1
|
Rivlin M, Perlman O, Navon G. Metabolic brain imaging with glucosamine CEST MRI: in vivo characterization and first insights. Sci Rep 2023; 13:22030. [PMID: 38086821 PMCID: PMC10716494 DOI: 10.1038/s41598-023-48515-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
The utility of chemical exchange saturation transfer (CEST) MRI for monitoring the uptake of glucosamine (GlcN), a safe dietary supplement, has been previously demonstrated in detecting breast cancer in both murine and human subjects. Here, we studied and characterized the detectability of GlcN uptake and metabolism in the brain. Following intravenous GlcN administration in mice, CEST brain signals calculated by magnetization transfer ratio asymmetry (MTRasym) analysis, were significantly elevated, mainly in the cortex, hippocampus, and thalamus. The in vivo contrast remained stable during 40 min of examination, which can be attributed to GlcN uptake and its metabolic products accumulation as confirmed using 13C NMR spectroscopic studies of brain extracts. A Lorentzian multi-pool fitting analysis revealed an increase in the hydroxyl, amide, and relayed nuclear Overhauser effect (rNOE) signal components after GlcN treatment. With its ability to cross the blood-brain barrier (BBB), the GlcN CEST technique has the potential to serve as a metabolic biomarker for the diagnosis and monitoring various brain disorders.
Collapse
Affiliation(s)
- Michal Rivlin
- School of Chemistry, Tel-Aviv University, Tel-Aviv, Israel
| | - Or Perlman
- Department of Biomedical Engineering, Tel-Aviv University, Tel-Aviv, Israel
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Gil Navon
- School of Chemistry, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
2
|
Migdadi L, Sharar N, Jafar H, Telfah A, Hergenröder R, Wöhler C. Machine Learning in Automated Monitoring of Metabolic Changes Accompanying the Differentiation of Adipose-Tissue-Derived Human Mesenchymal Stem Cells Employing 1H- 1H TOCSY NMR. Metabolites 2023; 13:352. [PMID: 36984792 PMCID: PMC10055867 DOI: 10.3390/metabo13030352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/12/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
The ability to monitor the dynamics of stem cell differentiation is a major goal for understanding biochemical evolution pathways. Automating the process of metabolic profiling using 2D NMR helps us to understand the various differentiation behaviors of stem cells, and therefore sheds light on the cellular pathways of development, and enhances our understanding of best practices for in vitro differentiation to guide cellular therapies. In this work, the dynamic evolution of adipose-tissue-derived human Mesenchymal stem cells (AT-derived hMSCs) after fourteen days of cultivation, adipocyte and osteocyte differentiation, was inspected based on 1H-1H TOCSY using machine learning. Multi-class classification in addition to the novelty detection of metabolites was established based on a control hMSC sample after four days' cultivation and we successively detected the changes of metabolites in differentiated MSCs following a set of 1H-1H TOCSY experiments. The classifiers Kernel Null Foley-Sammon Transform and Kernel Density Estimation achieved a total classification error between 0% and 3.6% and false positive and false negative rates of 0%. This approach was successfully able to automatically reveal metabolic changes that accompanied MSC cellular evolution starting from their undifferentiated status to their prolonged cultivation and differentiation into adipocytes and osteocytes using machine learning supporting the research in the field of metabolic pathways of stem cell differentiation.
Collapse
Affiliation(s)
- Lubaba Migdadi
- Image Analysis Group, TU Dortmund, 44227 Dortmund, Germany
- Leibniz-Institut für Analytische Wissenschaften—ISAS-e.V., 44139 Dortmund, Germany
| | - Nour Sharar
- Leibniz-Institut für Analytische Wissenschaften—ISAS-e.V., 44139 Dortmund, Germany
- Cell Therapy Center, University of Jordan, Amman 11942, Jordan
| | - Hanan Jafar
- Cell Therapy Center, University of Jordan, Amman 11942, Jordan
- Department of Anatomy and Histology, College of Medicine, University of Jordan, Amman 11942, Jordan
| | - Ahmad Telfah
- Leibniz-Institut für Analytische Wissenschaften—ISAS-e.V., 44139 Dortmund, Germany
- Nanotechnology Center, The University of Jordan, Amman 11942, Jordan
| | - Roland Hergenröder
- Leibniz-Institut für Analytische Wissenschaften—ISAS-e.V., 44139 Dortmund, Germany
| | | |
Collapse
|
3
|
Metabolomic Signatures in Doxorubicin-Induced Metabolites Characterization, Metabolic Inhibition, and Signaling Pathway Mechanisms in Colon Cancer HCT116 Cells. Metabolites 2022; 12:metabo12111047. [DOI: 10.3390/metabo12111047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/19/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Doxorubicin (DOX) is a chemotherapeutic agent is used for various cancer cells. To characterize the chemical structural components and metabolic inhibition, we applied a DOX to HCT116 colon cancer cells using an independent metabolites profiling approach. Chemical metabolomics has been involved in the new drug delivery systems. Metabolomics profiling of DOX-applied HCT116 colon cancer cellular metabolisms is rare. We used 1H nuclear magnetic resonance (NMR) spectroscopy in this study to clarify how DOX exposure affected HCT116 colon cancer cells. Metabolomics profiling in HCT116 cells detects 50 metabolites. Tracking metabolites can reveal pathway activities. HCT116 colon cancer cells were evenly treated with different concentrations of DOX for 24 h. The endogenous metabolites were identified by comparison with healthy cells. We found that acetate, glucose, glutamate, glutamine, sn-glycero-3-phosphocholine, valine, methionine, and isoleucine were increased. Metabolic expression of alanine, choline, fumarate, taurine, o-phosphocholine, inosine, lysine, and phenylalanine was decreased in HCT116 cancer cells. The metabolic phenotypic expression is markedly altered during a high dose of DOX. It is the first time that there is a metabolite pool and phenotypic expression in colon cancer cells. Targeting the DOX-metabolite axis may be a novel strategy for improving the curative effect of DOX-based therapy for colon cancer cells. These methods facilitate the routine metabolomic analysis of cancer cells.
Collapse
|
4
|
Innovative Application of Metabolomics on Bioactive Ingredients of Foods. Foods 2022; 11:foods11192974. [PMID: 36230049 PMCID: PMC9562173 DOI: 10.3390/foods11192974] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Metabolomics, as a new omics technology, has been widely accepted by researchers and has shown great potential in the field of nutrition and health in recent years. This review briefly introduces the process of metabolomics analysis, including sample preparation and extraction, derivatization, separation and detection, and data processing. This paper focuses on the application of metabolomics in food-derived bioactive ingredients. For example, metabolomics techniques are used to analyze metabolites in food to find bioactive substances or new metabolites in food materials. Moreover, bioactive substances have been tested in vitro and in vivo, as well as in humans, to investigate the changes of metabolites and the underlying metabolic pathways, among which metabolomics is used to find potential biomarkers and targets. Metabolomics provides a new approach for the prevention and regulation of chronic diseases and the study of the underlying mechanisms. It also provides strong support for the development of functional food or drugs. Although metabolomics has some limitations such as low sensitivity, poor repeatability, and limited detection range, it is developing rapidly in general, and also in the field of nutrition and health. At the end of this paper, we put forward our own insights on the development prospects of metabolomics in the application of bioactive ingredients in food.
Collapse
|
5
|
Andresen C, Boch T, Gegner HM, Mechtel N, Narr A, Birgin E, Rasbach E, Rahbari N, Trumpp A, Poschet G, Hübschmann D. Comparison of extraction methods for intracellular metabolomics of human tissues. Front Mol Biosci 2022; 9:932261. [PMID: 36090025 PMCID: PMC9461704 DOI: 10.3389/fmolb.2022.932261] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
Analyses of metabolic compounds inside cells or tissues provide high information content since they represent the endpoint of biological information flow and are a snapshot of the integration of many regulatory processes. However, quantification of the abundance of metabolites requires their careful extraction. We present a comprehensive study comparing ten extraction protocols in four human sample types (liver tissue, bone marrow, HL60, and HEK cells) aiming to detect and quantify up to 630 metabolites of different chemical classes. We show that the extraction efficiency and repeatability are highly variable across protocols, tissues, and chemical classes of metabolites. We used different quality metrics including the limit of detection and variability between replicates as well as the sum of concentrations as a global estimate of analytical repeatability of the extraction. The coverage of extracted metabolites depends on the used solvents, which has implications for the design of measurements of different sample types and metabolic compounds of interest. The benchmark dataset can be explored in an easy-to-use, interactive, and flexible online resource (R/shiny app MetaboExtract: http://www.metaboextract.shiny.dkfz.de) for context-specific selection of the optimal extraction method. Furthermore, data processing and conversion functionality underlying the shiny app are accessible as an R package: https://cran.r-project.org/package=MetAlyzer.
Collapse
Affiliation(s)
- Carolin Andresen
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center and DKFZ-ZMBH Alliance, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Tobias Boch
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center and DKFZ-ZMBH Alliance, Heidelberg, Germany
- Division of Personalized Medical Oncology, German Cancer Research Center, Heidelberg, Germany
- Department of Personalized Oncology, University Hospital Mannheim, University of Heidelberg, Mannheim, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Hagen M. Gegner
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Nils Mechtel
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Andreas Narr
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center and DKFZ-ZMBH Alliance, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Emrullah Birgin
- Department of Surgery, Medical Faculty Mannheim, Universitätsmedizin Mannheim, Heidelberg University, Mannheim, Germany
| | - Erik Rasbach
- Department of Surgery, Medical Faculty Mannheim, Universitätsmedizin Mannheim, Heidelberg University, Mannheim, Germany
| | - Nuh Rahbari
- Department of Surgery, Medical Faculty Mannheim, Universitätsmedizin Mannheim, Heidelberg University, Mannheim, Germany
| | - Andreas Trumpp
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center and DKFZ-ZMBH Alliance, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Gernot Poschet
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Daniel Hübschmann
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Computational Oncology, Molecular Diagnostics Program, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
- *Correspondence: Daniel Hübschmann,
| |
Collapse
|
6
|
Tikunov AP, Tipton JD, Garrett TJ, Shinde SV, Kim HJ, Gerber DA, Herring LE, Graves LM, Macdonald JM. Green Chemistry Preservation and Extraction of Biospecimens for Multi-omic Analyses. Methods Mol Biol 2022; 2394:267-298. [PMID: 35094334 DOI: 10.1007/978-1-0716-1811-0_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The Environmental Protection Agency's definition of "Green Chemistry" is "the design of chemical products and processes that reduces or eliminates the use or generation of hazardous substances. Green chemistry applies across the life cycle of a chemical product, including its design, manufacture, use, and ultimate disposal." Conventional omic tissue extraction procedures use solvents that are toxic and carcinogenic, such as chloroform and methyl-tert-butyl ether for lipidomics, or caustic chaotropic solutions for genomics and transcriptomics, such as guanidine or urea. A common preservation solution for pathology is formaldehyde, which is a carcinogen. Use of acetonitrile as a universal biospecimen preservation and extraction solvent will reduce these hazardous wastes, because it is less toxic and more environmentally friendly than the conventional solvents used in biorepository and biospecimen research. A new extraction method never applied to multi-omic, system biology research, called cold-induced phase separation (CIPS), uses freezing point temperatures to induce a phase separation of acetonitrile-water mixtures. Also, the CO2 exposure during CIPS will acidify the water precipitating DNA out of aqueous phase. The resulting phase separation brings hydrophobic lipids to the top acetonitrile fraction that is easily decanted from the bottom aqueous fraction, especially when the water is frozen. This CIPS acetonitrile extract contains the lipidome (lipids), the bottom aqueous fraction is sampled to obtain the transcriptome (RNA) fraction, and the remaining water and pellet is extracted with 60% acetonitrile to isolate the metabolome (<1 kD polar molecules). Finally, steps 4 and 5 use a TRIzol™ liquid-liquid extraction SOP of the pellet to isolate the genome (DNA) and proteome (proteins). This chapter details the multi-omic sequential extraction SOP and potential problems associated with each of the 5 steps, with steps 2, 4, and 5 still requiring validation. The metabolomic and lipidomic extraction efficiencies using the CIPS SOP is compared to conventional solvent extraction SOPs and is analyzed by nuclear magnetic resonance (NMR) spectroscopy and liquid chromatography-mass spectrometry (LC-MS), respectively. Acetonitrile biospecimen preservation combined with the CIPS multi-omic extraction SOP is green chemistry technology that will eliminate the generation of the hazardous substances associated with biospecimen processing and permits separation and safe disposal of acetonitrile avoiding environmental contamination.
