1
|
Ali Moussa HY, Shin KC, Ponraj J, Kim SJ, Ryu J, Mansour S, Park Y. Requirement of Cholesterol for Calcium-Dependent Vesicle Fusion by Strengthening Synaptotagmin-1-Induced Membrane Bending. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206823. [PMID: 37058136 PMCID: PMC10214243 DOI: 10.1002/advs.202206823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/09/2023] [Indexed: 05/27/2023]
Abstract
Cholesterol is essential for neuronal activity and function. Cholesterol depletion in the plasma membrane impairs synaptic transmission. However, the molecular mechanisms by which cholesterol deficiency leads to defects in vesicle fusion remain poorly understood. Here, it is shown that cholesterol is required for Ca2+ -dependent native vesicle fusion using the in vitro reconstitution of fusion and amperometry to monitor exocytosis in chromaffin cells. Purified native vesicles are crucial for the reconstitution of physiological Ca2+ -dependent fusion, because vesicle-mimicking liposomes fail to reproduce the cholesterol effect. Intriguingly, cholesterol has no effect on the membrane binding of synaptotagmin-1, a Ca2+ sensor for ultrafast fusion. Cholesterol strengthens local membrane deformation and bending induced by synaptotagmin-1, thereby lowering the energy barrier for Ca2+ -dependent fusion to occur. The data provide evidence that cholesterol depletion abolishes Ca2+ -dependent vesicle fusion by disrupting synaptotagmin-1-induced membrane bending, and suggests that cholesterol is an essential lipid regulator for Ca2+ -dependent fusion.
Collapse
Affiliation(s)
- Houda Yasmine Ali Moussa
- Neurological Disorders Research CenterQatar Biomedical Research Institute (QBRI)Hamad Bin Khalifa University (HBKU)Qatar FoundationDohaQatar
| | - Kyung Chul Shin
- Neurological Disorders Research CenterQatar Biomedical Research Institute (QBRI)Hamad Bin Khalifa University (HBKU)Qatar FoundationDohaQatar
| | | | - Soo Jin Kim
- Division of Molecular and Life SciencesPohang University of Science and TechnologyPohang790‐784Republic of Korea
| | - Je‐Kyung Ryu
- Department of Physics & AstronomySeoul National University. 1 Gwanak‐roGwanak‐guSeoul08826South Korea
| | - Said Mansour
- HBKU Core LabsHamad Bin Khalifa University (HBKU)DohaQatar
| | - Yongsoo Park
- Neurological Disorders Research CenterQatar Biomedical Research Institute (QBRI)Hamad Bin Khalifa University (HBKU)Qatar FoundationDohaQatar
- College of Health & Life Sciences (CHLS)Hamad Bin Khalifa University (HBKU)Qatar FoundationDohaQatar
| |
Collapse
|
2
|
Rosenhouse-Dantsker A, Gazgalis D, Logothetis DE. PI(4,5)P 2 and Cholesterol: Synthesis, Regulation, and Functions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:3-59. [PMID: 36988876 DOI: 10.1007/978-3-031-21547-6_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is the most abundant membrane phosphoinositide and cholesterol is an essential component of the plasma membrane (PM). Both lipids play key roles in a variety of cellular functions including as signaling molecules and major regulators of protein function. This chapter provides an overview of these two important lipids. Starting from a brief description of their structure, synthesis, and regulation, the chapter continues to describe the primary functions and signaling processes in which PI(4,5)P2 and cholesterol are involved. While PI(4,5)P2 and cholesterol can act independently, they often act in concert or affect each other's impact. The chapters in this volume on "Cholesterol and PI(4,5)P2 in Vital Biological Functions: From Coexistence to Crosstalk" focus on the emerging relationship between cholesterol and PI(4,5)P2 in a variety of biological systems and processes. In this chapter, the next section provides examples from the ion channel field demonstrating that PI(4,5)P2 and cholesterol can act via common mechanisms. The chapter ends with a discussion of future directions.
