1
|
Kumar K, Fachet M, Hoeschen C. High-Spatial-Resolution Benchtop X-ray Fluorescence Imaging through Bragg-Diffraction-Based Focusing with Bent Mosaic Graphite Crystals: A Simulation Study. Int J Mol Sci 2024; 25:4733. [PMID: 38731956 PMCID: PMC11083219 DOI: 10.3390/ijms25094733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
X-ray fluorescence imaging (XFI) can localize diagnostic or theranostic entities utilizing nanoparticle (NP)-based probes at high resolution in vivo, in vitro, and ex vivo. However, small-animal benchtop XFI systems demonstrating high spatial resolution (variable from sub-millimeter to millimeter range) in vivo are still limited to lighter elements (i.e., atomic number Z≤45). This study investigates the feasibility of focusing hard X-rays from solid-target tubes using ellipsoidal lens systems composed of mosaic graphite crystals with the aim of enabling high-resolution in vivo XFI applications with mid-Z (42≤Z≤64) elements. Monte Carlo simulations are performed to characterize the proposed focusing-optics concept and provide quantitative predictions of the XFI sensitivity, in silico tumor-bearing mice models loaded with palladium (Pd) and barium (Ba) NPs. Based on simulation results, the minimum detectable total mass of PdNPs per scan position is expected to be on the order of a few hundred nanograms under in vivo conform conditions. PdNP masses as low as 150 ng to 50 ng could be detectable with a resolution of 600 μm when imaging abdominal tumor lesions across a range of low-dose (0.8 μGy) to high-dose (8 μGy) exposure scenarios. The proposed focusing-optics concept presents a potential step toward realizing XFI with conventional X-ray tubes for high-resolution applications involving interesting NP formulations.
Collapse
Affiliation(s)
| | - Melanie Fachet
- Chair of Medical Systems Technology, Institute for Medical Technology, Faculty of Electrical Engineering and Information Technology, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany; (K.K.)
| | | |
Collapse
|
2
|
Deciphering the Biochemical Similarities and Differences Among Human Neuroglial Cells and Glioma Cells Using Fourier Transform Infrared Spectroscopy. World Neurosurg 2022; 168:e562-e569. [DOI: 10.1016/j.wneu.2022.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022]
|
3
|
Lilo T, Morais CLM, Ashton KM, Pardilho A, Davis C, Dawson TP, Gurusinghe N, Martin FL. Spectrochemical differentiation of meningioma tumours based on attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy. Anal Bioanal Chem 2019; 412:1077-1086. [PMID: 31865413 PMCID: PMC7007428 DOI: 10.1007/s00216-019-02332-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/11/2019] [Accepted: 12/05/2019] [Indexed: 12/11/2022]
Abstract
Meningiomas are the commonest types of tumours in the central nervous system (CNS). It is a benign type of tumour divided into three WHO grades (I, II and III) associated with tumour growth rate and likelihood of recurrence, where surgical outcomes and patient treatments are dependent on the meningioma grade and histological subtype. The development of alternative approaches based on attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy could aid meningioma grade determination and its biospectrochemical profiling in an automated fashion. Herein, ATR-FTIR in combination with chemometric techniques is employed to distinguish grade I, grade II and grade I meningiomas that re-occurred. Ninety-nine patients were investigated in this study where their formalin-fixed paraffin-embedded (FFPE) brain tissue samples were analysed by ATR-FTIR spectroscopy. Subsequent classification was performed via principal component analysis plus linear discriminant analysis (PCA-LDA) and partial least squares plus discriminant