Collapse
Affiliation(s)
- Andrey P Tikunov
- Departments of Biomedical Engineering, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Jeremiah D Tipton
- Departments of Biomedical Engineering, University of North Carolina School of Medicine, Chapel Hill, NC, USA
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, College of Medicine, Gainesville, FL, USA
| | - Timothy J Garrett
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, College of Medicine, Gainesville, FL, USA
| | - Sachi V Shinde
- Departments of Biomedical Engineering, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Hong Jin Kim
- Departments of Surgery, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - David A Gerber
- Departments of Surgery, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Laura E Herring
- Departments of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Lee M Graves
- Departments of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Jeffrey M Macdonald
- Departments of Biomedical Engineering, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
7
|
Robinson EJ, Taddeo MC, Chu X, Shi W, Wood C, Still C, Rovnyak VG, Rovnyak D. Aqueous Metabolite Trends for the Progression of Nonalcoholic Fatty Liver Disease in Female Bariatric Surgery Patients by Targeted 1H-NMR Metabolomics. Metabolites 2021; 11:metabo11110737. [PMID: 34822395 PMCID: PMC8619318 DOI: 10.3390/metabo11110737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 01/14/2023] Open
Abstract
Determining biomarkers and better characterizing the biochemical progression of nonalcoholic fatty liver disease (NAFLD) remains a clinical challenge. A targeted 1H-NMR study of serum, combined with clinical variables, detected and localized biomarkers to stages of NAFLD in morbidly obese females. Pre-surgery serum samples from 100 middle-aged, morbidly obese female subjects, grouped on gold-standard liver wedge biopsies (non-NAFLD; steatosis; and fibrosis) were collected, extracted, and analyzed in aqueous (D2O) buffer (1H, 600 MHz). Profiled concentrations were subjected to exploratory statistical analysis. Metabolites varying significantly between the non-NAFLD and steatosis groups included the ketone bodies 3-hydroxybutyrate (↓; p = 0.035) and acetone (↓; p = 0.012), and also alanine (↑; p = 0.004) and a putative pyruvate signal (↑; p = 0.003). In contrast, the steatosis and fibrosis groups were characterized by 2-hydroxyisovalerate (↑; p = 0.023), betaine (↓; p = 0.008), hypoxanthine (↓; p = 0.003), taurine (↓; p = 0.001), 2-hydroxybutyrate (↑; p = 0.045), 3-hydroxyisobutyrate (↑; p = 0.046), and increasing medium chain fatty acids. Exploratory classification models with and without clinical variables exhibited overall success rates ca. 75–85%. In the study conditions, inhibition of fatty acid oxidation and disruption of the hepatic urea cycle are supported as early features of NAFLD that continue in fibrosis. In fibrosis, markers support inflammation, hepatocyte damage, and decreased liver function. Complementarity of NMR concentrations and clinical information in classification models is shown. A broader hypothesis that standard-of-care sera can yield metabolomic information is supported.
Collapse
Affiliation(s)
- Emma J. Robinson
- Department of Chemistry, Bucknell University, 1 Dent Drive, Lewisburg, PA 17837, USA; (E.J.R.); (M.C.T.)
| | - Matthew C. Taddeo
- Department of Chemistry, Bucknell University, 1 Dent Drive, Lewisburg, PA 17837, USA; (E.J.R.); (M.C.T.)
| | - Xin Chu
- The Obesity Institute, Geisinger, Danville, PA 17822, USA; (X.C.); (W.S.); (C.W.); (C.S.)
| | - Weixing Shi
- The Obesity Institute, Geisinger, Danville, PA 17822, USA; (X.C.); (W.S.); (C.W.); (C.S.)
| | - Craig Wood
- The Obesity Institute, Geisinger, Danville, PA 17822, USA; (X.C.); (W.S.); (C.W.); (C.S.)
| | - Christopher Still
- The Obesity Institute, Geisinger, Danville, PA 17822, USA; (X.C.); (W.S.); (C.W.); (C.S.)
| | | | - David Rovnyak
- Department of Chemistry, Bucknell University, 1 Dent Drive, Lewisburg, PA 17837, USA; (E.J.R.); (M.C.T.)
- Correspondence:
| |
Collapse
|
8
|
Abstract
Nuclear magnetic resonance (NMR) spectroscopy offers reproducible quantitative analysis and structural identification of metabolites in various complex biological samples, such as biofluids (plasma, serum, and urine), cells, tissue extracts, and even intact organs. Therefore, NMR-based metabolomics, a mainstream metabolomic platform, has been extensively applied in many research fields, including pharmacology, toxicology, pathophysiology, nutritional intervention, disease diagnosis/prognosis, and microbiology. In particular, NMR-based metabolomics has been successfully used for cancer research to investigate cancer metabolism and identify biomarker and therapeutic targets. This chapter highlights the innovations and challenges of NMR-based metabolomics platform and its applications in cancer research.
Collapse
|
9
|
Gómez-Archila LG, Palomino-Schätzlein M, Zapata-Builes W, Galeano E. Development of an optimized method for processing peripheral blood mononuclear cells for 1H-nuclear magnetic resonance-based metabolomic profiling. PLoS One 2021; 16:e0247668. [PMID: 33630921 PMCID: PMC7906414 DOI: 10.1371/journal.pone.0247668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 02/11/2021] [Indexed: 01/04/2023] Open
Abstract
Human peripheral blood mononuclear cells (PBMCs) are part of the innate and adaptive immune system, and form a critical interface between both systems. Studying the metabolic profile of PBMC could provide valuable information about the response to pathogens, toxins or cancer, the detection of drug toxicity, in drug discovery and cell replacement therapy. The primary purpose of this study was to develop an improved processing method for PBMCs metabolomic profiling with nuclear magnetic resonance (NMR) spectroscopy. To this end, an experimental design was applied to develop an alternative method to process PBMCs at low concentrations. The design included the isolation of PBMCs from the whole blood of four different volunteers, of whom 27 cell samples were processed by two different techniques for quenching and extraction of metabolites: a traditional one using organic solvents and an alternative one employing a high-intensity ultrasound probe, the latter with a variation that includes the use of deproteinizing filters. Finally, all the samples were characterized by 1H-NMR and the metabolomic profiles were compared by the method. As a result, two new methods for PBMCs processing, called Ultrasound Method (UM) and Ultrasound and Ultrafiltration Method (UUM), are described and compared to the Folch Method (FM), which is the standard protocol for extracting metabolites from cell samples. We found that UM and UUM were superior to FM in terms of sensitivity, processing time, spectrum quality, amount of identifiable, quantifiable metabolites and reproducibility.
Collapse
Affiliation(s)
- León Gabriel Gómez-Archila
- Grupo de Investigación en Sustancias Bioactivas, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia (UdeA), Medellín, Colombia
| | | | - Wildeman Zapata-Builes
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia (UdeA), Medellín, Colombia
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medelín, Colombia
| | - Elkin Galeano
- Grupo de Investigación en Sustancias Bioactivas, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia (UdeA), Medellín, Colombia
| |
Collapse
|
10
|
Rivlin M, Navon G. Molecular imaging of cancer by glucosamine chemical exchange saturation transfer MRI: A preclinical study. NMR IN BIOMEDICINE 2021; 34:e4431. [PMID: 33103831 DOI: 10.1002/nbm.4431] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/23/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
Glucosamine (GlcN) was recently proposed as an agent with an excellent safety profile to detect cancer with the chemical exchange saturation transfer (CEST) MRI technique. Translation of the GlcN CEST method to the clinical application requires evaluation of its sensitivity to the different frequency regions of irradiation. Hence, imaging of the GlcN signal was established for the full Z spectra recorded following GlcN administration to mice bearing implanted 4T1 breast tumors. Significant CEST effects were observed at around 1.5, 3.6 and -3.4 ppm, corresponding to the hydroxyl, amine/amide exchangeable protons and for the Nuclear Overhauser Enhancement (NOE), respectively. The sources of the observed CEST effects were investigated by identifying the GlcN metabolic products as observed by 13 C NMR spectroscopy studies of extracts from the same tumor model following treatment with [UL-13 C] -GlcN·HCl. The CEST contribution can be attributed to several phosphorylated products of GlcN, including uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc), which is a substrate for the O-linked and N-linked glycosylated proteins that may be associated with the increase of the NOE signal. The observation of a significant amount of lactate among the metabolic products hints at acidification as one of the sources of the enhanced CEST effect of GlcN. The proposed method may offer a new approach for clinical molecular imaging that enables the detection of metabolically active tumors and may play a role in other diseases.