Collapse
Affiliation(s)
| | - Dimitris Gazgalis
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Diomedes E Logothetis
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| |
Collapse
|
3
|
Coffman RE, Kraichely KN, Kreutzberger AJB, Kiessling V, Tamm LK, Woodbury DJ. Drunken lipid membranes, not drunken SNARE proteins, promote fusion in a model of neurotransmitter release. Front Mol Neurosci 2022; 15:1022756. [PMID: 36311016 PMCID: PMC9614348 DOI: 10.3389/fnmol.2022.1022756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/20/2022] [Indexed: 11/29/2022] Open
Abstract
Alcohol affects many neuronal proteins that are upstream or down-stream of synaptic vesicle fusion and neurotransmitter release. Less well studied is alcohol's effect on the fusion machinery including SNARE proteins and lipid membranes. Using a SNARE-driven fusion assay we show that fusion probability is significantly increased at 0.4% v/v (68 mM) ethanol; but not with methanol up to 10%. Ethanol appears to act directly on membrane lipids since experiments focused on protein properties [circular dichroism spectrometry, site-directed fluorescence interference contrast (sdFLIC) microscopy, and vesicle docking results] showed no significant changes up to 5% ethanol, but a protein-free fusion assay also showed increased lipid membrane fusion rates with 0.4% ethanol. These data show that the effects of high physiological doses of ethanol on SNARE-driven fusion are mediated through ethanol's interaction with the lipid bilayer of membranes and not SNARE proteins, and that methanol affects lipid membranes and SNARE proteins only at high doses.
Collapse
Affiliation(s)
- Robert E. Coffman
- Neuroscience Center, Brigham Young University, Provo, UT, United States
| | - Katelyn N. Kraichely
- Department of Molecular Physiology and Biological Physics, University of Virginia Health System, Charlottesville, VA, United States
| | - Alex J. B. Kreutzberger
- Department of Molecular Physiology and Biological Physics, University of Virginia Health System, Charlottesville, VA, United States
| | - Volker Kiessling
- Department of Molecular Physiology and Biological Physics, University of Virginia Health System, Charlottesville, VA, United States
| | - Lukas K. Tamm
- Department of Molecular Physiology and Biological Physics, University of Virginia Health System, Charlottesville, VA, United States
| | - Dixon J. Woodbury
- Neuroscience Center, Brigham Young University, Provo, UT, United States
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT, United States
| |
Collapse
|
4
|
Wang M, Liu Y, Du J, Zhou J, Cao L, Li X. Cisplatin Inhibits Neurotransmitter Release during Exocytosis from Single Chromaffin Cells Monitored with Single Cell Amperometry. ELECTROANAL 2022. [DOI: 10.1002/elan.202100398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mengying Wang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics Minzu University of China) National Ethnic Affairs Commission Beijing 100081 China
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences Minzu University of China Beijing 100081 China
| | - Yuying Liu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics Minzu University of China) National Ethnic Affairs Commission Beijing 100081 China
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences Minzu University of China Beijing 100081 China
| | - Jinchang Du
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics Minzu University of China) National Ethnic Affairs Commission Beijing 100081 China
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences Minzu University of China Beijing 100081 China
| | - Junlan Zhou
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics Minzu University of China) National Ethnic Affairs Commission Beijing 100081 China
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences Minzu University of China Beijing 100081 China
| | - Lijiao Cao
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics Minzu University of China) National Ethnic Affairs Commission Beijing 100081 China
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences Minzu University of China Beijing 100081 China
| | - Xianchan Li
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics Minzu University of China) National Ethnic Affairs Commission Beijing 100081 China
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences Minzu University of China Beijing 100081 China
| |
Collapse
|
5
|
Kacher R, Mounier C, Caboche J, Betuing S. Altered Cholesterol Homeostasis in Huntington’s Disease. Front Aging Neurosci 2022; 14:797220. [PMID: 35517051 PMCID: PMC9063567 DOI: 10.3389/fnagi.2022.797220] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/18/2022] [Indexed: 12/25/2022] Open
Abstract
