au(CN)2]- ions upon irradiation. The relative intensity of the m/z 249 peak surged when the amount of cyanide in the mixture was increased. Most remarkably, a peak at m/z 249 was observed even from neat AuNPs upon irradiation, if a nearby spot, which was not irradiated, happened to bear a cyanide sample. We postulated that traces of HCN emanating from the headspace of aqueous cyanide solution during the sample-plate preparation is sufficient to convert gold to AuCN, which is subsequently detected as [Au(CN)2]-. Further experiments demonstrated that the relative intensity of the m/z 249 peak diminishes exponentially as the AuNP spot becomes more distant from the putative HCN source. Eventually, the method was developed as an efficient procedure to detect HCN or alkali cyanides. Using KCN, the detection limits were determined to be below 10 pg of CN- per spot. The method also demonstrated that, upon crushing, the seeds or roots of certain fruits and vegetables such as apple, peach, radish, and cassava, but not carrot, release HCN in amounts detectable by this method. Graphical Abstract.
Collapse
Affiliation(s)
- Julius Pavlov
- Center for Mass Spectrometry, Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - Athula B Attygalle
- Center for Mass Spectrometry, Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, 07030, USA.
| |
Collapse
|
9
|
Masih D, Chernikova V, Shekhah O, Eddaoudi M, Mohammed OF. Zeolite-like Metal-Organic Framework (MOF) Encaged Pt(II)-Porphyrin for Anion-Selective Sensing. ACS APPLIED MATERIALS & INTERFACES 2018; 10:11399-11405. [PMID: 29578682 DOI: 10.1021/acsami.7b19282] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The selectivity and sensitivity of sensors are of great interest to the materials chemistry community, and a lot of effort is now devoted to improving these characteristics. More specifically, the selective sensing of anions is one of the largest challenges impeding the sensing-research area due to their similar physical and chemical behaviors. In this work, platinum-metalated porphyrin (Pt(II)TMPyP) was successfully encapsulated in a rho-type zeolite-like metal-organic framework (rho-ZMOF) and applied for anion-selective sensing. The sensing activity and selectivity of the MOF-encaged Pt(II)TMPyP for various anions in aqueous and methanolic media were compared to that of the free (nonencapsulated) Pt(II)TMPyP. While the photoinduced triplet-state electron transfer of Pt(II)TMPyP showed a very low detection limit for anions with no selectivity, the Pt(II)TMPyP encapsulated in the rho-ZMOF framework possessed a unique chemical structure to overcome such limitations. This new approach has the potential for use in other complex sensing applications, including biosensors, which require ion selectivity.
Collapse
|
10
|
Jackson R, Logue BA. A review of rapid and field-portable analytical techniques for the diagnosis of cyanide exposure. Anal Chim Acta 2017; 960:18-39. [DOI: 10.1016/j.aca.2016.12.039] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/20/2016] [Accepted: 12/22/2016] [Indexed: 12/22/2022]
|
11
|
Campanella B, Biancalana L, D'Ulivo L, Onor M, Bramanti E, Mester Z, Pagliano E. Determination of total cyanide in soil by isotope dilution GC/MS following pentafluorobenzyl derivatization. Anal Chim Acta 2017; 961:74-81. [DOI: 10.1016/j.aca.2017.01.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/20/2016] [Accepted: 01/04/2017] [Indexed: 10/20/2022]
|
12
|
Kojima H, Kurihara S, Watanabe Y, Iwamaru K, Sato K, Tsunoda K, Hotta H. A novel method for determination of inorganic oxyanions by electrospray ionization mass spectrometry using dehydration reactions. JOURNAL OF MASS SPECTROMETRY : JMS 2016; 51:123-131. [PMID: 26889928 PMCID: PMC7166498 DOI: 10.1002/jms.3731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/20/2015] [Accepted: 10/30/2015] [Indexed: 06/05/2023]
Abstract
Novel methods for the determination of inorganic oxyanions by electrospray (ES) ionization mass spectrometry have been developed using dehydration reactions between oxyanions and carboxylic acids at the ES interface. Twelve oxyanions (VO3 (-) , CrO4 (2-) , MoO4 (2-) , WO4 (2-) , BO3 (3-) , SiO3 (2-) , SiO4 (4-) , AsO4 (4-) , AsO2 (-) , SeO4 (2-) , SeO3 (2-) and NO2 (-) ), out of 16 tested, reacted with at least one of four aminopolycarboxylic acids, i.e. iminodiacetic acid (IDA), nitrilotriacetic acid (NTA), trans-1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid and triethylenetetramine-N,N,N',N″,N'″,N'″-hexaacetic acid, at the ES interface to produce the dehydration products that gave intense mass ion responses, sufficient for trace analysis. As examples, trace determinations of Cr(VI) and silica in water samples were achieved after online ion exchange chromatography, where the dehydration product of CrO4 (2-) and NTA (m/z 290) and that of SiO4 (4-) and IDA (m/z 192) were measured. The limits of detection of the respective methods were 17 nM (0.83 ng Cr/ml) for Cr(VI) and 0.17 μM (4.8 ng Si/mL) for SiO4 (4-) .