Collapse
Affiliation(s)
- Michal Rivlin
- School of Chemistry, Tel Aviv University, Tel Aviv, Israel
| | - Gil Navon
- School of Chemistry, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
11
|
Dallons M, Alpan E, Schepkens C, Tagliatti V, Colet JM. GPR91 Receptor Mediates Protection against Doxorubicin-Induced Cardiotoxicity without Altering Its Anticancer Efficacy. An In Vitro Study on H9C2 Cardiomyoblasts and Breast Cancer-Derived MCF-7 Cells. Cells 2020; 9:E2177. [PMID: 32992522 PMCID: PMC7599858 DOI: 10.3390/cells9102177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/17/2020] [Accepted: 09/25/2020] [Indexed: 11/16/2022] Open
Abstract
Doxorubicin (DOX) is an anticancer drug widely used in oncology, especially for breast cancer. The main limitation of DOX treatment is its cardiotoxicity due to the cumulative dose. Clinically, DOX-induced cardiomyopathy develops as a progressive heart failure caused by a progressive cardiomyocyte's death. For long, the oxidative stress induced by DOX was considered as the main toxic mechanism responsible for heart damage, but it is now controverted, and other processes are investigated to develop cardioprotective strategies. Previously, we studied DOX-induced cardiotoxicity and dexrazoxane (DEX), the only cardioprotective compound authorized by the FDA, by 1H-NMR metabonomics in H9C2 cells. We observed an increased succinate secretion in the extracellular fluid of DEX-exposed cardiomyocytes, a finding that led us to the hypothesis of a possible protective role of this agonist of the GPR91 receptor. The objective of the present work was to study the effect of succinate (SUC) and cis-epoxysuccinate (cis-ES), two agonists of the GPR91 receptor, on DOX-induced cardiotoxicity to H9C2 cells. To this purpose, several toxicity parameters, including cell viability, oxidative stress and apoptosis, as well as the GPR91 expression, were measured to assess the effects of DEX, SUC and cis-ES either alone or in combination with DOX in H9C2 cells. A 1H-NMR-based metabonomic study was carried out on cellular fluids collected after 24 h to highlight the metabolic changes induced by those protective compounds. Moreover, the effects of each agonist given either alone or in combination with DOX were evaluated on MCF-7 breast cancer cells. GPR91 expression was confirmed in H9C2 cells, while no expression was found in MCF-7 cells. Under such experimental conditions, both SUC and cis-ES decreased partially the cellular mortality, the oxidative stress and the apoptosis induced by DOX. The SUC protective effect was similar to the DEX effect, but the protective effect of cis-ES was higher on oxidative stress and apoptosis. In addition, the metabonomics findings pointed out several metabolic pathways involved in the cardioprotective effects of both GPR91 agonists: the stimulation of aerobic metabolism with glucose as the main fuel, redox balance and phospholipids synthesis. Finally, none of the GPR91 agonists jeopardized the pharmacological effects of DOX on MCF-7 breast cancer cells.
Collapse
Affiliation(s)
| | | | | | | | - Jean-Marie Colet
- Department of Human Biology & Toxicology, Faculty of Medicine and Pharmacy, University of Mons, Place du Parc 20, 7000 Mons, Belgium; (M.D.); (E.A.); (C.S.); (V.T.)
| |
Collapse
|
12
|
Malinowski RM, Ghiasi SM, Mandrup-Poulsen T, Meier S, Lerche MH, Ardenkjær-Larsen JH, Jensen PR. Pancreatic β-cells respond to fuel pressure with an early metabolic switch. Sci Rep 2020; 10:15413. [PMID: 32963286 PMCID: PMC7508987 DOI: 10.1038/s41598-020-72348-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 06/03/2020] [Indexed: 11/23/2022] Open
Abstract
Pancreatic β-cells become irreversibly damaged by long-term exposure to excessive glucose concentrations and lose their ability to carry out glucose stimulated insulin secretion (GSIS) upon damage. The β-cells are not able to control glucose uptake and they are therefore left vulnerable for endogenous toxicity from metabolites produced in excess amounts upon increased glucose availability. In order to handle excess fuel, the β-cells possess specific metabolic pathways, but little is known about these pathways. We present a study of β-cell metabolism under increased fuel pressure using a stable isotope resolved NMR approach to investigate early metabolic events leading up to β-cell dysfunction. The approach is based on a recently described combination of 13C metabolomics combined with signal enhanced NMR via dissolution dynamic nuclear polarization (dDNP). Glucose-responsive INS-1 β-cells were incubated with increasing concentrations of [U-13C] glucose under conditions where GSIS was not affected (2–8 h). We find that pyruvate and DHAP were the metabolites that responded most strongly to increasing fuel pressure. The two major divergence pathways for fuel excess, the glycerolipid/fatty acid metabolism and the polyol pathway, were found not only to operate at unchanged rate but also with similar quantity.
Collapse
Affiliation(s)
- Ronja M Malinowski
- Department of Health Technology, Technical University of Denmark, Oersteds Pl. Bldg. 349, Room 120, 2800, Kgs. Lyngby, Denmark
| | - Seyed M Ghiasi
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | | | - Sebastian Meier
- Department of Chemistry, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Mathilde H Lerche
- Department of Health Technology, Technical University of Denmark, Oersteds Pl. Bldg. 349, Room 120, 2800, Kgs. Lyngby, Denmark
| | - Jan H Ardenkjær-Larsen
- Department of Health Technology, Technical University of Denmark, Oersteds Pl. Bldg. 349, Room 120, 2800, Kgs. Lyngby, Denmark
| | - Pernille R Jensen
- Department of Health Technology, Technical University of Denmark, Oersteds Pl. Bldg. 349, Room 120, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
13
|
Balcerczyk A, Damblon C, Elena-Herrmann B, Panthu B, Rautureau GJP. Metabolomic Approaches to Study Chemical Exposure-Related Metabolism Alterations in Mammalian Cell Cultures. Int J Mol Sci 2020; 21:E6843. [PMID: 32961865 PMCID: PMC7554780 DOI: 10.3390/ijms21186843] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
Biological organisms are constantly exposed to an immense repertoire of molecules that cover environmental or food-derived molecules and drugs, triggering a continuous flow of stimuli-dependent adaptations. The diversity of these chemicals as well as their concentrations contribute to the multiplicity of induced effects, including activation, stimulation, or inhibition of physiological processes and toxicity. Metabolism, as the foremost phenotype and manifestation of life, has proven to be immensely sensitive and highly adaptive to chemical stimuli. Therefore, studying the effect of endo- or xenobiotics over cellular metabolism delivers valuable knowledge to apprehend potential cellular activity of individual molecules and evaluate their acute or chronic benefits and toxicity. The development of modern metabolomics technologies such as mass spectrometry or nuclear magnetic resonance spectroscopy now offers unprecedented solutions for the rapid and efficient determination of metabolic profiles of cells and more complex biological systems. Combined with the availability of well-established cell culture techniques, these analytical methods appear perfectly suited to determine the biological activity and estimate the positive and negative effects of chemicals in a variety of cell types and models, even at hardly detectable concentrations. Metabolic phenotypes can be estimated from studying intracellular metabolites at homeostasis in vivo, while in vitro cell cultures provide additional access to metabolites exchanged with growth media. This article discusses analytical solutions available for metabolic phenotyping of cell culture metabolism as well as the general metabolomics workflow suitable for testing the biological activity of molecular compounds. We emphasize how metabolic profiling of cell supernatants and intracellular extracts can deliver valuable and complementary insights for evaluating the effects of xenobiotics on cellular metabolism. We note that the concepts and methods discussed primarily for xenobiotics exposure are widely applicable to drug testing in general, including endobiotics that cover active metabolites, nutrients, peptides and proteins, cytokines, hormones, vitamins, etc.
Collapse
Affiliation(s)
- Aneta Balcerczyk
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland;
| | - Christian Damblon
- Unité de Recherche MolSys, Faculté des sciences, Université de Liège, 4000 Liège, Belgium;
| | | | - Baptiste Panthu
- CarMeN Laboratory, INSERM, INRA, INSA Lyon, Univ Lyon, Université Claude Bernard Lyon 1, 69921 Oullins CEDEX, France;
- Hospices Civils de Lyon, Faculté de Médecine, Hôpital Lyon Sud, 69921 Oullins CEDEX, France
| | - Gilles J. P. Rautureau
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs (CRMN FRE 2034 CNRS, UCBL, ENS Lyon), Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
| |
Collapse
|
14
|
Mili M, Panthu B, Madec AM, Berger MA, Rautureau GJP, Elena-Herrmann B. Fast and ergonomic extraction of adherent mammalian cells for NMR-based metabolomics studies. Anal Bioanal Chem 2020; 412:5453-5463. [PMID: 32556564 DOI: 10.1007/s00216-020-02764-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/08/2020] [Accepted: 06/08/2020] [Indexed: 11/29/2022]
Abstract
Cellular metabolomics has become key to elucidate mechanistic aspects in various fields such as cancerology or pharmacology, and is rapidly becoming a standard phenotyping tool accessible to the broad biological community. Acquisition of reliable spectroscopic datasets, such as nuclear magnetic resonance (NMR) spectra, to characterize biological systems depends on the elaboration of robust methods for cellular metabolites extraction. Previous studies have addressed many issues raised by these protocols, however with little pondering on ergonomic and practical aspects of the methods that impact their scalability, reproducibility and hence their suitability to high-throughput studies or their use by non-metabolomics experts. Here, we optimize a fast and ergonomic protocol for extraction of metabolites from adherent mammalian cells for NMR metabolomics studies. The proposed extraction protocol, including cell washing, metabolism quenching and actual extraction of intracellular metabolites, was first optimized on HeLa cells. Efficiency of the protocol, in its globality and for the different individual steps, was assessed by NMR quantification of 27 metabolites from cellular extracts. We show that a single PBS wash provides a seemly compromise between contamination from growth medium and leakage of intracellular metabolites. In HeLa cells, extraction using pure methanol, without cell scraping, recovered a higher amount of intracellular metabolites than the reference methanol/water/chloroform method with cell scraping, with yields varying across metabolite classes. Optimized and reference protocols were further tested on eight cell lines of miscellaneous nature, and inter-operator reproducibility was demonstrated. Our results stress the need for tailored extraction protocols and show that fast protocols minimizing time-consuming steps, without compromising extraction yields, are suitable for high-throughput metabolomics studies. Graphical abstract.
Collapse
Affiliation(s)
- Manhal Mili
- Institut des Sciences Analytiques UMR 5280, CRMN FRE 2034, Univ Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, 5 rue de la Doua, 69100, Villeurbanne, France
| | - Baptiste Panthu
- CarMeN laboratory, Univ Lyon, INSERM, INRA, INSA, Université Claude Bernard Lyon1, 69121, Oullins, France
| | - Anne-Marie Madec
- CarMeN laboratory, Univ Lyon, INSERM, INRA, INSA, Université Claude Bernard Lyon1, 69121, Oullins, France
| | - Marie-Agnès Berger
- CarMeN laboratory, Univ Lyon, INSERM, INRA, INSA, Université Claude Bernard Lyon1, 69121, Oullins, France
| | - Gilles J P Rautureau
- Institut des Sciences Analytiques UMR 5280, CRMN FRE 2034, Univ Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, 5 rue de la Doua, 69100, Villeurbanne, France
| | | |
Collapse
|
15
|
Lee WH, Bhute VJ, Higuchi H, Ikeda S, Palecek SP, Ikeda A. Metabolic alterations caused by the mutation and overexpression of the Tmem135 gene. Exp Biol Med (Maywood) 2020; 245:1571-1583. [PMID: 32515224 DOI: 10.1177/1535370220932856] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
IMPACT STATEMENT Mitochondria are dynamic organelles undergoing fission and fusion. Proper regulation of this process is important for healthy aging process, as aberrant mitochondrial dynamics are associated with several age-related diseases/pathologies. However, it is not well understood how imbalanced mitochondrial dynamics may lead to those diseases and pathologies. Here, we aimed to determine metabolic alterations in tissues and cells from mouse models with over-fused (fusion > fission) and over-fragmented (fusion < fission) mitochondria that display age-related disease pathologies. Our results indicated tissue-dependent sensitivity to these mitochondrial changes, and metabolic pathways likely affected by aberrant mitochondrial dynamics. This study provides new insights into how dysregulated mitochondrial dynamics could lead to functional abnormalities of tissues and cells.