Huntington’s disease (HD) is an autosomal dominant genetic disorder caused by an expansion of the CAG repeat in the first exon of Huntingtin’s gene. The associated neurodegeneration mainly affects the striatum and the cortex at early stages and progressively spreads to other brain structures. Targeting HD at its earlier stages is under intense investigation. Numerous drugs were tested, with a rate of success of only 3.5% approved molecules used as symptomatic treatment. The restoration of cholesterol metabolism, which is central to the brain homeostasis and strongly altered in HD, could be an interesting disease-modifying strategy. Cholesterol is an essential membrane component in the central nervous system (CNS); alterations of its homeostasis have deleterious consequences on neuronal functions. The levels of several sterols, upstream of cholesterol, are markedly decreased within the striatum of HD mouse model. Transcription of cholesterol biosynthetic genes is reduced in HD cell and mouse models as well as post-mortem striatal and cortical tissues from HD patients. Since the dynamic of brain cholesterol metabolism is complex, it is essential to establish the best method to target it in HD. Cholesterol, which does not cross the blood-brain-barrier, is locally synthesized and renewed within the brain. All cell types in the CNS synthesize cholesterol during development but as they progress through adulthood, neurons down-regulate their cholesterol synthesis and turn to astrocytes for their full supply. Cellular levels of cholesterol reflect the dynamic balance between synthesis, uptake and export, all integrated into the context of the cross talk between neurons and glial cells. In this review, we describe the latest advances regarding the role of cholesterol deregulation in neuronal functions and how this could be a determinant factor in neuronal degeneration and HD progression. The pathways and major mechanisms by which cholesterol and sterols are regulated in the CNS will be described. From this overview, we discuss the main clinical strategies for manipulating cholesterol metabolism in the CNS, and how to reinstate a proper balance in HD.
Collapse
Affiliation(s)
- Radhia Kacher
- Institut du Cerveau - Paris Brain Institute (ICM), AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, Sorbonne Université, Paris, France
- INSERM, U1216, Grenoble Institut Neurosciences, Université Grenoble Alpes, Grenoble, France
| | - Coline Mounier
- Neuroscience Paris Seine, Institut de Biologie Paris-Seine, Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
- Centre National de la Recherche Scientifique, UMR 8246, Paris, France
- U1130, Institut National de la Santé et de la Recherche Médicale, Paris, France
| | - Jocelyne Caboche
- Neuroscience Paris Seine, Institut de Biologie Paris-Seine, Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
- Centre National de la Recherche Scientifique, UMR 8246, Paris, France
- U1130, Institut National de la Santé et de la Recherche Médicale, Paris, France
| | - Sandrine Betuing
- Neuroscience Paris Seine, Institut de Biologie Paris-Seine, Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
- Centre National de la Recherche Scientifique, UMR 8246, Paris, France
- U1130, Institut National de la Santé et de la Recherche Médicale, Paris, France
- *Correspondence: Sandrine Betuing,
| |
Collapse
|
6
|
Wu L, Courtney KC, Chapman ER. Cholesterol stabilizes recombinant exocytic fusion pores by altering membrane bending rigidity. Biophys J 2021; 120:1367-1377. [PMID: 33582136 DOI: 10.1016/j.bpj.2021.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/18/2021] [Accepted: 02/03/2021] [Indexed: 12/28/2022] Open
Abstract
SNARE-mediated membrane fusion proceeds via the formation of a fusion pore. This intermediate structure is highly dynamic and can flicker between open and closed states. In cells, cholesterol has been reported to affect SNARE-mediated exocytosis and fusion pore dynamics. Here, we address the question of whether cholesterol directly affects the flickering rate of reconstituted fusion pores in vitro. These experiments were enabled by the recent development of a nanodisc⋅black lipid membrane recording system that monitors dynamic transitions between the open and closed states of nascent recombinant pores with submillisecond time resolution. The fusion pores formed between nanodiscs that bore the vesicular SNARE synaptobrevin 2 and black lipid membranes that harbored the target membrane SNAREs syntaxin 1A and SNAP-25B were markedly affected by cholesterol. These effects include strong reductions in flickering out of the open state, resulting in a significant increase in the open dwell-time. We attributed these effects to the known role of cholesterol in altering the elastic properties of lipid bilayers because manipulation of phospholipids to increase membrane stiffness mirrored the effects of cholesterol. In contrast to the observed effects on pore kinetics, cholesterol had no effect on the current that passed through individual pores and, hence, did not affect pore size. In conclusion, our results show that cholesterol dramatically stabilizes fusion pores in the open state by increasing membrane bending rigidity.
