1
|
Lespes G, De Carsalade Du Pont V. Field-flow fractionation for nanoparticle characterization. J Sep Sci 2021; 45:347-368. [PMID: 34520628 DOI: 10.1002/jssc.202100595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 02/05/2023]
Abstract
This review presents field-flow fractionation: The elements of theory enable the link between the retention and the characteristics of the nanometer-sized analytes to be highlighted. In particular, the nature of force and its way of being applied are discussed. Four types of forces which determine four types of techniques were considered: hydrodynamic, sedimentation, thermal, and electrical; this is to show the importance of the choice of technique in relation to the characterization objectives. Then the separation performance is presented and compared with other separation techniques: field-flow fractionation has the greatest intrinsic separation capability. The characterization strategies are presented and discussed; on the one hand with respect to the characteristics needed for the description of nanoparticles; on the other hand in connection with the choice of the nature of the force, and also of the detectors used, online or offline. The discussion is based on a selection of published study examples. Finally, current needs and challenges are addressed, and as response, trends and possible characterization solutions.
Collapse
Affiliation(s)
- Gaëtane Lespes
- Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les matériaux (IPREM UMR UPPA/CNRS), Université de Pau et des Pays de l'Adour (E2S/UPPA), Helioparc, 2 Avenue Angot, Pau Cedex 9, France
| | - Valentin De Carsalade Du Pont
- Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les matériaux (IPREM UMR UPPA/CNRS), Université de Pau et des Pays de l'Adour (E2S/UPPA), Helioparc, 2 Avenue Angot, Pau Cedex 9, France
| |
Collapse
|
2
|
Faucher S, Ivaneev AI, Fedotov PS, Lespes G. Characterization of volcanic ash nanoparticles and study of their fate in aqueous medium by asymmetric flow field-flow fractionation-multi-detection. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:31850-31860. [PMID: 33619622 DOI: 10.1007/s11356-021-12891-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Dimensional and elemental characterization of environmental nanoparticles is a challenging task that requires the use of a set of complementary analytical methods. Asymmetric flow field-flow fractionation coupled with UV-Vis, multi-angle laser light scattering and ICP-MS detection was applied to study the nanoparticle fraction of a volcanic ash sample, in a Milli-Q water suspension at pH 6.8. It has been shown that the separated by sedimentation nanoparticle fraction of the Klyuchevskoy volcano ash suspension contains 3 polydisperse populations for which size ranges (expressed in gyration radius, rG), hydrodynamic behaviours (evaluated via shape index) and elemental compositions are different. These 3 populations did not dissolve over the 72-h study but aggregated and settled out differently. Thus, the population of particles with gyration radii <140 nm (P1), which contained 6% Al2O3 and represented approximately 20% by mass of the nanoparticle fraction, remained in suspension without observable aggregation. The populations P2 and P3, which represented 67% and 13% by mass in the initial suspension, covered the rG range 25-250 nm and contained 17% and 15% Al2O3, respectively. Over time, populations P2 and P3 aggregated and their concentration in suspension at 72 h decreased by approximately 40% compared with the initial suspension. The decrease of these nanoparticle populations occurred either from the beginning of the temporal monitoring (P2) or after 30 h (P3). Aggregation generated a new population (P4) in suspension with rG up to 300 nm and mostly consisting of P2. This population represented only up to 6 to 7% of the nanoparticle fraction and decreased beyond 50 h. As a result, the trace elements present in the nanoparticle fraction and monitored (Cu and La) were also no longer found in the suspension. The results obtained can offer additional insights into the fate of volcanic ash nanoparticles in the environment.
Collapse
Affiliation(s)
- Stéphane Faucher
- IUniversité de Pau et des Pays de l'Adour/E2S UPPA, CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM), UMR 5254, Helioparc, 2 Avenue Pierre Angot, 64053, Pau Cedex, 9, France.
| | - Alexandr I Ivaneev
- IUniversité de Pau et des Pays de l'Adour/E2S UPPA, CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM), UMR 5254, Helioparc, 2 Avenue Pierre Angot, 64053, Pau Cedex, 9, France
- National University of Science and Technology 'MISIS', Moscow, 119049, Russia
| | - Petr S Fedotov
- National University of Science and Technology 'MISIS', Moscow, 119049, Russia
- Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Gaëtane Lespes
- IUniversité de Pau et des Pays de l'Adour/E2S UPPA, CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM), UMR 5254, Helioparc, 2 Avenue Pierre Angot, 64053, Pau Cedex, 9, France.