Collapse
Affiliation(s)
- Wei-Hua Lee
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Vijesh J Bhute
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Hitoshi Higuchi
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sakae Ikeda
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Akihiro Ikeda
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
16
|
Dallons M, Schepkens C, Dupuis A, Tagliatti V, Colet JM. New Insights About Doxorubicin-Induced Toxicity to Cardiomyoblast-Derived H9C2 Cells and Dexrazoxane Cytoprotective Effect: Contribution of In Vitro 1H-NMR Metabonomics. Front Pharmacol 2020; 11:79. [PMID: 32153402 PMCID: PMC7044126 DOI: 10.3389/fphar.2020.00079] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/27/2020] [Indexed: 11/13/2022] Open
Abstract
Doxorubicin (DOX) is an anticancer drug widely used in oncology. The main limitation to DOX treatments though is due to the cumulative dose that may lead to cardiotoxicity. Clinically, DOX-induced cardiomyopathy develops as a progressive heart failure consecutive to a progressive loss in cardiomyocytes due to cell necrosis and apoptosis induced by DOX. For many years, the cardiac oxidative stress caused by DOX was considered as its main toxic mechanism. Therefore, several clinical trials were carried out to assess the efficacy of various antioxidants as a cardioprotective strategy. Only dexrazoxane (DEX), did significantly reduce DOX cardiotoxicity. However, since other antioxidants used later on to counteract DOX cardiotoxicity were not as successful as DEX, DOX-induced oxidative stress and DEX antioxidant activity are not considered as the main feature anymore and this led the scientific world to suspect other involved mechanisms which are still unknown. The objective of the present work was to study from a metabolic point of view the side effects of DOX and the protective properties of DEX. In vitro1H-NMR metabonomics was applied to the rat cardiomyoblastic H9C2 cell line. This strategy was used with the hope of unveiling possible new targets to cope with DOX cardiotoxicity. Another underlying goal was the validation of H9C2 in vitro model for metabolic investigations of DOX and DEX effects. For this purpose, several parameters, including oxidative stress, cell mortality, and apoptosis, were measured to assess the effects of DOX and DEX alone or in combination. The metabonomic study was carried out on cellular fluids collected after either 4 or 24 hours of DOX-exposure. Under such experimental conditions, both the major adverse effects reported in patients exposed to DOX and the protective effect of DEX were demonstrated in vitro, suggesting that the H9C2 in vitro model is relevant to investigate both DOX cardiotoxicity and putative cardioprotective strategies. In addition, the metabonomics findings highlighted several metabolic pathways involved in DOX cardiotoxicity and DEX cardioprotective effects as potential metabolic targets for cardioprotection: energy metabolism, redox balance, as well as phospholipids and proteins metabolism.
Collapse
Affiliation(s)
- Matthieu Dallons
- Department of Human Biology and Toxicology, Faculty of Medicine and Pharmacy, University of Mons, Mons, Belgium
| | - Corentin Schepkens
- Department of Human Biology and Toxicology, Faculty of Medicine and Pharmacy, University of Mons, Mons, Belgium
| | - Aurélie Dupuis
- Department of Human Biology and Toxicology, Faculty of Medicine and Pharmacy, University of Mons, Mons, Belgium
| | - Vanessa Tagliatti
- Department of Human Biology and Toxicology, Faculty of Medicine and Pharmacy, University of Mons, Mons, Belgium
| | - Jean-Marie Colet
- Department of Human Biology and Toxicology, Faculty of Medicine and Pharmacy, University of Mons, Mons, Belgium
| |
Collapse
|
17
|
Rivlin M, Navon G. Molecular imaging of tumors by chemical exchange saturation transfer MRI of glucose analogs. Quant Imaging Med Surg 2019; 9:1731-1746. [PMID: 31728315 DOI: 10.21037/qims.2019.09.12] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Early detection of the cancerous process would benefit greatly from imaging at the cellular and molecular level. Increased glucose demand has been recognized as one of the hallmarks of cancerous cells (the "Warburg effect"), hence glucose and its analogs are commonly used for cancer imaging. One example is FDG-PET technique, that led to the use of chemical exchange saturation transfer (CEST) MRI of glucose ("glucoCEST") for tumor imaging. This technique combines high-resolution MRI obtained by conventional imaging with simultaneous molecular information obtained from the exploitation of agents with exchangeable protons from amine, amide or hydroxyl residues with the water signal. In the case of glucoCEST, these agents are based on glucose or its analogs. Recently, preclinical glucoCEST studies demonstrated the ability to increase the sensitivity of MRI to the level of metabolic activity, enabling identification of tumor staging, biologic potential, treatment planning, therapy response and local recurrence, in addition to guiding target biopsy for clinically suspected cancer. However, natural glucose limits this method because of its rapid conversion to lactic acid, leading to reduced CEST effect and short signal duration. For that reason, a variety of glucose analogs have been tested as alternatives to the original glucoCEST. This review discusses the merits of these analogs, including new data on glucose analogs heretofore not reported in the literature. This summarized preclinical data may help strengthen the translation of CEST MRI of glucose analogs into the clinic, improving cancer imaging to enable early intervention without the need for invasive techniques. The data should also broaden our knowledge of fundamental biological processes.
Collapse
Affiliation(s)
- Michal Rivlin
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Gil Navon
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
18
|
NMR metabolomics for evaluating passage number and harvesting effects on mammalian cell metabolome. Anal Biochem 2019; 576:20-32. [DOI: 10.1016/j.ab.2019.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/01/2019] [Accepted: 04/01/2019] [Indexed: 12/18/2022]
|
19
|
Nuclear Magnetic Resonance Measurement of Metabolic Flux Using 13C and 1H Signals. Methods Mol Biol 2019. [PMID: 31127544 DOI: 10.1007/978-1-4939-9488-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Metabolic flux modeling is a complementary technique to standard metabolomics/metabonomics as routinely practiced in biological systems. Here we outline carbon-13-based isotopomer analysis using nuclear magnetic resonance as the primary analytical technique. Isotopomer analysis produces relative rates of tricarboxylic acid cycle turnover. If these measures are normalized to O2 consumption, absolute rates can be inferred. The primary biological system targeted in this review is cell culture.
Collapse
|
20
|
Teplyakova SB, Shavarda AL, Shelenga TV, Dzyubenko EA, Potokina EK. A simple and efficient method to extract polar metabolites from guar leaves (Cyamopsis tetragonoloba (L.) Taub.) for GC-MS metabolome analysis. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj19.460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Guar (Cyamopsis tetragonoloba (L.) Taub.) is an agricultural crop species new to Russia and is in demand by the gas, oil and food industries. Due to the progress of “omics” technologies and the marker-assisted selection, there is a huge interest in the studies that compare the metabolites of various guar varieties, employing metabolomics as a method of functional genomics. For a large-scale screening of guar germplasm from the VIR collection, it is important to choose an efficient method to extract metabolites from samples. The accuracy of the assessment of the content of metabolites in samples is crucial for distinguishing varieties within the crop, since the metabolome profiles of plants within the same species differ mainly in the quantitative ratio of metabolites, and not in their qualitative composition. In metabolome practice, two methods of extracting polar compounds are usually employed in the preparation of samples for GC-MS analysis. One of the widely used methods of sample preparation is the long-term extraction of metabolites from whole tissues with the aid of a methanol solvent. Another method of sample preparation is based on the short-term methanol extraction of metabolites from frozen and homogenized material. The advantages and disadvantages of these two methods revealed in the course of our work have prompted us to develop a new approach that avoids some difficulties in analyzing the metabolic profiles of leaves of various guar varieties. The method we suggested combines the advantages of the two above-mentioned approaches of sample preparation, namely eliminates the loss of metabolites due to centrifugation and ensures the complete destruction of all cell walls, ensuring the maximum extraction level of polar metabolites. The essence of the new method is that the leaf is rapidly frozen in liquid nitrogen with subsequent thawing in cold methanol. Thus, leaf tissues retain morphological integrity, and subsequent centrifugation, necessary for homogenization, is skipped. We have checked the effectiveness of this improved method by experiments with leaf samples of three guar genotypes. It has been shown that the amount of extracted metabolites increases more than 5-fold compared to extraction with methanol from fresh unfrozen leaf tissues and more than 2-fold compared to extraction with methanol after freezing and homogenization. Extraction of metabolites using the new method allows the GC-MS analysis of guar samples to be conducted with the least loss and high accuracy required to distinguish varieties.
Collapse
Affiliation(s)
- S. B. Teplyakova
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)
| | - A. L. Shavarda
- St. Petersburg State University; Komarov Botanical Institute, RAS
| | - T. V. Shelenga
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)
| | - E. A. Dzyubenko
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)
| | - E. K. Potokina
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR); St. Petersburg State University
| |
Collapse
|
21
|
Development of a simple and efficient method of harvesting and lysing adherent mammalian cells for chemical isotope labeling LC-MS-based cellular metabolomics. Anal Chim Acta 2018; 1037:97-106. [DOI: 10.1016/j.aca.2017.11.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/10/2017] [Accepted: 11/18/2017] [Indexed: 02/08/2023]
|
22
|
Yanibada B, Boudra H, Debrauwer L, Martin C, Morgavi DP, Canlet C. Evaluation of sample preparation methods for NMR-based metabolomics of cow milk. Heliyon 2018; 4:e00856. [PMID: 30364606 PMCID: PMC6197446 DOI: 10.1016/j.heliyon.2018.e00856] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/24/2018] [Accepted: 10/10/2018] [Indexed: 01/26/2023] Open
Abstract
The quality of milk metabolome analyzed by nuclear magnetic resonance (NMR) is greatly influenced by the way samples are prepared. Although this analytical method is increasingly used to study milk metabolites, a thorough examination of available sample preparation protocols for milk has not been reported yet. We evaluated the performance of eight milk preparation methods namely (1) raw milk without any processing; (2) skimmed milk; (3) ultrafiltered milk; (4) skimming followed by ultrafiltration; (5) ultracentrifuged milk; (6) methanol; (7) dichloromethane; and (8) methanol/dichloromethane, in terms of spectra quality, repeatability, signal-to-noise ratio, extraction efficiency and yield criteria. A pooled sample of milk was used for all protocols. Skimming, ultracentrifugation and unprocessed milk protocols showed poor NMR spectra quality. Protocols involving multiple steps, namely methanol/dichloromethane extraction, and skimming followed by ultrafiltration produced inadequate results for signal-to-noise ratio parameter. Methanol and skimming associated to ultrafiltration provided good repeatability results compared to the other protocols. Chemical-based sample preparation protocols, particularly methanol, showed more efficient metabolite extraction compared to physical preparation methods. When considering all evaluation parameters, the methanol extraction protocol proved to be the best method. As a proof of utility, methanol protocol was then applied to milk samples from dairy cows fed a diet with or without a feed additive, showing a clear separation between the two groups of cows.