Collapse
Affiliation(s)
- Hirochika Kojima
- Department of Chemistry and Chemical BiologyGunma UniversityTenjin‐choKiryu376‐8515Japan
| | - Shota Kurihara
- Department of Chemistry and Chemical BiologyGunma UniversityTenjin‐choKiryu376‐8515Japan
- Nippon Steel & Sumikin Eco‐Tech CorporationKisarazu292‐0825Japan
| | - Yoshito Watanabe
- Department of Chemistry and Chemical BiologyGunma UniversityTenjin‐choKiryu376‐8515Japan
- Moriroku Technology Co., Ltd.Meiwa370‐0718Japan
| | - Koki Iwamaru
- Department of Chemistry and Chemical BiologyGunma UniversityTenjin‐choKiryu376‐8515Japan
| | - Kiichi Sato
- Department of Chemistry and Chemical BiologyGunma UniversityTenjin‐choKiryu376‐8515Japan
| | - Kin‐ichi Tsunoda
- Department of Chemistry and Chemical BiologyGunma UniversityTenjin‐choKiryu376‐8515Japan
| | - Hiroki Hotta
- Department of ChemistryNara University of EducationTakabatakeNara630‐8528Japan
| |
Collapse
|
13
|
Liang C, Ye H, Wang R, Ni C, Rao Y, Zhang Y. Identification and quantification of 34 drugs and toxic compounds in blood, urine, and gastric content using liquid chromatography with tandem mass spectrometry. J Sep Sci 2015; 38:1680-90. [DOI: 10.1002/jssc.201401300] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/12/2015] [Accepted: 02/28/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Chen Liang
- Shanghai Institute of Forensic Science; Shanghai Key Laboratory of Crime Scene Evidence; Shanghai P. R. China
| | - Haiying Ye
- Shanghai Institute of Forensic Science; Shanghai Key Laboratory of Crime Scene Evidence; Shanghai P. R. China
| | - Rong Wang
- Shanghai Institute of Forensic Science; Shanghai Key Laboratory of Crime Scene Evidence; Shanghai P. R. China
| | - Chunfang Ni
- Shanghai Institute of Forensic Science; Shanghai Key Laboratory of Crime Scene Evidence; Shanghai P. R. China
| | - Yulan Rao
- Department of Forensic Medicine; School of Basic Medical Sciences; Fudan University; Shanghai P. R. China
| | - Yurong Zhang
- Shanghai Institute of Forensic Science; Shanghai Key Laboratory of Crime Scene Evidence; Shanghai P. R. China
| |
Collapse
|
14
|
Kang HI, Shin HS. Derivatization Method of Free Cyanide Including Cyanogen Chloride for the Sensitive Analysis of Cyanide in Chlorinated Drinking Water by Liquid Chromatography-Tandem Mass Spectrometry. Anal Chem 2014; 87:975-81. [DOI: 10.1021/ac503401r] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hye-In Kang
- Department of Environmental
Science and ‡Department of Environmental Education, Kongju National University, Kongju, Chungcheong 314-701, Republic of Korea
| | | |
Collapse
|
15
|
Bhandari RK, Oda RP, Petrikovics I, Thompson DE, Brenner M, Mahon SB, Bebarta VS, Rockwood GA, Logue BA. Cyanide toxicokinetics: the behavior of cyanide, thiocyanate and 2-amino-2-thiazoline-4-carboxylic acid in multiple animal models. J Anal Toxicol 2014; 38:218-25. [PMID: 24711295 DOI: 10.1093/jat/bku020] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cyanide causes toxic effects by inhibiting cytochrome c oxidase, resulting in cellular hypoxia and cytotoxic anoxia, and can eventually lead to death. Cyanide exposure can be verified by direct analysis of cyanide concentrations or analyzing its metabolites, including thiocyanate (SCN(-)) and 2-amino-2-thiazoline-4-carboxylic acid (ATCA) in blood. To determine the behavior of these markers following cyanide exposure, a toxicokinetics study was performed in three animal models: (i) rats (250-300 g), (ii) rabbits (3.5-4.2 kg) and (iii) swine (47-54 kg). Cyanide reached a maximum in blood and declined rapidly in each animal model as it was absorbed, distributed, metabolized and eliminated. Thiocyanate concentrations rose more slowly as cyanide was enzymatically converted to SCN(-). Concentrations of ATCA did not rise significantly above the baseline in the rat model, but rose quickly in rabbits (up to a 40-fold increase) and swine (up to a 3-fold increase) and then fell rapidly, generally following the relative behavior of cyanide. Rats were administered cyanide subcutaneously and the apparent half-life (t1/2) was determined to be 1,510 min. Rabbits were administered cyanide intravenously and the t1/2 was determined to be 177 min. Swine were administered cyanide intravenously and the t1/2 was determined to be 26.9 min. The SCN(-) t1/2 in rats was 3,010 min, but was not calculated in rabbits and swine because SCN(-) concentrations did not reach a maximum. The t1/2 of ATCA was 40.7 and 13.9 min in rabbits and swine, respectively, while it could not be determined in rats with confidence. The current study suggests that cyanide exposure may be verified shortly after exposure by determining significantly elevated cyanide and SCN(-) in each animal model and ATCA may be used when the ATCA detoxification pathway is significant.