analysis (PLS-DA). PLS-DA gave the best results where grade I and grade II meningiomas were discriminated with 79% accuracy, 80% sensitivity and 73% specificity, while grade I versus grade I recurrence and grade II versus grade I recurrence were discriminated with 94% accuracy (94% sensitivity and specificity) and 97% accuracy (97% sensitivity and 100% specificity), respectively. Several wavenumbers were identified as possible biomarkers towards tumour differentiation. The majority of these were associated with lipids, protein, DNA/RNA and carbohydrate alterations. These findings demonstrate the potential of ATR-FTIR spectroscopy towards meningioma grade discrimination as a fast, low-cost, non-destructive and sensitive tool for clinical settings. Attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy was used to discriminate meningioma WHO grade I, grade II and grade I recurrence tumours. ![]()
Collapse
Affiliation(s)
- Taha Lilo
- Department of Neurosurgery, Royal Preston Hospital, Lancashire Teaching Hospitals NHS Trust, Preston, PR2 9HT, UK.,School of Pharmacy and Biomedical Sciences, UCLan, Preston, PR1 2HE, UK
| | - Camilo L M Morais
- School of Pharmacy and Biomedical Sciences, UCLan, Preston, PR1 2HE, UK
| | - Katherine M Ashton
- Department of Neuropathology, Royal Preston Hospital, Lancashire Teaching Hospitals NHS Trust, Preston, PR2 9HT, UK
| | - Ana Pardilho
- Department of Neurosurgery, Royal Preston Hospital, Lancashire Teaching Hospitals NHS Trust, Preston, PR2 9HT, UK
| | - Charles Davis
- School of Pharmacy and Biomedical Sciences, UCLan, Preston, PR1 2HE, UK
| | - Timothy P Dawson
- Department of Neuropathology, Royal Preston Hospital, Lancashire Teaching Hospitals NHS Trust, Preston, PR2 9HT, UK
| | - Nihal Gurusinghe
- Department of Neurosurgery, Royal Preston Hospital, Lancashire Teaching Hospitals NHS Trust, Preston, PR2 9HT, UK
| | - Francis L Martin
- School of Pharmacy and Biomedical Sciences, UCLan, Preston, PR1 2HE, UK.
| |
Collapse
|
4
|
Molina RM, Konduru NV, Queiroz PM, Figueroa B, Fu D, Ma-Hock L, Groeters S, Schaudien D, Brain JD. Fate of Barium Sulfate Nanoparticles Deposited in the Lungs of Rats. Sci Rep 2019; 9:8163. [PMID: 31160608 PMCID: PMC6546789 DOI: 10.1038/s41598-019-44551-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 05/20/2019] [Indexed: 11/09/2022] Open
Abstract
We have shown that barium [from BaSO4 nanoparticles (NPs)] was cleared from the lungs faster than other poorly soluble NPs and translocated mostly to bone. We now studied barium biokinetics in rats during Study 1: two-year inhalation exposure to 50 mg/m3 BaSO4 NP aerosols, and Study 2: single intratracheal (IT) instillation of increasing doses of BaSO4 NPs or BaCl2. Study 1 showed that lung barium content measured by inductively coupled plasma mass spectrometry increased during 360 days of BaSO4 NP aerosol exposures. An equilibrium was established from that time until 2 years. Barium concentrations in BaSO4-exposed animals were in the order (lungs > lymph nodes > hard bone > bone marrow > liver). In Study 2, there was an increase in lung barium post-IT instillation of BaSO4 NPs while barium from BaCl2 was mostly cleared by day 28. Transmission electron microscopy showed intact BaSO4 NPs in alveolar macrophages and type II epithelial cells, and in tracheobronchial lymph nodes. Using stimulated Raman scattering microscopy, specific BaSO4 Raman spectra were detected in BaSO4 NP-instilled lungs and not in other organs. Thus, we posit that barium from BaSO4 NPs translocates from the lungs mainly after dissolution. Barium ions are then incorporated mostly into the bone and other organs.
Collapse
Affiliation(s)
- Ramon M Molina
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA.