Collapse
Affiliation(s)
- Lanxi Wu
- Howard Hughes Medical Institute and the Department of Neuroscience, University of Wisconsin, Madison, Wisconsin
| | - Kevin C Courtney
- Howard Hughes Medical Institute and the Department of Neuroscience, University of Wisconsin, Madison, Wisconsin
| | - Edwin R Chapman
- Howard Hughes Medical Institute and the Department of Neuroscience, University of Wisconsin, Madison, Wisconsin.
| |
Collapse
|
7
|
do Couto NF, Queiroz-Oliveira T, Horta MF, Castro-Gomes T, Andrade LO. Measuring Intracellular Vesicle Density and Dispersion Using Fluorescence Microscopy and ImageJ/FIJI. Bio Protoc 2020; 10:e3703. [PMID: 33659367 DOI: 10.21769/bioprotoc.3703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 11/02/2022] Open
Abstract
Cell signalling, cell secretion, and plasma membrane repair are processes that critically rely on intracellular vesicles, important components of the endocytic and secretory pathways. More specifically, the strategic distribution of intracellular vesicles is important for diverse cellular processes. The method presented here is a simple, affordable, and efficient tool to analyze the distribution of intracellular vesicles such as lysosomes, endosomes, Golgi vesicles or secretory granules under different experimental conditions. The method is an accessible way to analyze the density and dispersion of intracellular vesicles by combining immunofluorescence with pixel-based quantification software (e.g., ImageJ/FIJI). This protocol can be used widely within the scientific community because it utilizes ImageJ/FIJI, an open source software that is free. By tracking fluorescent vesicles based on their position relative to cell nuclei we are able to quantify and analyze their distribution throughout the cell.
Collapse
Affiliation(s)
- Natália Fernanda do Couto
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| | - Thamires Queiroz-Oliveira
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| | - Maria Fátima Horta
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| | - Thiago Castro-Gomes
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| | - Luciana Oliveira Andrade
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| |
Collapse
|
8
|
Carbone E, Borges R, Eiden LE, García AG, Hernández‐Cruz A. Chromaffin Cells of the Adrenal Medulla: Physiology, Pharmacology, and Disease. Compr Physiol 2019; 9:1443-1502. [DOI: 10.1002/cphy.c190003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Fantini J, Epand RM, Barrantes FJ. Cholesterol-Recognition Motifs in Membrane Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1135:3-25. [PMID: 31098808 DOI: 10.1007/978-3-030-14265-0_1] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The impact of cholesterol on the structure and function of membrane proteins was recognized several decades ago, but the molecular mechanisms underlying these effects have remained elusive. There appear to be multiple mechanisms by which cholesterol interacts with proteins. A complete understanding of cholesterol-sensing motifs is still undergoing refinement. Initially, cholesterol was thought to exert only non-specific effects on membrane fluidity. It was later shown that this lipid could specifically interact with membrane proteins and affect both their structure and function. In this article, we have summarized and critically analyzed our evolving understanding of the affinity, specificity and stereoselectivity of the interactions of cholesterol with membrane proteins. We review the different computational approaches that are currently used to identify cholesterol binding sites in membrane proteins and the biochemical logic that governs each type of site, including CRAC, CARC, SSD and amphipathic helix motifs. There are physiological implications of these cholesterol-recognition motifs for G-protein coupled receptors (GPCR) and ion channels, in membrane trafficking and membrane fusion (SNARE) proteins. There are also pathological implications of cholesterol binding to proteins involved in neurological disorders (Alzheimer, Parkinson, Creutzfeldt-Jakob) and HIV fusion. In each case, our discussion is focused on the key molecular aspects of the cholesterol and amino acid motifs in membrane-embedded regions of membrane proteins that define the physiologically relevant crosstalk between the two. Our understanding of the factors that determine if these motifs are functional in cholesterol binding will allow us enhanced predictive capabilities.