Collapse
Affiliation(s)
- Bénédict Yanibada
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores, F-63122, Saint-Genès-Champanelle, France
| | - Hamid Boudra
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores, F-63122, Saint-Genès-Champanelle, France
| | - Laurent Debrauwer
- Toxalim, Research Centre in Food Toxicology, Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, F-31027, Toulouse, France.,Axiom Platform, MetaToul-MetaboHUB, National Infrastructure for Metabolomics and Fluxomics, F-31027, Toulouse, France
| | - Cécile Martin
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores, F-63122, Saint-Genès-Champanelle, France
| | - Diego P Morgavi
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores, F-63122, Saint-Genès-Champanelle, France
| | - Cécile Canlet
- Toxalim, Research Centre in Food Toxicology, Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, F-31027, Toulouse, France.,Axiom Platform, MetaToul-MetaboHUB, National Infrastructure for Metabolomics and Fluxomics, F-31027, Toulouse, France
| |
Collapse
|
23
|
A multi-omics analysis of the regulatory changes induced by miR-223 in a monocyte/macrophage cell line. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2664-2678. [PMID: 29778662 DOI: 10.1016/j.bbadis.2018.05.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/15/2018] [Indexed: 02/06/2023]
|
24
|
Armiñán A, Palomino-Schätzlein M, Deladriere C, Arroyo-Crespo JJ, Vicente-Ruiz S, Vicent MJ, Pineda-Lucena A. Metabolomics facilitates the discrimination of the specific anti-cancer effects of free- and polymer-conjugated doxorubicin in breast cancer models. Biomaterials 2018; 162:144-153. [PMID: 29448142 DOI: 10.1016/j.biomaterials.2018.02.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/31/2018] [Accepted: 02/07/2018] [Indexed: 01/22/2023]
Abstract
Metabolomics is becoming a relevant tool for understanding the molecular mechanisms involved in the response to new drug delivery systems. The applicability of this experimental approach to cell cultures and animal models makes metabolomics a useful tool for establishing direct connections between in vitro and in vivo data, thus providing a reliable platform for the characterization of chemotherapeutic agents. Herein, we used metabolomic profiles based on nuclear magnetic resonance (NMR) spectroscopy to evaluate the biochemical pathways involved in the response to a chemotherapeutic anthracycline drug (Doxorubicin, Dox) and an N-(2-hydroxypropyl) methacrylamide (HPMA) copolymer-conjugated form (HPMA-Dox) in an in vitro cell culture model and an in vivo orthotopic breast cancer model. We also used protein expression and flow cytometry studies to obtain a better coverage of the biochemical alterations associated with the administration of these compounds. The overall analysis revealed that polymer conjugation leads to increased apoptosis, reduced glycolysis, and reduced levels of phospholipids when compared to the free chemotherapeutic drug. Our results represent a first step in the application of integrated in vitro and in vivo metabolomic studies to the evaluation of drug delivery systems.
Collapse
Affiliation(s)
- Ana Armiñán
- Polymer Therapeutics Laboratory, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Martina Palomino-Schätzlein
- Joint Research Unit in Clinical Metabolomics, Centro de Investigación Príncipe Felipe / Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Coralie Deladriere
- Polymer Therapeutics Laboratory, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Juan J Arroyo-Crespo
- Polymer Therapeutics Laboratory, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Sonia Vicente-Ruiz
- Polymer Therapeutics Laboratory, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - María J Vicent
- Polymer Therapeutics Laboratory, Centro de Investigación Príncipe Felipe, Valencia, Spain.
| | - Antonio Pineda-Lucena
- Joint Research Unit in Clinical Metabolomics, Centro de Investigación Príncipe Felipe / Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Drug Discovery Unit, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.
| |
Collapse
|
25
|
Hayton S, Maker GL, Mullaney I, Trengove RD. Experimental design and reporting standards for metabolomics studies of mammalian cell lines. Cell Mol Life Sci 2017; 74:4421-4441. [PMID: 28669031 PMCID: PMC11107723 DOI: 10.1007/s00018-017-2582-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 06/21/2017] [Accepted: 06/26/2017] [Indexed: 02/07/2023]
Abstract
Metabolomics is an analytical technique that investigates the small biochemical molecules present within a biological sample isolated from a plant, animal, or cultured cells. It can be an extremely powerful tool in elucidating the specific metabolic changes within a biological system in response to an environmental challenge such as disease, infection, drugs, or toxins. A historically difficult step in the metabolomics pipeline is in data interpretation to a meaningful biological context, for such high-variability biological samples and in untargeted metabolomics studies that are hypothesis-generating by design. One way to achieve stronger biological context of metabolomic data is via the use of cultured cell models, particularly for mammalian biological systems. The benefits of in vitro metabolomics include a much greater control of external variables and no ethical concerns. The current concerns are with inconsistencies in experimental procedures and level of reporting standards between different studies. This review discusses some of these discrepancies between recent studies, such as metabolite extraction and data normalisation. The aim of this review is to highlight the importance of a standardised experimental approach to any cultured cell metabolomics study and suggests an example procedure fully inclusive of information that should be disclosed in regard to the cell type/s used and their culture conditions. Metabolomics of cultured cells has the potential to uncover previously unknown information about cell biology, functions and response mechanisms, and so the accurate biological interpretation of the data produced and its ability to be compared to other studies should be considered vitally important.
Collapse
Affiliation(s)
- Sarah Hayton
- Separation Sciences and Metabolomics Laboratories, Murdoch University, Perth, WA, Australia
- School of Veterinary and Life Sciences, Murdoch University, 90 South St, Murdoch, WA, 6150, Australia
| | - Garth L Maker
- Separation Sciences and Metabolomics Laboratories, Murdoch University, Perth, WA, Australia.
- School of Veterinary and Life Sciences, Murdoch University, 90 South St, Murdoch, WA, 6150, Australia.
| | - Ian Mullaney
- School of Veterinary and Life Sciences, Murdoch University, 90 South St, Murdoch, WA, 6150, Australia
| | - Robert D Trengove
- Separation Sciences and Metabolomics Laboratories, Murdoch University, Perth, WA, Australia
| |
Collapse
|
26
|
Bhute VJ, Bao X, Dunn KK, Knutson KR, McCurry EC, Jin G, Lee WH, Lewis S, Ikeda A, Palecek SP. Metabolomics Identifies Metabolic Markers of Maturation in Human Pluripotent Stem Cell-Derived Cardiomyocytes. Theranostics 2017; 7:2078-2091. [PMID: 28656061 PMCID: PMC5485423 DOI: 10.7150/thno.19390] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 03/22/2017] [Indexed: 12/18/2022] Open
Abstract
Cardiovascular disease is a leading cause of death worldwide. Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) hold immense clinical potential and recent studies have enabled generation of virtually pure hPSC-CMs with high efficiency in chemically defined and xeno-free conditions. Despite these advances, hPSC-CMs exhibit an immature phenotype and are arrhythmogenic in vivo, necessitating development of strategies to mature these cells. hPSC-CMs undergo significant metabolic alterations during differentiation and maturation. A detailed analysis of the metabolic changes accompanying maturation of hPSC-CMs may prove useful in identifying new strategies to expedite hPSC-CM maturation and also may provide biomarkers for testing or validating hPSC-CM maturation. In this study we identified global metabolic changes which take place during long-term culture and maturation of hPSC-CMs derived from three different hPSC lines. We have identified several metabolic pathways, including phospholipid metabolism and pantothenate and Coenzyme A metabolism, which showed significant enrichment upon maturation in addition to fatty acid oxidation and metabolism. We also identified increases in glycerophosphocholine and the glycerophosphocholine:phosphocholine ratio as potential metabolic biomarkers of maturation. These biomarkers were also affected in a similar manner during murine heart development in vivo. These results support that hPSC-CM maturation is associated with extensive metabolic changes in metabolic network utilization and understanding the roles of these metabolic changes has the potential to develop novel approaches to monitor and expedite hPSC-CM maturation.
Collapse
Affiliation(s)
- Vijesh J. Bhute
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Xiaoping Bao
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kaitlin K. Dunn
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kylie R. Knutson
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Eric C. McCurry
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Gyuhyung Jin
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Wei-Hua Lee
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sarah Lewis
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Akihiro Ikeda
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sean P. Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
27
|
CEST MRI of 3-O-methyl-D-glucose on different breast cancer models. Magn Reson Med 2017; 79:1061-1069. [DOI: 10.1002/mrm.26752] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 04/15/2017] [Accepted: 04/20/2017] [Indexed: 01/29/2023]
|
28
|
Bhute VJ, Ma Y, Bao X, Palecek SP. The Poly (ADP-Ribose) Polymerase Inhibitor Veliparib and Radiation Cause Significant Cell Line Dependent Metabolic Changes in Breast Cancer Cells. Sci Rep 2016; 6:36061. [PMID: 27811964 PMCID: PMC5095763 DOI: 10.1038/srep36061] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/04/2016] [Indexed: 12/22/2022] Open
Abstract
Breast tumors are characterized into subtypes based on their surface marker expression, which affects their prognosis and treatment. Poly (ADP-ribose) polymerase (PARP) inhibitors have shown promising results in clinical trials, both as single agents and in combination with other chemotherapeutics, in several subtypes of breast cancer patients. Here, we used NMR-based metabolomics to probe cell line-specific effects of the PARP inhibitor Veliparib and radiation on metabolism in three breast cancer cell lines. Our data reveal several cell line-independent metabolic changes upon PARP inhibition. Pathway enrichment and topology analysis identified that nitrogen metabolism, glycine, serine and threonine metabolism, aminoacyl-tRNA biosynthesis and taurine and hypotaurine metabolism were enriched after PARP inhibition in all three breast cancer cell lines. Many metabolic changes due to radiation and PARP inhibition were cell line-dependent, highlighting the need to understand how these treatments affect cancer cell response via changes in metabolism. Finally, both PARP inhibition and radiation induced a similar metabolic responses in BRCA-mutant HCC1937 cells, but not in MCF7 and MDAMB231 cells, suggesting that radiation and PARP inhibition share similar interactions with metabolic pathways in BRCA mutant cells. Our study emphasizes the importance of differences in metabolic responses to cancer treatments in different subtypes of cancers.