| | - Nagarjun V Konduru
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA
| | - Priscila M Queiroz
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA
| | - Benjamin Figueroa
- Department of Chemistry, University of Washington, 36 Bagley Hall, Seattle, WA, 98195, USA
| | - Dan Fu
- Department of Chemistry, University of Washington, 36 Bagley Hall, Seattle, WA, 98195, USA
| | - Lan Ma-Hock
- BASF SE, Carl-Bosch-Straße 38, 67056, Ludwigshafen, Germany
| | | | - Dirk Schaudien
- Fraunhofer-Institute for Toxicology and Experimental Medicine ITEM Nikolai-Fuchs-Str. 1, 30625, Hannover, Germany
| | - Joseph D Brain
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA
| |
Collapse
|
5
|
Meola A, Rao J, Chaudhary N, Sharma M, Chang SD. Gold Nanoparticles for Brain Tumor Imaging: A Systematic Review. Front Neurol 2018; 9:328. [PMID: 29867737 PMCID: PMC5960696 DOI: 10.3389/fneur.2018.00328] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 04/25/2018] [Indexed: 11/13/2022] Open
Abstract
Background Demarcation of malignant brain tumor boundaries is critical to achieve complete resection and to improve patient survival. Contrast-enhanced brain magnetic resonance imaging (MRI) is the gold standard for diagnosis and pre-surgical planning, despite limitations of gadolinium (Gd)-based contrast agents to depict tumor margins. Recently, solid metal-based nanoparticles (NPs) have shown potential as diagnostic probes for brain tumors. Gold nanoparticles (GNPs) emerged among those, because of their unique physical and chemical properties and biocompatibility. The aim of the present study is to review the application of GNPs for in vitro and in vivo brain tumor diagnosis. Methods We performed a PubMed search of reports exploring the application of GNPs in the diagnosis of brain tumors in biological models including cells, animals, primates, and humans. The search words were "gold" AND "NP" AND "brain tumor." Two reviewers performed eligibility assessment independently in an unblinded standardized manner. The following data were extracted from each paper: first author, year of publication, animal/cellular model, GNP geometry, GNP size, GNP coating [i.e., polyethylene glycol (PEG) and Gd], blood-brain barrier (BBB) crossing aids, imaging modalities, and therapeutic agents conjugated to the GNPs. Results The PubMed search provided 100 items. A total of 16 studies, published between the 2011 and 2017, were included in our review. No studies on humans were found. Thirteen studies were conducted in vivo on rodent models. The most common shape was a nanosphere (12 studies). The size of GNPs ranged between 20 and 120 nm. In eight studies, the GNPs were covered in PEG. The BBB penetration was increased by surface molecules (nine studies) or by means of external energy sources (in two studies). The most commonly used imaging modalities were MRI (four studies), surface-enhanced Raman scattering (three studies), and fluorescent microscopy (three studies). In two studies, the GNPs were conjugated with therapeutic agents. Conclusion Experimental studies demonstrated that GNPs might be versatile, persistent, and safe contrast agents for multimodality imaging, thus enhancing the tumor edges pre-, intra-, and post-operatively improving microscopic precision. The diagnostic GNPs might also be used for multiple therapeutic approaches, namely as "theranostic" NPs.
Collapse
Affiliation(s)
- Antonio Meola
- Department of Neurosurgery, Stanford University, Stanford, CA, United States
| | - Jianghong Rao
- Department of Radiology, Stanford University, Stanford, CA, United States
| | - Navjot Chaudhary
- Department of Neurosurgery, Stanford University, Stanford, CA, United States
| | - Mayur Sharma
- Department of Neurosurgery, University of Louisville, Louisville, KY, United States
| | - Steven D Chang
- Department of Neurosurgery, Stanford University, Stanford, CA, United States
| |
Collapse
|
6
|
Chen HH, Lee TT, Chen A, Hwu Y, Petibois C. 3D Digital Pathology for a Chemical-Functional Analysis of Glomeruli in Health and Pathology. Anal Chem 2018; 90:3811-3818. [PMID: 29504770 DOI: 10.1021/acs.analchem.7b04265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Determining the filtration function and biochemical status of kidney at the single glomerulus level remains hardly accessible, even from biopsies. Here, we provide evidence that IR spectro-microscopy is a suitable method to account for the filtration capacity of individual glomeruli along with related physio-pathological condition. A ∼4 μm voxel resolution 3D IR image reconstruction is built from consecutive tissue sections, thus, providing a 3D IR spectrum matrix of an individual glomerulus. The filtration capacity of glomeruli was quantitatively determined after BaSO4 perfusion, and additional chemical data could be used to determined oxidative stress effects and fibrosis, thus, combining functional and biochemical information from the same 3D IR spectrum matrix. This analytical approach was applied on mice with unilateral ureteral obstruction (UUO) inducing chronic kidney disease. Compared to the healthy condition, UUO induced a significant drop in glomeruli filtration capacity (-17 ± 8% at day 4 and -48 ± 14% at day 14) and volume (36 ± 10% at day 4 and 67 ± 13% at day 14), along a significant increase of oxidative stress (+61 ± 19% at day 4 and +84 ± 17% at day 14) and a change in the lipid-to-protein ratio (-8.2 ± 3.6% at day 4 and -18.1 ± 5.9% at day 14). Therefore, IR spectro-microscopy might be developed as a new 3D pathology resource for analyzing functional and biochemical parameters of glomeruli.