Collapse
Affiliation(s)
- Jacques Fantini
- INSERM UMR_S 1072, Marseille, France. .,Aix-Marseille Université, Marseille, France.
| | - Richard M Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University, Health Sciences Centre, Hamilton, ON, Canada
| | - Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Biomedical Research Institute (BIOMED), UCA-CONICET, Buenos Aires, Argentina
| |
Collapse
|
10
|
Mohammadi AS, Li X, Ewing AG. Mass Spectrometry Imaging Suggests That Cisplatin Affects Exocytotic Release by Alteration of Cell Membrane Lipids. Anal Chem 2018; 90:8509-8516. [PMID: 29912552 DOI: 10.1021/acs.analchem.8b01395] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We used time-of-flight secondary ion mass spectrometry (TOF-SIMS) imaging to investigate the effect of cisplatin, the first member of the platinum-based anticancer drugs, on the membrane lipid composition of model cells to see if lipid changes might be involved in the changes in exocytosis observed. Platinum-based anticancer drugs have been reported to affect neurotransmitter release resulting in what is called the "chemobrain"; however, the mechanism for the influence is not yet understood. TOF-SIMS imaging was carried out using a high energy 40 keV (CO2)6000+ gas cluster ion beam with improved sensitivity for intact lipids in biological samples. Principal components analysis showed that cisplatin treatment of PC12 cells significantly affects the abundance of different lipids and their derivatives, particularly phosphatidylcholine and cholesterol, which are diminished. Treatment of cells with 2 μM and 100 μM cisplatin showed similar effects on induced lipid changes. Lipid content alterations caused by cisplatin treatment at the cell surface are associated with the molecular and bimolecular signaling pathways of cisplatin-induced apoptosis of cells. We suggest that lipid alterations measured by TOF-SIMS are involved, at least in part, in the regulation of exocytosis by cisplatin.
Collapse
Affiliation(s)
- Amir Saeid Mohammadi
- Department of Chemistry and Molecular Biology , University of Gothenburg , 40530 Gothenburg , Sweden.,National Center for Imaging Mass Spectrometry , 41296 Gothenburg , Sweden
| | - Xianchan Li
- Department of Chemistry and Molecular Biology , University of Gothenburg , 40530 Gothenburg , Sweden
| | - Andrew G Ewing
- Department of Chemistry and Molecular Biology , University of Gothenburg , 40530 Gothenburg , Sweden.,National Center for Imaging Mass Spectrometry , 41296 Gothenburg , Sweden.,Department of Chemistry and Chemical Engineering , Chalmers University of Technology , 41296 Gothenburg , Sweden
| |
Collapse
|
11
|
Whiteley L, Haug M, Klein K, Willmann M, Bohn E, Chiantia S, Schwarz S. Cholesterol and host cell surface proteins contribute to cell-cell fusion induced by the Burkholderia type VI secretion system 5. PLoS One 2017; 12:e0185715. [PMID: 28973030 PMCID: PMC5626464 DOI: 10.1371/journal.pone.0185715] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/18/2017] [Indexed: 12/21/2022] Open
Abstract
Following escape into the cytoplasm of host cells, Burkholderia pseudomallei and the related species Burkholderia thailandensis employ the type VI secretion system 5 (T6SS-5) to induce plasma membrane fusion with an adjacent host cell. This process leads to the formation of multinucleated giant cells and facilitates bacterial access to an uninfected host cell in a direct manner. Despite its importance in virulence, the mechanism of the T6SS-5 and the role of host cell factors in cell-cell fusion remain elusive. To date, the T6SS-5 is the only system of bacterial origin known to induce host-cell fusion. To gain insight into the nature of T6SS-5-stimulated membrane fusion, we investigated the contribution of cholesterol and proteins exposed on the host cell surface, which were shown to be critically involved in virus-mediated giant cell formation. In particular, we analyzed the effect of host cell surface protein and cholesterol depletion on the formation of multinucleated giant cells induced by B. thailandensis. Acute protease treatment of RAW264.7 macrophages during infection with B. thailandensis followed by agarose overlay assays revealed a strong reduction in the number of cell-cell fusions compared with EDTA treated cells. Similarly, proteolytic treatment of specifically infected donor cells or uninfected recipient cells significantly decreased multinucleated giant cell formation. Furthermore, modulating host cell cholesterol content by acute cholesterol depletion from cellular membranes by methyl- β-cyclodextrin treatment or exogenous addition of cholesterol impaired the ability of B. thailandensis to induce cell-cell fusions. The requirement of physiological cholesterol levels suggests that the membrane organization or mechanical properties of the lipid bilayer influence the fusion process. Altogether, our data suggest that membrane fusion induced by B. pseudomallei and B. thailandensis involves a complex interplay between the T6SS-5 and the host cell.