Collapse
Affiliation(s)
- Vijesh J Bhute
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yan Ma
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Xiaoping Bao
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
29
|
Barnes S, Benton HP, Casazza K, Cooper SJ, Cui X, Du X, Engler J, Kabarowski JH, Li S, Pathmasiri W, Prasain JK, Renfrow MB, Tiwari HK. Training in metabolomics research. I. Designing the experiment, collecting and extracting samples and generating metabolomics data. JOURNAL OF MASS SPECTROMETRY : JMS 2016; 51:461-75. [PMID: 27434804 PMCID: PMC4964969 DOI: 10.1002/jms.3782] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 04/07/2016] [Accepted: 04/24/2016] [Indexed: 05/16/2023]
Abstract
The study of metabolism has had a long history. Metabolomics, a systems biology discipline representing analysis of known and unknown pathways of metabolism, has grown tremendously over the past 20 years. Because of its comprehensive nature, metabolomics requires careful consideration of the question(s) being asked, the scale needed to answer the question(s), collection and storage of the sample specimens, methods for extraction of the metabolites from biological matrices, the analytical method(s) to be employed and the quality control of the analyses, how collected data are correlated, the statistical methods to determine metabolites undergoing significant change, putative identification of metabolites and the use of stable isotopes to aid in verifying metabolite identity and establishing pathway connections and fluxes. The National Institutes of Health Common Fund Metabolomics Program was established in 2012 to stimulate interest in the approaches and technologies of metabolomics. To deliver one of the program's goals, the University of Alabama at Birmingham has hosted an annual 4-day short course in metabolomics for faculty, postdoctoral fellows and graduate students from national and international institutions. This paper is the first part of a summary of the training materials presented in the course to be used as a resource for all those embarking on metabolomics research. The complete set of training materials including slide sets and videos can be viewed at http://www.uab.edu/proteomics/metabolomics/workshop/workshop_june_2015.php. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Stephen Barnes
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Department of Pharmacology and Toxicology, School of Medicine University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | | | - Krista Casazza
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | | | - Xiangqin Cui
- Section on Statistical Genetics, School of Public Health University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Xiuxia Du
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Jeffrey Engler
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Janusz H. Kabarowski
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Shuzhao Li
- Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Wimal Pathmasiri
- RTI International, Research Triangle Park, Durham, NC, 27709, USA
| | - Jeevan K. Prasain
- Department of Pharmacology and Toxicology, School of Medicine University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Matthew B. Renfrow
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Hemant K. Tiwari
- Section on Statistical Genetics, School of Public Health University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| |
Collapse
|
30
|
Lauri I, Savorani F, Iaccarino N, Zizza P, Pavone LM, Novellino E, Engelsen SB, Randazzo A. Development of an Optimized Protocol for NMR Metabolomics Studies of Human Colon Cancer Cell Lines and First Insight from Testing of the Protocol Using DNA G-Quadruplex Ligands as Novel Anti-Cancer Drugs. Metabolites 2016; 6:E4. [PMID: 26784246 PMCID: PMC4812333 DOI: 10.3390/metabo6010004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/07/2016] [Accepted: 01/11/2016] [Indexed: 02/06/2023] Open
Abstract
The study of cell lines by nuclear magnetic resonance (NMR) spectroscopy metabolomics represents a powerful tool to understand how the local metabolism and biochemical pathways are influenced by external or internal stimuli. In particular, the use of adherent mammalian cells is emerging in the metabolomics field in order to understand the molecular mechanism of disease progression or, for example, the cellular response to drug treatments. Hereto metabolomics investigations for this kind of cells have generally been limited to mass spectrometry studies. This study proposes an optimized protocol for the analysis of the endo-metabolome of human colon cancer cells (HCT116) by NMR. The protocol includes experimental conditions such as washing, quenching and extraction. In order to test the proposed protocol, it was applied to an exploratory study of cancer cells with and without treatment by anti-cancer drugs, such as DNA G-quadruplex binders and Adriamycin (a traditional anti-cancer drug). The exploratory NMR metabolomics analysis resulted in NMR assignment of all endo-metabolites that could be detected and provided preliminary insights about the biological behavior of the drugs tested.
Collapse
Affiliation(s)
- Ilaria Lauri
- Department of Pharmacy, University of Naples "Federico II", via D. Montesano 49, 80131 Naples, Italy.
| | - Francesco Savorani
- Spectroscopy & Chemometrics, Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark.
- Department of Applied Science and Technology (DISAT), Polytechnic University of Turin-Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Nunzia Iaccarino
- Department of Pharmacy, University of Naples "Federico II", via D. Montesano 49, 80131 Naples, Italy.
| | - Pasquale Zizza
- Experimental Chemotherapy Laboratory, Regina Elena National Cancer Institute, 00158 Rome, Italy.
| | - Luigi Michele Pavone
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", via S. Pansini 5, 80131 Naples, Italy.
| | - Ettore Novellino
- Department of Pharmacy, University of Naples "Federico II", via D. Montesano 49, 80131 Naples, Italy.
| | - Søren Balling Engelsen
- Spectroscopy & Chemometrics, Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark.
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples "Federico II", via D. Montesano 49, 80131 Naples, Italy.
| |
Collapse
|
31
|
Madji Hounoum B, Blasco H, Emond P, Mavel S. Liquid chromatography–high-resolution mass spectrometry-based cell metabolomics: Experimental design, recommendations, and applications. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2015.08.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
32
|
Bhute VJ, Palecek SP. Metabolic responses induced by DNA damage and poly (ADP-ribose) polymerase (PARP) inhibition in MCF-7 cells. Metabolomics 2015; 11:1779-1791. [PMID: 26478723 PMCID: PMC4606886 DOI: 10.1007/s11306-015-0831-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 07/13/2015] [Indexed: 11/30/2022]
Abstract
Genomic instability is one of the hallmarks of cancer. Several chemotherapeutic drugs and radiotherapy induce DNA damage to prevent cancer cell replication. Cells in turn activate different DNA damage response (DDR) pathways to either repair the damage or induce cell death. These DDR pathways also elicit metabolic alterations which can play a significant role in the proper functioning of the cells. The understanding of these metabolic effects resulting from different types of DNA damage and repair mechanisms is currently lacking. In this study, we used NMR metabolomics to identify metabolic pathways which are altered in response to different DNA damaging agents. By comparing the metabolic responses in MCF-7 cells, we identified the activation of poly (ADP-ribose) polymerase (PARP) in methyl methanesulfonate (MMS)-induced DNA damage. PARP activation led to a significant depletion of NAD+. PARP inhibition using veliparib (ABT-888) was able to successfully restore the NAD+ levels in MMS-treated cells. In addition, double strand break induction by MMS and veliparib exhibited similar metabolic responses as zeocin, suggesting an application of metabolomics to classify the types of DNA damage responses. This prediction was validated by studying the metabolic responses elicited by radiation. Our findings indicate that cancer cell metabolic responses depend on the type of DNA damage responses and can also be used to classify the type of DNA damage.
Collapse
Affiliation(s)
- Vijesh J. Bhute
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sean P. Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
33
|
Madji Hounoum B, Blasco H, Nadal-Desbarats L, Diémé B, Montigny F, Andres CR, Emond P, Mavel S. Analytical methodology for metabolomics study of adherent mammalian cells using NMR, GC-MS and LC-HRMS. Anal Bioanal Chem 2015; 407:8861-72. [PMID: 26446897 DOI: 10.1007/s00216-015-9047-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/03/2015] [Accepted: 09/14/2015] [Indexed: 10/23/2022]
Abstract
We developed a methodology for the analysis of intracellular metabolites using nuclear magnetic resonance spectrometry (NMR), gas-chromatography coupled with mass spectrometry (GC-MS), and liquid chromatography coupled with high resolution mass spectrometry (LC-HRMS). The main steps for analysis of adherent cells in order to recover the widest possible range of intracellular compounds are blocking metabolic activity by quenching and extraction of intracellular metabolites. We explored three protocols to quench NSC-34 cell metabolism and four different extraction methods, analyzed by NMR. On the basis of the number of metabolites extracted and their relative standard deviation (RSD) analyzed by NMR, the most reproducible protocol [quenching by MeOH at -40 °C and extraction with CH2Cl2/MeOH/H2O (3:3:2)] was used to obtain intracellular media to be analyzed by GC-MS and LC-HRMS. GC-MS analysis was optimized by three oximation procedures followed by silylation derivatization and these were compared to silylation alone. Using reversed-phase liquid chromatography (C18), four different gradients for LC-MS were compared. The analytical protocols were determined to establish the reliability and suitability of sample treatments required to achieve the correct biological analysis of untargeted mammalian cell metabolomics.
Collapse
Affiliation(s)
- Blandine Madji Hounoum
- INSERM U930 "Imagerie et Cerveau", CHRU de Tours, Université François-Rabelais, 10 Bv Tonnellé, 37044, Tours, France
| | - Hélène Blasco
- INSERM U930 "Imagerie et Cerveau", CHRU de Tours, Université François-Rabelais, 10 Bv Tonnellé, 37044, Tours, France
| | - Lydie Nadal-Desbarats
- INSERM U930 "Imagerie et Cerveau", CHRU de Tours, Université François-Rabelais, 10 Bv Tonnellé, 37044, Tours, France
| | - Binta Diémé
- INSERM U930 "Imagerie et Cerveau", CHRU de Tours, Université François-Rabelais, 10 Bv Tonnellé, 37044, Tours, France
| | - Frédéric Montigny
- INSERM U930 "Imagerie et Cerveau", CHRU de Tours, Université François-Rabelais, 10 Bv Tonnellé, 37044, Tours, France
| | - Christian R Andres
- INSERM U930 "Imagerie et Cerveau", CHRU de Tours, Université François-Rabelais, 10 Bv Tonnellé, 37044, Tours, France
| | - Patrick Emond
- INSERM U930 "Imagerie et Cerveau", CHRU de Tours, Université François-Rabelais, 10 Bv Tonnellé, 37044, Tours, France
| | - Sylvie Mavel
- INSERM U930 "Imagerie et Cerveau", CHRU de Tours, Université François-Rabelais, 10 Bv Tonnellé, 37044, Tours, France.
| |
Collapse
|
34
|
Nagato EG, Lankadurai BP, Soong R, Simpson AJ, Simpson MJ. Development of an NMR microprobe procedure for high-throughput environmental metabolomics of Daphnia magna. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2015; 53:745-53. [PMID: 25891518 DOI: 10.1002/mrc.4236] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 11/21/2014] [Accepted: 02/14/2015] [Indexed: 05/20/2023]
Abstract
Nuclear magnetic resonance (NMR) is the primary platform used in high-throughput environmental metabolomics studies because its non-selectivity is well suited for non-targeted approaches. However, standard NMR probes may limit the use of NMR-based metabolomics for tiny organisms because of the sample volumes required for routine metabolic profiling. Because of this, keystone ecological species, such as the water flea Daphnia magna, are not commonly studied because of the analytical challenges associated with NMR-based approaches. Here, the use of a 1.7-mm NMR microprobe in analyzing tissue extracts from D. magna is tested. Three different extraction procedures (D2O-based buffer, Bligh and Dyer, and acetonitrile : methanol : water) were compared in terms of the yields and breadth of polar metabolites. The D2O buffer extraction yielded the most metabolites and resulted in the best reproducibility. Varying amounts of D. magna dry mass were extracted to optimize metabolite isolation from D. magna tissues. A ratio of 1-1.5-mg dry mass to 40 µl of extraction solvent provided excellent signal-to-noise and spectral resolution using (1)H NMR. The metabolite profile of a single daphnid was also investigated (approximately 0.2 mg). However, the signal-to-noise of the (1)H NMR was considerably lower, and while feasible for select applications would likely not be appropriate for high-throughput NMR-based metabolomics. Two-dimensional NMR experiments on D. magna extracts were also performed using the 1.7-mm NMR probe to confirm (1)H NMR metabolite assignments. This study provides an NMR-based analytical framework for future metabolomics studies that use D. magna in ecological and ecotoxicity studies.