Collapse
Affiliation(s)
- Hsiang-Hsin Chen
- Academia Sinica, Institute of Physics , 128 Sec. 2, Academia Road, Nankang , Taipei 11529 , Taiwan.,University of Bordeaux, Inserm U1029 LAMC , Allée Geoffroy Saint-Hillaire, Bat. B2 , F33600 Pessac-Cedex , France
| | - Tsung-Tse Lee
- Academia Sinica, Institute of Physics , 128 Sec. 2, Academia Road, Nankang , Taipei 11529 , Taiwan
| | - Ann Chen
- Graduate Institute of Life Sciences , National Defense Medical Center , 161 Section 6, Minquan East Road, Neihu District, 114 , Taipei City , Taiwan
| | - Yeukuang Hwu
- Academia Sinica, Institute of Physics , 128 Sec. 2, Academia Road, Nankang , Taipei 11529 , Taiwan
| | - Cyril Petibois
- Academia Sinica, Institute of Physics , 128 Sec. 2, Academia Road, Nankang , Taipei 11529 , Taiwan.,University of Bordeaux, Inserm U1029 LAMC , Allée Geoffroy Saint-Hillaire, Bat. B2 , F33600 Pessac-Cedex , France
| |
Collapse
|
7
|
Surowka AD, Adamek D, Szczerbowska-Boruchowska M. The combination of artificial neural networks and synchrotron radiation-based infrared micro-spectroscopy for a study on the protein composition of human glial tumors. Analyst 2015; 140:2428-38. [DOI: 10.1039/c4an01867b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Protein-related changes associated with the development of human brain gliomas are of increasing interest in modern neuro-oncology.
Collapse
Affiliation(s)
- A. D. Surowka
- AGH University of Science and Technology
- Faculty of Physics and Applied Computer Science
- 30-059 Krakow
- Poland
| | - D. Adamek
- Jagiellonian University
- Faculty of Medicine
- Department of Neuropathology
- Chair of Pathomorphology
- Krakow
| | | |
Collapse
|
8
|
Konduru N, Keller J, Ma-Hock L, Gröters S, Landsiedel R, Donaghey TC, Brain JD, Wohlleben W, Molina RM. Biokinetics and effects of barium sulfate nanoparticles. Part Fibre Toxicol 2014; 11:55. [PMID: 25331813 PMCID: PMC4219084 DOI: 10.1186/s12989-014-0055-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 10/04/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nanoparticulate barium sulfate has potential novel applications and wide use in the polymer and paint industries. A short-term inhalation study on barium sulfate nanoparticles (BaSO₄ NPs) was previously published [Part Fibre Toxicol 11:16, 2014]. We performed comprehensive biokinetic studies of ¹³¹BaSO₄ NPs administered via different routes and of acute and subchronic pulmonary responses to instilled or inhaled BaSO₄ in rats. METHODS We compared the tissue distribution of ¹³¹Ba over 28 days after intratracheal (IT) instillation, and over 7 days after gavage and intravenous (IV) injection of ¹³¹BaSO₄. Rats were exposed to 50 mg/m³ BaSO₄ aerosol for 4 or 13 weeks (6 h/day, 5 consecutive days/week), and then gross and histopathologic, blood and bronchoalveolar lavage (BAL) fluid analyses were performed. BAL fluid from instilled rats was also analyzed. RESULTS Inhaled BaSO₄ NPs showed no toxicity after 4-week exposure, but a slight neutrophil increase in BAL after 13-week exposure was observed. Lung burden of inhaled BaSO₄ NPs after 4-week exposure (0.84 ± 0.18 mg/lung) decreased by 95% over 34 days. Instilled BaSO₄ NPs caused dose-dependent inflammatory responses in the lungs. Instilled BaSO₄ NPs (0.28 mg/lung) was cleared with a half-life of ≈ 9.6 days. Translocated ¹³¹Ba from the lungs was predominantly found in the bone (29%). Only 0.15% of gavaged dose was detected in all organs at 7 