| |
Collapse
|
3
|
Quattrini F, Berrecoso G, Crecente-Campo J, Alonso MJ. Asymmetric flow field-flow fractionation as a multifunctional technique for the characterization of polymeric nanocarriers. Drug Deliv Transl Res 2021; 11:373-395. [PMID: 33521866 PMCID: PMC7987708 DOI: 10.1007/s13346-021-00918-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2021] [Indexed: 12/28/2022]
Abstract
The importance of polymeric nanocarriers in the field of drug delivery is ever-increasing, and the accurate characterization of their properties is paramount to understand and predict their behavior. Asymmetric flow field-flow fractionation (AF4) is a fractionation technique that has gained considerable attention for its gentle separation conditions, broad working range, and versatility. AF4 can be hyphenated to a plurality of concentration and size detectors, thus permitting the analysis of the multifunctionality of nanomaterials. Despite this potential, the practical information that can be retrieved by AF4 and its possible applications are still rather unfamiliar to the pharmaceutical scientist. This review was conceived as a primer that clearly states the "do's and don'ts" about AF4 applied to the characterization of polymeric nanocarriers. Aside from size characterization, AF4 can be beneficial during formulation optimization, for drug loading and drug release determination and for the study of interactions among biomaterials. It will focus mainly on the advances made in the last 5 years, as well as indicating the problematics on the consensus, which have not been reached yet. Methodological recommendations for several case studies will be also included.
Collapse
Affiliation(s)
- Federico Quattrini
- Center for Research in Molecular Medicine and Chronic Diseases, Singular Research Centers, 15782, Santiago de Compostela, Spain
| | - Germán Berrecoso
- Center for Research in Molecular Medicine and Chronic Diseases, Singular Research Centers, 15782, Santiago de Compostela, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), IDIS Research Institute, 15706, Santiago de Compostela, Spain
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - José Crecente-Campo
- Center for Research in Molecular Medicine and Chronic Diseases, Singular Research Centers, 15782, Santiago de Compostela, Spain.
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), IDIS Research Institute, 15706, Santiago de Compostela, Spain.
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| | - María José Alonso
- Center for Research in Molecular Medicine and Chronic Diseases, Singular Research Centers, 15782, Santiago de Compostela, Spain.
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), IDIS Research Institute, 15706, Santiago de Compostela, Spain.
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| |
Collapse
|
4
|
Niezabitowska E, Smith J, Prestly MR, Akhtar R, von Aulock FW, Lavallée Y, Ali-Boucetta H, McDonald TO. Facile production of nanocomposites of carbon nanotubes and polycaprolactone with high aspect ratios with potential applications in drug delivery. RSC Adv 2018; 8:16444-16454. [PMID: 30009019 PMCID: PMC6003547 DOI: 10.1039/c7ra13553j] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/13/2018] [Indexed: 11/24/2022] Open
Abstract
The geometries and surface properties of nanocarriers greatly influence the interaction between nanomaterials and living cells. In this work we combine multiwalled carbon nanotubes (CNTs) with poly-ε-caprolactone (PCL) to produce non-spherical nanocomposites with high aspect ratios by using a facile emulsion solvent evaporation method. Particles were characterised by dynamic light scattering (DLS), scanning electron microscopy (SEM), atomic force microscopy (AFM) and asymmetric flow field flow fractionation (AF4). Different sizes and morphologies of nanoparticles were produced depending on the concentration of the sodium dodecyl sulphate (SDS), CNTs and PCL. Rod-like PCL-CNT nanostructures with low polydispersity were obtained with 1.5 mg mL-1 of SDS, 0.9 mg mL-1 of CNTs and 10 mg mL-1 PCL. AFM analysis revealed that the PCL and PCL-CNT nanocomposite had comparatively similar moduli of 770 and 560 MPa respectively, indicating that all the CNTs have been coated with at least 2 nm of PCL. Thermogravimetric analysis of the PCL-CNT nanocomposite indicated that they contained 9.6% CNTs by mass. The asymmetric flow field flow fractionation of the samples revealed that the PCL-CNT had larger hydrodynamic diameters than PCL alone. Finally, the drug loading properties of the nanocomposites were assessed using docetaxel as the active substance. The nanocomposites showed comparable entrapment efficiencies of docetaxel (89%) to the CNTs alone (95%) and the PCL nanoparticles alone (81%). This is a facile method for obtaining non-spherical nanocomposites that combines the properties of PCL and CNTs such as the high aspect ratio, modulus. The high drug entrapment efficiency of these nanocomposites may have promising applications in drug delivery.