Collapse
Affiliation(s)
- Liam Whiteley
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tuebingen, Germany
| | - Maria Haug
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tuebingen, Germany
| | - Kristina Klein
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tuebingen, Germany
| | - Matthias Willmann
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tuebingen, Germany
| | - Erwin Bohn
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tuebingen, Germany
| | | | - Sandra Schwarz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tuebingen, Germany
- * E-mail:
| |
Collapse
|
12
|
Najafinobar N, Mellander LJ, Kurczy ME, Dunevall J, Angerer TB, Fletcher JS, Cans AS. Cholesterol Alters the Dynamics of Release in Protein Independent Cell Models for Exocytosis. Sci Rep 2016; 6:33702. [PMID: 27650365 PMCID: PMC5030643 DOI: 10.1038/srep33702] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/01/2016] [Indexed: 11/25/2022] Open
Abstract
Neurons communicate via an essential process called exocytosis. Cholesterol, an abundant lipid in both secretory vesicles and cell plasma membrane can affect this process. In this study, amperometric recordings of vesicular dopamine release from two different artificial cell models created from a giant unilamellar liposome and a bleb cell plasma membrane, show that with higher membrane cholesterol the kinetics for vesicular release are decelerated in a concentration dependent manner. This reduction in exocytotic speed was consistent for two observed modes of exocytosis, full and partial release. Partial release events, which only occurred in the bleb cell model due to the higher tension in the system, exhibited amperometric spikes with three distinct shapes. In addition to the classic transient, some spikes displayed a current ramp or plateau following the maximum peak current. These post spike features represent neurotransmitter release from a dilated pore before constriction and show that enhancing membrane rigidity via cholesterol adds resistance to a dilated pore to re-close. This implies that the cholesterol dependent biophysical properties of the membrane directly affect the exocytosis kinetics and that membrane tension along with membrane rigidity can influence the fusion pore dynamics and stabilization which is central to regulation of neurochemical release.
Collapse
Affiliation(s)
- Neda Najafinobar
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Lisa J. Mellander
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| | - Michael E. Kurczy
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Johan Dunevall
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Tina B. Angerer
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| | - John S. Fletcher
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Ann-Sofie Cans
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| |
Collapse
|
13
|
The role of cholesterol in membrane fusion. Chem Phys Lipids 2016; 199:136-143. [PMID: 27179407 DOI: 10.1016/j.chemphyslip.2016.05.003] [Citation(s) in RCA: 252] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 05/07/2016] [Accepted: 05/10/2016] [Indexed: 12/21/2022]
Abstract
Cholesterol modulates the bilayer structure of biological membranes in multiple ways. It changes the fluidity, thickness, compressibility, water penetration and intrinsic curvature of lipid bilayers. In multi-component lipid mixtures, cholesterol induces phase separations, partitions selectively between different coexisting lipid phases, and causes integral membrane proteins to respond by changing conformation or redistribution in the membrane. But, which of these often overlapping properties are important for membrane fusion?-Here we review a range of recent experiments that elucidate the multiple roles that cholesterol plays in SNARE-mediated and viral envelope glycoprotein-mediated membrane fusion.