days. IV-injected ¹³¹BaSO₄ NPs were predominantly localized in the liver, spleen, lungs and bone at 2 hours, but redistributed from the liver to bone over time. Fecal excretion was the dominant elimination pathway for all three routes of exposure. CONCLUSIONS Pulmonary exposure to instilled BaSO₄ NPs caused dose-dependent lung injury and inflammation. Four-week and 13-week inhalation exposures to a high concentration (50 mg/m³) of BaSO₄ NPs elicited minimal pulmonary response and no systemic effects. Instilled and inhaled BaSO₄ NPs were cleared quickly yet resulted in higher tissue retention than when ingested. Particle dissolution is a likely mechanism. Injected BaSO₄ NPs localized in the reticuloendothelial organs and redistributed to the bone over time. BaSO₄ NP exhibited lower toxicity and biopersistence in the lungs compared to other poorly soluble NPs such as CeO₂ and TiO₂.
Collapse
Affiliation(s)
- Nagarjun Konduru
- Department of Environmental Health, Molecular and Integrative Physiological Sciences Program, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA.
| | - Jana Keller
- Experimental Toxicology and Ecology, BASF SE, GV/TB - Z470, Carl-Bosch-Straße 38, Ludwigshafen, 67056, Germany.
| | - Lan Ma-Hock
- Experimental Toxicology and Ecology, BASF SE, GV/TB - Z470, Carl-Bosch-Straße 38, Ludwigshafen, 67056, Germany.
| | - Sibylle Gröters
- Experimental Toxicology and Ecology, BASF SE, GV/TB - Z470, Carl-Bosch-Straße 38, Ludwigshafen, 67056, Germany.
| | - Robert Landsiedel
- Experimental Toxicology and Ecology, BASF SE, GV/TB - Z470, Carl-Bosch-Straße 38, Ludwigshafen, 67056, Germany.
| | - Thomas C Donaghey
- Department of Environmental Health, Molecular and Integrative Physiological Sciences Program, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA.
| | - Joseph D Brain
- Department of Environmental Health, Molecular and Integrative Physiological Sciences Program, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA.
| | - Wendel Wohlleben
- Experimental Toxicology and Ecology, BASF SE, GV/TB - Z470, Carl-Bosch-Straße 38, Ludwigshafen, 67056, Germany.
| | - Ramon M Molina
- Department of Environmental Health, Molecular and Integrative Physiological Sciences Program, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA.
| |
Collapse
|
9
|
Javerzat S, Godard V, Bikfalvi A. Balancing risks and benefits of anti-angiogenic drugs for malignant glioma. FUTURE NEUROLOGY 2013. [DOI: 10.2217/fnl.12.91] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Angiogenesis is a delicate process that has been programmed over the time of evolution of vertebrates to provide optimized quantities of oxygen and nutrients to the developing embryo and the growing newborn. Similarly, angiogenesis induction pathways are used during tumor development. Angiogenesis and tumor cell invasion are closely linked. Anti-angiogenesis treatment strategies have entered the clinic and show some promising results. However, recent research using preclinical models have pointed to possible harmful effects, including evasive resistance and increase in tumor cell invasion when VEGF activity is inhibited. This has been corroborated by observations in treated glioblastoma patients. However, the meaning of these observations is still in question. The results of Phase III clinical trials that are ongoing will certainly provide more definitive answers with regard to evasive resistance in glioblastoma treated with anti-angiogenic drugs.