Collapse
Affiliation(s)
- Raj K Bhandari
- 1Department of Chemistry and Biochemistry, South Dakota State University, Avera Health Science Center (SAV) 131, PO Box 2202, Brookings, SD 57007, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kang HI, Shin HS. Ultra-sensitive determination of cyanide in surface water by gas chromatography-tandem mass spectrometry after derivatization with 2-(dimethylamino)ethanethiol. Anal Chim Acta 2014; 852:168-73. [PMID: 25441894 DOI: 10.1016/j.aca.2014.09.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 09/09/2014] [Accepted: 09/21/2014] [Indexed: 12/12/2022]
Abstract
A gas chromatography-tandem mass spectrometric (GC-MS/MS) method has been established for the determination of cyanide in surface water. This method is based on the derivatization of cyanide with 2-(dimethylamino)ethanethiol in surface water. The following optimum reaction conditions were established: reagent dosage, 0.7 g L(-1) of 2-(dimethylamino)ethanethiol; pH 6; reaction carried out for 20 min at 60°C. The organic derivative was extracted with 3 mL of ethyl acetate, and then measured by using GC-MS/MS. Under the established conditions, the detection and quantification limits were 0.02 μg L(-1) and 0.07 μg L(-1) in 10-mL of surface water, respectively. The calibration curve had a linear relationship relationship with y=0.7140x+0.1997 and r(2)=0.9963 (for a working range of 0.07-10 μg L(-1)) and the accuracy was in a range of 98-102%; the precision of the assay was less than 7% in surface water. The common ions Cl(-), F(-), Br(-), NO3(-), SO4(2-), PO4(3-), K(+), Na(+), NH4(+), Ca(2+), Mg(2+), Ba(2+), Mn(4+), Mn(2+), Fe(3+), Fe(2+) and sea water did not interfere in cyanide detection, even when present in 1000-fold excess over the species. Cyanide was detected in a concentration range of 0.07-0.11 μg L(-1) in 6 of 10 surface water samples.
Collapse
Affiliation(s)
- Hye-In Kang
- Department of Environmental Science, Kongju National University, Kongju 314-701, Republic of Korea
| | - Ho-Sang Shin
- Department of Environmental Education, Kongju National University, Kongju 314-701, Republic of Korea.
| |
Collapse
|
17
|
Jackson R, Oda R, Bhandari RK, Mahon SB, Brenner M, Rockwood GA, Logue BA. Development of a fluorescence-based sensor for rapid diagnosis of cyanide exposure. Anal Chem 2014; 86:1845-52. [PMID: 24383576 PMCID: PMC3983020 DOI: 10.1021/ac403846s] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 01/03/2014] [Indexed: 01/22/2023]
Abstract
Although commonly known as a highly toxic chemical, cyanide is also an essential reagent for many industrial processes in areas such as mining, electroplating, and synthetic fiber production. The "heavy" use of cyanide in these industries, along with its necessary transportation, increases the possibility of human exposure. Because the onset of cyanide toxicity is fast, a rapid, sensitive, and accurate method for the diagnosis of cyanide exposure is necessary. Therefore, a field sensor for the diagnosis of cyanide exposure was developed based on the reaction of naphthalene dialdehyde, taurine, and cyanide, yielding a fluorescent β-isoindole. An integrated cyanide capture "apparatus", consisting of sample and cyanide capture chambers, allowed rapid separation of cyanide from blood samples. Rabbit whole blood was added to the sample chamber, acidified, and the HCN gas evolved was actively transferred through a stainless steel channel to the capture chamber containing a basic solution of naphthalene dialdehyde (NDA) and taurine. The overall analysis time (including the addition of the sample) was <3 min, the linear range was 3.13-200 μM, and the limit of detection was 0.78 μM. None of the potential interferents investigated (NaHS, NH4OH, NaSCN, and human serum albumin) produced a signal that could be interpreted as a false positive or a false negative for cyanide exposure. Most importantly, the sensor was 100% accurate in diagnosing cyanide poisoning for acutely exposed rabbits.