Collapse
|
14
|
Gruba SM, Koseoglu S, Meyer AF, Meyer BM, Maurer-Jones MA, Haynes CL. Platelet membrane variations and their effects on δ-granule secretion kinetics and aggregation spreading among different species. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1848:1609-18. [PMID: 25906946 PMCID: PMC4431631 DOI: 10.1016/j.bbamem.2015.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 04/10/2015] [Accepted: 04/14/2015] [Indexed: 01/09/2023]
Abstract
Platelet exocytosis is regulated partially by the granular/cellular membrane lipids and proteins. Some platelets contain a membrane-bound tube, called an open canalicular system (OCS), which assists in granular release events and increases the membrane surface area for greater spreading. The OCS is not found in all species, and variations in membrane composition can cause changes in platelet secretion. Since platelet studies use various animal models, it is important to understand how platelets differ in both their composition and granular release to draw conclusions among various models. The relative phospholipid composition of the platelets with (mouse, rabbit) and without (cow) an OCS was quantified using UPLC-MS/MS. Cholesterol and protein composition was measured using an Amplex Red Assay and BCA Assay. TEM and dark field platelet images were gathered and analyzed with Image J. Granular release was monitored with single cell carbon fiber microelectrode amperometry. Cow platelets contained greater amounts of cholesterol and sphingomyelin. In addition, they yield greater serotonin release and longer δ granule secretion times. Finally, they showed greater spreading area with a greater range of spread. Platelets containing an OCS had more similarities in their membrane composition and secretion kinetics compared to cow platelets. However, cow platelets showed greater fusion pore stability which could be due to extra sphingomyelin and cholesterol, the primary components of lipid rafts. In addition, their greater stability may lead to many granules assisting in spreading. This study highlights fundamental membrane differences and their effects on platelet secretion.
Collapse
Affiliation(s)
- Sarah M Gruba
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN 55455, USA
| | - Secil Koseoglu
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN 55455, USA
| | - Audrey F Meyer
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN 55455, USA
| | - Ben M Meyer
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN 55455, USA
| | - Melissa A Maurer-Jones
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN 55455, USA
| | - Christy L Haynes
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
15
|
Cookson EA, Conte IL, Dempster J, Hannah MJ, Carter T. Characterisation of Weibel-Palade body fusion by amperometry in endothelial cells reveals fusion pore dynamics and the effect of cholesterol on exocytosis. J Cell Sci 2013; 126:5490-9. [PMID: 24127569 PMCID: PMC3843139 DOI: 10.1242/jcs.138438] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Regulated secretion from endothelial cells is mediated by Weibel-Palade body (WPB) exocytosis. Plasma membrane cholesterol is implicated in regulating secretory granule exocytosis and fusion pore dynamics; however, its role in modulating WPB exocytosis is not clear. To address this we combined high-resolution electrochemical analysis of WPB fusion pore dynamics, by amperometry, with high-speed optical imaging of WPB exocytosis following cholesterol depletion or supplementation in human umbilical vein endothelial cells. We identified serotonin (5-HT) immunoreactivity in WPBs, and VMAT1 expression allowing detection of secreted 5-HT as discrete current spikes during exocytosis. A high proportion of spikes (∼75%) had pre-spike foot signals, indicating that WPB fusion proceeds via an initial narrow pore. Cholesterol depletion significantly reduced pre-spike foot signal duration and increased the rate of fusion pore expansion, whereas cholesterol supplementation had broadly the reverse effect. Cholesterol depletion slowed the onset of hormone-evoked WPB exocytosis, whereas its supplementation increased the rate of WPB exocytosis and hormone-evoked proregion secretion. Our results provide the first analysis of WPB fusion pore dynamics and highlight an important role for cholesterol in the regulation of WPB exocytosis.
Collapse
Affiliation(s)
- Emma A Cookson
- MRC National Institute for Medical Research, Mill Hill, London, NW7 1AA, UK
| | | | | | | | | |
Collapse
|