Collapse
Affiliation(s)
- Sophie Javerzat
- University of Bordeaux, Laboratoire de l’Angiogenèse et du Microenvironnement des Cancers, Unités Mixte de Recherche 1029, F-33400 Talence, France
- Institut National de la Santé et de la Recherche Médicale, Laboratoire de l’Angiogenèse et du Microenvironnement des Cancers, Unités Mixte de Recherche 1029, F-33400 Talence, France
| | - Virginie Godard
- University of Bordeaux, Laboratoire de l’Angiogenèse et du Microenvironnement des Cancers, Unités Mixte de Recherche 1029, F-33400 Talence, France
- Institut National de la Santé et de la Recherche Médicale, Laboratoire de l’Angiogenèse et du Microenvironnement des Cancers, Unités Mixte de Recherche 1029, F-33400 Talence, France
| | - Andreas Bikfalvi
- Institut National de la Santé et de la Recherche Médicale, Laboratoire de l’Angiogenèse et du Microenvironnement des Cancers, Unités Mixte de Recherche 1029, F-33400 Talence, France
- University of Bordeaux, Laboratoire de l’Angiogenèse et du Microenvironnement des Cancers, Unités Mixte de Recherche 1029, F-33400 Talence, France.
| |
Collapse
|
10
|
Noreen R, Moenner M, Hwu Y, Petibois C. FTIR spectro-imaging of collagens for characterization and grading of gliomas. Biotechnol Adv 2012; 30:1432-46. [DOI: 10.1016/j.biotechadv.2012.03.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 02/23/2012] [Accepted: 03/06/2012] [Indexed: 01/07/2023]
|
11
|
Chien CC, Chen HH, Lai SF, Wu KC, Cai X, Hwu Y, Petibois C, Chu Y, Margaritondo G. Gold nanoparticles as high-resolution X-ray imaging contrast agents for the analysis of tumor-related micro-vasculature. J Nanobiotechnology 2012; 10:10. [PMID: 22409971 PMCID: PMC3316138 DOI: 10.1186/1477-3155-10-10] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 03/12/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Angiogenesis is widely investigated in conjunction with cancer development, in particular because of the possibility of early stage detection and of new therapeutic strategies. However, such studies are negatively affected by the limitations of imaging techniques in the detection of microscopic blood vessels (diameter 3-5 μm) grown under angiogenic stress. We report that synchrotron-based X-ray imaging techniques with very high spatial resolution can overcome this obstacle, provided that suitable contrast agents are used. RESULTS We tested different contrast agents based on gold nanoparticles (AuNPs) for the detection of cancer-related angiogenesis by synchrotron microradiology, microtomography and high resolution X-ray microscopy. Among them only bare-AuNPs in conjunction with heparin injection provided sufficient contrast to allow in vivo detection of small capillary species (the smallest measured lumen diameters were 3-5 μm). The detected vessel density was 3-7 times higher than with other nanoparticles. We also found that bare-AuNPs with heparin allows detecting symptoms of local extravascular nanoparticle diffusion in tumor areas where capillary leakage appeared. CONCLUSIONS Although high-Z AuNPs are natural candidates as radiology contrast agents, their success is not guaranteed, in particular when targeting very small blood vessels in tumor-related angiography. We found that AuNPs injected with heparin produced the contrast level needed to reveal--for the first time by X-ray imaging--tumor microvessels with 3-5 μm diameter as well as extravascular diffusion due to basal membrane defenestration. These results open the interesting possibility of functional imaging of the tumor microvasculature, of its development and organization, as well as of the effects of anti-angiogenic drugs.
Collapse
Affiliation(s)
- Chia-Chi Chien
- Institute of Physics, Academia Sinica, Nankang, Taipei 115, Taiwan
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Hsiang-Hsin Chen
- Institute of Physics, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Sheng-Feng Lai
- Institute of Physics, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Kang-Chao Wu
- Department of Otolaryngology-Head and Neck surgery, Mackay Memorial Hospital Hsinchu Branch, Hsinchu 300, Taiwan
| | - Xiaoqing Cai
- Institute of Physics, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Yeukuang Hwu
- Institute of Physics, Academia Sinica, Nankang, Taipei 115, Taiwan
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 300, Taiwan
- Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 701, Taiwan
| | - Cyril Petibois
- Université de Bordeaux, CNRS UMR 5248 - CBMN, F33405 Talence-Cedex, France
| | - Yong Chu
- National Synchrotron Light Source-II, Brookhaven National Laboratory, Upton, NY, USA
| | | |
Collapse
|