Collapse
Affiliation(s)
- Edyta Niezabitowska
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK.
| | - Jessica Smith
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK.
| | - Mark R Prestly
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK.
| | - Riaz Akhtar
- Department of Mechanical, Materials and Aerospace Engineering, School of Engineering, University of Liverpool, Brownlow Hill, Liverpool, L69 3GH, UK
| | - Felix W von Aulock
- School of Environmental Sciences, University of Liverpool, Jane Herdman Building, Brownlow Street, Liverpool, L69 3GP, UK
| | - Yan Lavallée
- School of Environmental Sciences, University of Liverpool, Jane Herdman Building, Brownlow Street, Liverpool, L69 3GP, UK
| | - Hanene Ali-Boucetta
- The School of Pharmacy, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Tom O McDonald
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK.
| |
Collapse
|
5
|
Kim JH, Hwang JY, Hwang HR, Kim HS, Lee JH, Seo JW, Shin US, Lee SH. Simple and cost-effective method of highly conductive and elastic carbon nanotube/polydimethylsiloxane composite for wearable electronics. Sci Rep 2018; 8:1375. [PMID: 29358581 PMCID: PMC5778073 DOI: 10.1038/s41598-017-18209-w] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 12/06/2017] [Indexed: 11/19/2022] Open
Abstract
The development of various flexible and stretchable materials has attracted interest for promising applications in biomedical engineering and electronics industries. This interest in wearable electronics, stretchable circuits, and flexible displays has created a demand for stable, easily manufactured, and cheap materials. However, the construction of flexible and elastic electronics, on which commercial electronic components can be mounted through simple and cost-effective processing, remains challenging. We have developed a nanocomposite of carbon nanotubes (CNTs) and polydimethylsiloxane (PDMS) elastomer. To achieve uniform distributions of CNTs within the polymer, an optimized dispersion process was developed using isopropyl alcohol (IPA) and methyl-terminated PDMS in combination with ultrasonication. After vaporizing the IPA, various shapes and sizes can be easily created with the nanocomposite, depending on the mold. The material provides high flexibility, elasticity, and electrical conductivity without requiring a sandwich structure. It is also biocompatible and mechanically stable, as demonstrated by cytotoxicity assays and cyclic strain tests (over 10,000 times). We demonstrate the potential for the healthcare field through strain sensor, flexible electric circuits, and biopotential measurements such as EEG, ECG, and EMG. This simple and cost-effective fabrication method for CNT/PDMS composites provides a promising process and material for various applications of wearable electronics.
Collapse
Affiliation(s)
- Jeong Hun Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Ji-Young Hwang
- Department of Biomedical Engineering, College of Health Science, Korea University, Seoul, 02841, Republic of Korea. .,International Carbon Research Institute, Korea Institute of Carbon Convergence Technology 110-11 Banryong-ro Deokjin-gu, Jeonju, 54853, Republic of Korea.
| | - Ha Ryeon Hwang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Han Seop Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Joong Hoon Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Jae-Won Seo
- Department of Nanobiomedical Science and BK21 Plus NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Ueon Sang Shin
- Department of Nanobiomedical Science and BK21 Plus NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Sang-Hoon Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea.,Department of Biomedical Engineering, College of Health Science, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
6
|
Fractionation and Characterization of High Aspect Ratio Gold Nanorods Using Asymmetric-Flow Field Flow Fractionation and Single Particle Inductively Coupled Plasma Mass Spectrometry. CHROMATOGRAPHY 2015. [DOI: 10.3390/chromatography2030422] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Gigault J, Zhang W, Lespes G, Charleux B, Grassl B. Asymmetrical flow field-flow fractionation analysis of water suspensions of polymer nanofibers synthesized via RAFT-mediated emulsion polymerization. Anal Chim Acta 2014; 819:116-21. [DOI: 10.1016/j.aca.2014.02.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 01/31/2014] [Accepted: 02/09/2014] [Indexed: 11/27/2022]
|
8
|
Rational strategy for characterization of nanoscale particles by asymmetric-flow field flow fractionation: A tutorial. Anal Chim Acta 2014; 809:9-24. [DOI: 10.1016/j.aca.2013.11.021] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 10/31/2013] [Accepted: 11/08/2013] [Indexed: 12/11/2022]
|
9
|
Observation of size-independent effects in nanoparticle retention behavior during asymmetric-flow field-flow fractionation. Anal Bioanal Chem 2013; 405:6251-8. [DOI: 10.1007/s00216-013-7055-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/04/2013] [Accepted: 05/07/2013] [Indexed: 11/26/2022]
|
10
|
Gigault J, Cho TJ, MacCuspie RI, Hackley VA. Gold nanorod separation and characterization by asymmetric-flow field flow fractionation with UV–Vis detection. Anal Bioanal Chem 2012; 405:1191-202. [DOI: 10.1007/s00216-012-6547-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 10/26/2012] [Accepted: 11/02/2012] [Indexed: 12/11/2022]
|
11
|
Gigault J, Grassl B, Lespes G. A new analytical approach based on asymmetrical flow field-flow fractionation coupled to ultraviolet spectrometry and light scattering detection for SWCNT aqueous dispersion studies. Analyst 2012; 137:917-23. [DOI: 10.1039/c2an15449h] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|