Collapse
Affiliation(s)
- Edward G Nagato
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - Brian P Lankadurai
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - Ronald Soong
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - André J Simpson
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - Myrna J Simpson
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| |
Collapse
|
35
|
Nakata K, Sato N, Hirakawa K, Asakura T, Suzuki T, Zhu R, Asano T, Koike K, Ohno Y, Yokota H. Pattern recognition analysis of proton nuclear magnetic resonance spectra of extracts of intestinal epithelial cells under oxidative stress. J NIPPON MED SCH 2015; 81:236-47. [PMID: 25186577 DOI: 10.1272/jnms.81.236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Mesenteric ischemia-reperfusion induces gut mucosal damage. Intestinal mucosal wounds are repaired by epithelial restitution. Although many different molecular mechanisms have been shown to affect cell metabolism under oxidative conditions, these molecular mechanisms and metabolic phenotypes are not well understood. Nuclear magnetic resonance (NMR) spectroscopic data can be used to study metabolic phenotypes in biological systems. Pattern recognition with multivariate analysis is one chemometric technique. The purpose of this study was to visualize, using a chemometric technique to interpret NMR data, different degrees of oxidant injury in rat small intestine (IEC-6) cells exposed to H2O2. METHODS Oxidant stress was induced by H2O2 in IEC-6 cells. Cell restitution and viability were assessed at different H2O2 concentrations and time points. Cells were harvested for pattern recognition analysis of (1)H-NMR data. RESULTS Cell viability and restitution were significantly suppressed by H2O2 in a dose-dependent manner compared with control. Each class was clearly separated into clusters by partial least squares discriminant analysis, and class variance was greater than 90% from 2 factors. CONCLUSION Pattern recognition of NMR spectral data using a chemometric technique clearly visualized the differences of oxidant injury in IEC-6 cells under oxidant stress.
Collapse
Affiliation(s)
- Keiji Nakata
- Department of Emergency and Critical Care Medicine, Nippon Medical School
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Madhu B, Dadulescu M, Griffiths J. Artefacts in 1H NMR-based metabolomic studies on cell cultures. MAGMA (NEW YORK, N.Y.) 2015; 28:161-71. [PMID: 25108704 DOI: 10.1007/s10334-014-0458-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/17/2014] [Accepted: 07/22/2014] [Indexed: 10/24/2022]
Abstract
OBJECT Metabolomic studies on cultured cells involve assays of cell extracts and culture medium, both of which are often performed by (1)H NMR. Cell culture is nowadays performed in plastic dishes or flasks, and the extraction of metabolites from the cells is typically performed with perchloric acid, methanol-chloroform, or acetonitrile, ideally while the cells are still adherent to the culture dish. We conducted this investigation to identify contaminants from cell culture plasticware in metabolomic studies. MATERIALS AND METHODS Human diploid fibroblasts (IMR90) (n = 6), HeLa cells (n = 6), and transformed astrocytes with HIF-1 knockout (Astro-KO) (n = 6) were cultured. Cells were seeded in 100 mm Petri dishes with 10 ml complete growth medium (Dulbecco's minimum essential medium) containing 10 % foetal bovine serum (FBS). Cell cultures were incubated at 37 °C in 5 % CO2 for approximately 3 days. Metabolites were extracted by use of a perchloric acid procedure. (1)H NMR spectroscopy was used for metabolite analysis. "Null sample" (i.e. cell-free) experiments were performed by either rinsing dishes with medium or incubating the medium in Petri dishes from five different manufacturers for 72 h and then by performing a dummy "extraction" of each Petri dish by the perchloric acid, methanol-chloroform, or acetonitrile procedures. Principal components analysis was used for classification of samples and to determine the contaminants arising from plasticware. RESULTS We found that even brief rinsing of cell culture plasticware with culture medium elutes artefactual chemicals, the (1)H NMR signals of which could confound assays of acetate, succinate, and glycolate. Incubation of culture medium in cell-culture dishes for 72 h (as in a typical cell-culture experiment) followed by perchloric extraction in the dishes enhanced elution of the artefacts. These artefacts were present, but somewhat less pronounced, in the (1)H NMR spectra of null samples extracted with methanol and acetonitrile. Ethanol, lactate, alanine, fructose, and fumarate signals that appear in the (1)H NMR spectrum of the unused (pure) medium originate from FBS. CONCLUSIONS Plastic Petri dishes from five different manufacturers gave rise to essentially identical artefactual peaks. Use of a pH indicator to assist neutralisation introduced still more artefactual signals in the aromatic region, as well as methanol and ethanol signals. Methanol and acetonitrile extracts also contained artefacts arising from the plasticware, although the amounts were less than in the perchloric acid extracts. Finally, we provide suggestions for minimizing these artefacts. The best practice would be to run a "null" extraction with every batch of cellular metabolomics experiments to test for contamination and to provide a "background" spectrum.
Collapse
Affiliation(s)
- Basetti Madhu
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK,
| | | | | |
Collapse
|
37
|
Daily consumption of white tea (Camellia sinensis (L.)) improves the cerebral cortex metabolic and oxidative profile in prediabetic Wistar rats. Br J Nutr 2015; 113:832-42. [PMID: 25716141 DOI: 10.1017/s0007114514004395] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Diabetes mellitus (DM) is a major public health problem and its incidence is rising dramatically. The brain, particularly the cerebral cortex, is very susceptible to glucose fluctuations and hyperglycaemia-induced oxidative stress. Tea (Camellia sinensis (L.)) is widely consumed; however, the antidiabetic properties of white tea remain largely unexplored. In the present study, we investigated the effects of daily consumption of white tea on the cerebral cortex of prediabetic rats. The cerebral cortex metabolic profile was evaluated, and the expression levels of GLUT, phosphofructokinase-1, lactate dehydrogenase (LDH) and monocarboxylate transporter 4 were assessed. LDH activity was also determined. The cerebral cortex oxidative profile was determined by evaluating its antioxidant power, lipid peroxidation and protein oxidation levels. Catalase, glutathione, glutamate, N-acetylaspartate, aspartate, choline, γ-aminobutyric acid, taurine and valine contents were determined. Daily consumption of white tea ameliorated glucose tolerance and insulin sensitivity. Moreover, white tea altered the cortex glycolytic profile, modulating GLUT expression and lactate and alanine contents. Finally, white tea consumption restored protein oxidation and lipid peroxidation levels and catalase expression, and improved antioxidant capacity. In conclusion, daily consumption of white tea improved the cerebral cortex metabolic and oxidative profile in prediabetic rats, suggesting it as a good, safe and inexpensive strategy to prevent DM-related effects in the cerebral cortex.
Collapse
|
38
|
Abstract
Metabonomics is a cross-disciplinary science that overlaps with analytical chemistry, biology, and statistical analysis. The techniques commonly used are proton nuclear magnetic resonance ((1)H NMR) spectroscopy and mass spectrometry (MS). Applying (1)H NMR on cell extracts provides a rapid and comprehensive screening of the most abundant metabolites allowing the quantitation of typically 20-70 compounds (depending on the type of sample) including amino and organic acids, sugars, amines, nucleosides, phenolic compounds, osmolytes, and lipids produced at sublevel millimolar concentrations. The sample preparation is usually kept minimal making the method particularly suited to high-throughput analysis (up to 100 samples/24 h with the use of a 60-holder autosampler). This chapter describes procedures for profiling liquids and solids of biological origin from plants, food, microbes, and mammalian systems.
Collapse
Affiliation(s)
- Gwénaëlle Le Gall
- Metabolomics Unit, Institute of Food Research, Norwich Research Park, NR4 7UA, Norwich, UK,
| |
Collapse
|
39
|
Enhancement of production of protein biopharmaceuticals by mammalian cell cultures: the metabolomics perspective. Curr Opin Biotechnol 2014; 30:73-9. [DOI: 10.1016/j.copbio.2014.06.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 05/26/2014] [Accepted: 06/08/2014] [Indexed: 01/01/2023]
|
40
|
Larive CK, Barding GA, Dinges MM. NMR spectroscopy for metabolomics and metabolic profiling. Anal Chem 2014; 87:133-46. [PMID: 25375201 DOI: 10.1021/ac504075g] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Cynthia K Larive
- Department of Chemistry, University of California-Riverside , Riverside, California 92521, United States
| | | | | |
Collapse
|
41
|
Rivlin M, Tsarfaty I, Navon G. Functional molecular imaging of tumors by chemical exchange saturation transfer MRI of 3-O-Methyl-D-glucose. Magn Reson Med 2014; 72:1375-80. [DOI: 10.1002/mrm.25467] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 08/28/2014] [Accepted: 08/28/2014] [Indexed: 02/02/2023]
Affiliation(s)
- Michal Rivlin
- School of Chemistry; Tel Aviv University; Tel Aviv Israel
| | - Ilan Tsarfaty
- Department of Clinical Microbiology and Immunology; Sackler School of Medicine; Tel Aviv University; Israel
| | - Gil Navon
- School of Chemistry; Tel Aviv University; Tel Aviv Israel
| |
Collapse
|
42
|
Matheus N, Hansen S, Rozet E, Peixoto P, Maquoi E, Lambert V, Noël A, Frédérich M, Mottet D, de Tullio P. An easy, convenient cell and tissue extraction protocol for nuclear magnetic resonance metabolomics. PHYTOCHEMICAL ANALYSIS : PCA 2014; 25:342-349. [PMID: 24453161 DOI: 10.1002/pca.2498] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 11/18/2013] [Accepted: 11/24/2013] [Indexed: 06/03/2023]
Abstract
INTRODUCTION As a complement to the classic metabolomics biofluid studies, the visualisation of the metabolites contained in cells or tissues could be a very powerful tool to understand how the local metabolism and biochemical pathways could be affected by external or internal stimuli or pathologies. Therefore, extraction and/or lysis is necessary to obtain samples adapted for use with the current analytical tools (liquid NMR and MS). These extraction or lysis work-ups are often the most labour-intensive and rate-limiting steps in metabolomics, as they require accuracy and repeatability as well as robustness. Many of the procedures described in the literature appear to be very time-consuming and not easily amenable to automation. OBJECTIVE To find a fast, simplified procedure that allows release of the metabolites from cells and tissues in a way that is compatible with NMR analysis. METHODS We assessed the use of sonication to disrupt cell membranes or tissue structures. Both a vibrating probe and an automated bath sonicator were explored. RESULTS The application of sonication as the disruption procedure led to reproducible NMR spectral data compatible with metabolomics studies. This method requires only a small biological tissue or cell sample, and a rapid, reduced work-up was applied before analysis. The spectral patterns obtained are comparable with previous, well-described extraction protocols. CONCLUSION The rapidity and the simplicity of this approach could represent a suitable alternative to the other protocols. Additionally, this approach could be favourable for high- throughput applications in intracellular and intratissular metabolite measurements.