Collapse
Affiliation(s)
- Randy Jackson
- Department
of Chemistry and Biochemistry, South Dakota
State University, Box 2202, Brookings, South Dakota 57007, United States
| | - Robert
P. Oda
- Department
of Chemistry and Biochemistry, South Dakota
State University, Box 2202, Brookings, South Dakota 57007, United States
| | - Raj K. Bhandari
- Department
of Chemistry and Biochemistry, South Dakota
State University, Box 2202, Brookings, South Dakota 57007, United States
| | - Sari B. Mahon
- Beckman Laser
Institute and Medical Clinic, University of California, Irvine, California 92612, United States
| | - Matthew Brenner
- Beckman Laser
Institute and Medical Clinic, University of California, Irvine, California 92612, United States
- Division
of Pulmonary
and Critical Care Medicine, Department of Medicine, University of California, Irvine, California 92868, United States
| | - Gary A. Rockwood
- Analytical Toxicology
Division, United States Army Medical Research Institute
of Chemical Defense, 3100 Ricketts Point Road, Aberdeen Proving
Ground, Maryland 21010, United States
| | - Brian A. Logue
- Department
of Chemistry and Biochemistry, South Dakota
State University, Box 2202, Brookings, South Dakota 57007, United States
| |
Collapse
|
18
|
A new spectroscopic protocol for selective detection of water soluble sulfides and cyanides: Use of Ag-nanoparticles synthesized by Ag(I)–reduction via photo-degradation of azo-food-colorants. J Photochem Photobiol A Chem 2014. [DOI: 10.1016/j.jphotochem.2013.10.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Wei SC, Hsu PH, Lee YF, Lin YW, Huang CC. Selective detection of iodide and cyanide anions using gold-nanoparticle-based fluorescent probes. ACS APPLIED MATERIALS & INTERFACES 2012; 4:2652-8. [PMID: 22524233 DOI: 10.1021/am3003044] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We developed two simple, rapid, and cost-effective fluorescent nanosensors, both featuring bovine serum albumin labeled with fluorescein isothiocyanate (FITC))-capped gold nanoparticles (FITC-BSA-Au NPs), for the selective sensing of cyanide (CN(-)) and iodine (I(-)) ions in high-salinity solutions and edible salt samples. During the preparation of FITC-BSA-Au NP probes, when AuNPs were introduced to the mixture containing FITC and BSA, the unconjugated FITC and FITC-labeled BSA (FITC-BSA) adsorbed to the particles' surfaces. These probes operated on a basic principle that I(-) and CN(-) deposited on the surfaces of the Au NPs or the etching of Au NPs induced the release of FITC molecules or FITC-BSA into the solution, and thus restored the florescence of FITC. We employed FITC-BSA to protect the Au NPs from significant aggregation in high-salinity solutions. In the presence of masking agents such as S(2)O(8)(2-)/Pb(2+), FITC-BSA-Au NPs facilitated the selective detection of CN(-) (by at least 150-fold in comparison with other anions). We also demonstrated that the FITC-BSA-Au NPs in the presence of H(2)O(2) could selectively detect I(-) down to 50 nM. Taking advantages of their high stability and selectivity, we employed our FITC-BSA-Au NP-based probes for the detection of CN(-) and I(-) in water samples (pond water, tap water, and seawater) and detection of I(-) in edible salt samples, respectively. This simple, rapid, and cost-effective sensing system appears to demonstrate immense practical potential for the detection of anions in real samples.
Collapse
Affiliation(s)
- Shih-Chun Wei
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, 2 Beining Road, Keelung 20224, Taiwan
| | | | | | | | | |
Collapse
|
20
|
Minakata K, Nozawa H, Yamagishi I, Gonmori K, Hasegawa K, Suzuki M, Watanabe K, Suzuki O. A rapid and decisive determination of thiocyanate in blood by electrospray ionization tandem mass spectrometry. Forensic Toxicol 2011. [DOI: 10.1007/s11419-011-0124-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|