Collapse
Affiliation(s)
- Nicolas Matheus
- Metastasis Research Laboratory (MRL), GIGA Cancer, University of Liège, Bat. B23, CHU Sart Tilman, 4000, Liège, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Exposure to 2,4-dichlorophenoxyacetic acid alters glucose metabolism in immature rat Sertoli cells. Reprod Toxicol 2013; 38:81-8. [DOI: 10.1016/j.reprotox.2013.03.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 02/12/2013] [Accepted: 03/16/2013] [Indexed: 11/22/2022]
|
44
|
Bi H, Krausz KW, Manna SK, Li F, Johnson CH, Gonzalez FJ. Optimization of harvesting, extraction, and analytical protocols for UPLC-ESI-MS-based metabolomic analysis of adherent mammalian cancer cells. Anal Bioanal Chem 2013; 405:5279-89. [PMID: 23604415 PMCID: PMC3678261 DOI: 10.1007/s00216-013-6927-9] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 03/15/2013] [Accepted: 03/18/2013] [Indexed: 11/30/2022]
Abstract
In this study, a liquid chromatography mass spectrometry (LC/MS)-based metabolomics protocol was optimized for quenching, harvesting, and extraction of metabolites from the human pancreatic cancer cell line Panc-1. Trypsin/ethylenediaminetetraacetic acid (EDTA) treatment and cell scraping in water were compared for sample harvesting. Four different extraction methods were compared to investigate the efficiency of intracellular metabolite extraction, including pure acetonitrile, methanol, methanol/chloroform/H2O, and methanol/chloroform/acetonitrile. The separation efficiencies of hydrophilic interaction chromatography (HILIC) and reversed-phase liquid chromatography (RPLC) with UPLC-QTOF-MS were also evaluated. Global metabolomics profiles were compared; the number of total detected features and the recovery and relative extraction efficiencies of target metabolites were assessed. Trypsin/EDTA treatment caused substantial metabolite leakage proving it inadequate for metabolomics studies. Direct scraping after flash quenching with liquid nitrogen was chosen to harvest Panc-1 cells which allowed for samples to be stored before extraction. Methanol/chloroform/H2O was chosen as the optimal extraction solvent to recover the highest number of intracellular features with the best reproducibility. HILIC had better resolution for intracellular metabolites of Panc-1 cells. This optimized method therefore provides high sensitivity and reproducibility for a variety of cellular metabolites and can be applicable to further LC/MS-based global metabolomics study on Panc-1 cell lines and possibly other cancer cell lines with similar chemical and physical properties.
Collapse
Affiliation(s)
- Huichang Bi
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132# Waihuandong Road, Guangzhou University City, Guangzhou 510006, China.
| | | | | | | | | | | |
Collapse
|
45
|
Rivas-Ubach A, Pérez-Trujillo M, Sardans J, Gargallo-Garriga A, Parella T, Peñuelas J. Ecometabolomics: optimized NMR-based method. Methods Ecol Evol 2013. [DOI: 10.1111/2041-210x.12028] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
| | - Miriam Pérez-Trujillo
- Servei de Ressonància Magnètica Nuclear; Universitat Autònoma de Barcelona; Cerdanyola del Vallès; Barcelona; 08193; Catalonia; Spain
| | | | | | - Teodor Parella
- Servei de Ressonància Magnètica Nuclear; Universitat Autònoma de Barcelona; Cerdanyola del Vallès; Barcelona; 08193; Catalonia; Spain
| | | |
Collapse
|
46
|
Abstract
Parkinson's disease (PD) is a neurodegenerative disease, which is characterized by progressive death of dopaminergic neurons in the substantia nigra pars compacta. Although mitochondrial dysfunction and oxidative stress are linked to PD pathogenesis, its etiology and pathology remain to be elucidated. Metabolomics investigates metabolite changes in biofluids, cell lysates, tissues and tumors in order to correlate these metabolomic changes to a disease state. Thus, the application of metabolomics to investigate PD provides a systematic approach to understand the pathology of PD, to identify disease biomarkers, and to complement genomics, transcriptomics and proteomics studies. This review will examine current research into PD mechanisms with a focus on mitochondrial dysfunction and oxidative stress. Neurotoxin-based PD animal models and the rationale for metabolomics studies in PD will also be discussed. The review will also explore the potential of NMR metabolomics to address important issues related to PD treatment and diagnosis.
Collapse
Affiliation(s)
- Shulei Lei
- University of Nebraska-Lincoln, Department of Chemistry, 722
Hamilton Hall, Lincoln, NE 68588-0304
| | - Robert Powers
- University of Nebraska-Lincoln, Department of Chemistry, 722
Hamilton Hall, Lincoln, NE 68588-0304
| |
Collapse
|
47
|
Le Guennec A, Tea I, Antheaume I, Martineau E, Charrier B, Pathan M, Akoka S, Giraudeau P. Fast Determination of Absolute Metabolite Concentrations by Spatially Encoded 2D NMR: Application to Breast Cancer Cell Extracts. Anal Chem 2012; 84:10831-7. [DOI: 10.1021/ac3033504] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Adrien Le Guennec
- Université de Nantes, CNRS, CEISAM UMR 6230,
B.P. 92208, 2 rue de la Houssinière, F-44322
Nantes Cedex 03, France
| | - Illa Tea
- Université de Nantes, CNRS, CEISAM UMR 6230,
B.P. 92208, 2 rue de la Houssinière, F-44322
Nantes Cedex 03, France
| | - Ingrid Antheaume
- Université de Nantes, CNRS, CEISAM UMR 6230,
B.P. 92208, 2 rue de la Houssinière, F-44322
Nantes Cedex 03, France
| | - Estelle Martineau
- Université de Nantes, CNRS, CEISAM UMR 6230,
B.P. 92208, 2 rue de la Houssinière, F-44322
Nantes Cedex 03, France
| | - Benoît Charrier
- Université de Nantes, CNRS, CEISAM UMR 6230,
B.P. 92208, 2 rue de la Houssinière, F-44322
Nantes Cedex 03, France
| | - Meerakhan Pathan
- Université de Nantes, CNRS, CEISAM UMR 6230,
B.P. 92208, 2 rue de la Houssinière, F-44322
Nantes Cedex 03, France
| | - Serge Akoka
- Université de Nantes, CNRS, CEISAM UMR 6230,
B.P. 92208, 2 rue de la Houssinière, F-44322
Nantes Cedex 03, France
| | - Patrick Giraudeau
- Université de Nantes, CNRS, CEISAM UMR 6230,
B.P. 92208, 2 rue de la Houssinière, F-44322
Nantes Cedex 03, France
| |
Collapse
|
48
|
Martineau E, Tea I, Akoka S, Giraudeau P. Absolute quantification of metabolites in breast cancer cell extracts by quantitative 2D (1) H INADEQUATE NMR. NMR IN BIOMEDICINE 2012; 25:985-92. [PMID: 22331830 DOI: 10.1002/nbm.1816] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 11/04/2011] [Accepted: 11/07/2011] [Indexed: 05/24/2023]
Abstract
Metabolomic studies by NMR spectroscopy are increasingly employed for a variety of biomedical applications. A very standardized 1D proton NMR protocol is generally employed for data acquisition, associated with multivariate statistical tests. Even if targeted approaches have been proposed to quantify metabolites from such experiments, quantification is often made difficult by the high degree of overlap characterizing (1) H NMR spectra of biological samples. Two-dimensional spectroscopy presents a high potential for accurately measuring concentrations in complex samples, as it offers a much higher discrimination between metabolite resonances. We have recently proposed an original approach relying on the (1) H 2D INADEQUATE pulse sequence, optimized for fast quantitative analysis of complex metabolic mixtures. Here, the first application of the quantitative (1) H 2D INADEQUATE experiment to a real metabonomic study is presented. Absolute metabolite concentrations are determined for different breast cancer cell line extracts, by a standard addition procedure. The protocol is characterized by high analytical performances (accuracy better than 1%, excellent linearity), even if it is affected by relatively long acquisition durations (15 min to 1 h per spectrum). It is applied to three different cell lines, expressing different hormonal and tyrosine kinase receptors. The absolute concentrations of 15 metabolites are determined, revealing significant differences between cell lines. The metabolite concentrations measured are in good agreement with previous studies regarding metabolic profile changes of breast cancer. While providing a high degree of discrimination, this methodology offers a powerful tool for the determination of relevant biomarkers.
Collapse
Affiliation(s)
- Estelle Martineau
- Université de Nantes, CNRS, CEISAM UMR 6230, B.P. 92208, 2 rue de la Houssinière, F-44322, Nantes Cedex 03, France
| | | | | | | |
Collapse
|
49
|
Quantitative NMR for bioanalysis and metabolomics. Anal Bioanal Chem 2012; 404:1165-79. [PMID: 22766756 DOI: 10.1007/s00216-012-6188-z] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 06/04/2012] [Accepted: 06/08/2012] [Indexed: 01/16/2023]
Abstract
Over the last several decades, significant technical and experimental advances have made quantitative nuclear magnetic resonance (qNMR) a valuable analytical tool for quantitative measurements on a wide variety of samples. In particular, qNMR has emerged as an important method for metabolomics studies where it is used for interrogation of large sets of biological samples and the resulting spectra are treated with multivariate statistical analysis methods. In this review, recent developments in instrumentation and pulse sequences will be discussed as well as the practical considerations necessary for acquisition of quantitative NMR experiments with an emphasis on their use for bioanalysis. Recent examples of the application of qNMR for metabolomics/metabonomics studies, the characterization of biologicals such as heparin, antibodies, and vaccines, and the analysis of botanical natural products will be presented and the future directions of qNMR discussed.
Collapse
|
50
|
Abstract
Infectious diseases can be difficult to cure, especially if the pathogen forms a biofilm. After decades of extensive research into the morphology, physiology and genomics of biofilm formation, attention has recently been directed toward the analysis of the cellular metabolome in order to understand the transformation of a planktonic cell to a biofilm. Metabolomics can play an invaluable role in enhancing our understanding of the underlying biological processes related to the structure, formation and antibiotic resistance of biofilms. A systematic view of metabolic pathways or processes responsible for regulating this 'social structure' of microorganisms may provide critical insights into biofilm-related drug resistance and lead to novel treatments. This review will discuss the development of NMR-based metabolomics as a technology to study medically relevant biofilms. Recent advancements from case studies reviewed in this manuscript have shown the potential of metabolomics to shed light on numerous biological problems related to biofilms.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Chemistry, University of Nebraska-Lincoln, 722 Hamilton Hall, Lincoln, NE 68588-0304, USA
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, 722 Hamilton Hall, Lincoln, NE 68588-0304, USA
| |
Collapse
|