1
|
Bai J, Bao M, Wang S, Wen T, Li Y, Zhang J, Mei T, Guo Y. Insights into electrogenerated intermediates and rapid screening of electrochemical reactions by surface-modified carbon fiber paper redox spray ionization mass spectrometry. Anal Chim Acta 2023; 1279:341794. [PMID: 37827687 DOI: 10.1016/j.aca.2023.341794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/29/2023] [Accepted: 09/06/2023] [Indexed: 10/14/2023]
Abstract
The combination of electrochemistry and mass spectrometry is a powerful analytical tool for studying redox reaction mechanisms and identifying products or intermediates. However, the previously reported devices all require bespoke fabrication and are too complicated to be assembled and used by others. Crucially, the long ion transport distance and small spray volumes make it difficult to capture the short-lived intermediates. We present a practical mass spectrometric method in which surface-modified carbon fiber paper is innovatively applied to detect electrogenerated intermediates. Treating carbon fiber paper with dilute nitric acid removes its surface impurities, enhancing the capability of electro-redox. Electrospray ionization and redox reaction occur simultaneously on the tip of the paper. Transient electro-redox species generate and transfer into gas phase as soon as the appearance of spray. Rapid transport of quantities of electrogenerated ions to the mass spectrometer inlet makes it possible for mass spectrometric identification on the millisecond scale. The short-lived radical cations and iminium ions were successfully captured, reflecting the starting step of the cross-dehydrogenation coupling reaction. The real-time oxidation and online functionalization reactions of tertiary amines were achieved using this device without additional oxidants and electrolytes. In this way we could achieve in-depth mechanistic understanding and rapid screening of serial reactions.
Collapse
Affiliation(s)
- Jiahui Bai
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Mingmai Bao
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Shanshan Wang
- College of Science, Chang'an University, Xi'an, 710064, China
| | - Tianlun Wen
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yuling Li
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jing Zhang
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Tiansheng Mei
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Yinlong Guo
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
2
|
Zhang X, Lu W, Ma C, Wang T, Zhu JJ, Zare RN, Min Q. Insights into Electrochemiluminescence Dynamics by Synchronizing Real-Time Electrical, Luminescent, and Mass Spectrometric Measurements. Chem Sci 2022; 13:6244-6253. [PMID: 35733885 PMCID: PMC9159085 DOI: 10.1039/d2sc01317g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/05/2022] [Indexed: 11/21/2022] Open
Abstract
Electrochemiluminescence (ECL) comprises a sophisticated cascade of reactions. Despite advances in mechanistic studies by electrochemistry and spectroscopy, a lack of access to dynamic molecular information renders many plausible ECL pathways unclear or unproven. Here we describe the construction of a real-time ECL mass spectrometry (MS) platform (RT-Triplex) for synchronization of dynamic electrical, luminescent, and mass spectrometric outputs during ECL events. This platform allows immediate and continuous sampling of newly born species at the Pt wire electrode of a capillary electrochemical (EC) microreactor into MS, enabling characterization of short-lived intermediates and the multi-step EC processes. Two ECL pathways of luminol are validated by observing the key intermediates α-hydroxy hydroperoxide and diazaquinone and unraveling their correlation with applied voltage and ECL emission. Moreover, a “catalytic ECL route” of boron dipyrromethene (BODIPY) involving homogeneous oxidation of tri-n-propylamine with the BODIPY radical cation is proposed and verified. A real-time electrochemiluminescence mass spectrometry platform (RT-Triplex) was developed for revealing ECL mechanisms by synchronization of dynamic electrical, luminescent, and mass spectrometric signals at the electrode–electrolyte interface.![]()
Collapse
Affiliation(s)
- Xuemeng Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Weifeng Lu
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Cheng Ma
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
- School of Chemistry and Chemical Engineering, Yangzhou University Yangzhou 225002 China
| | - Tao Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Richard N Zare
- Department of Chemistry, Stanford University Stanford California 94305 USA
| | - Qianhao Min
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| |
Collapse
|
3
|
Freitas D, Chen X, Cheng H, Davis A, Fallon B, Yan X. Recent Advances of In-Source Electrochemical Mass Spectrometry. Chempluschem 2021; 86:434-445. [PMID: 33689239 DOI: 10.1002/cplu.202100030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/03/2021] [Indexed: 12/16/2022]
Abstract
Hyphenation of electrochemistry (EC) and mass spectrometry has become a powerful tool to study redox processes. Approaches that can achieve this hyphenation include integrating chromatography/electrophoresis between electroinduced redox reactions and detection of products, coupling an EC flow cell to a mass spectrometer, and performing electrochemical reactions inside the ion source of a mass spectrometer. The first two approaches have been well reviewed elsewhere. This Minireview highlights the inherent electrochemical properties of many mass spectrometry ion sources and their roles in the coupling of electrochemistry and mass spectrometric analysis. Development of modified ion sources that allow the compatibility of electrochemistry with ionization processes is also surveyed. Applications of different in-source electrochemical devices are provided including intermediate capturing, bioanalytical studies, nanoparticle formation, electrosynthesis, and electrode imaging.
Collapse
Affiliation(s)
- Dallas Freitas
- Department of Chemistry, Texas A&M University, 580 Ross St., College Station, TX 77843, USA
| | - Xi Chen
- Department of Chemistry, Texas A&M University, 580 Ross St., College Station, TX 77843, USA
| | - Heyong Cheng
- Department of Chemistry, Texas A&M University, 580 Ross St., College Station, TX 77843, USA
| | - Austin Davis
- Department of Chemistry, Texas A&M University, 580 Ross St., College Station, TX 77843, USA
| | - Blake Fallon
- Department of Chemistry, Texas A&M University, 580 Ross St., College Station, TX 77843, USA
| | - Xin Yan
- Department of Chemistry, Texas A&M University, 580 Ross St., College Station, TX 77843, USA
| |
Collapse
|
4
|
Li W, Sun J, Gao Y, Zhang Y, Ouyang J, Na N. Monitoring of electrochemical reactions on different electrode configurations by ambient mass spectrometry. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
5
|
Zhao P, Zare RN, Chen H. Absolute Quantitation of Oxidizable Peptides by Coulometric Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2398-2407. [PMID: 31429055 DOI: 10.1007/s13361-019-02299-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/15/2019] [Accepted: 07/21/2019] [Indexed: 06/10/2023]
Abstract
Quantitation methods for peptides using mass spectrometry have advanced rapidly. These methods rely on using standard and/or isotope-labeled peptides, which might be difficult or expensive to synthesize. To tackle this challenge, we present a new approach for absolute quantitation without the use of standards or calibration curves based on coulometry combined with mass spectrometry (MS). In this approach, which we call coulometric mass spectrometry (CMS), the mass spectrum of a target peptide containing one or more tyrosine residues is recorded before and after undergoing electrochemical oxidation. We record the total integrated oxidation current from the electrochemical measurement, which according to the Faraday's Law of coulometry, provides the number of moles of oxidized peptide. The ion intensity ratio of the target peptide before and after oxidation provides an excellent estimate of the fraction of the peptide that has been oxidized, from which the total amount of peptide is calculated. The striking strength of CMS is that it needs no standard peptide, but CMS does require the peptide to contain a known number of oxidizable groups. To illustrate the power of this method, we analyzed various tyrosine-containing peptides such as GGYR, DRVY, oxytocin, [Arg8]-vasotocin and angiotensinogen 1-14 with a quantification error ranging from - 7.5 to + 2.4%. This approach is also applicable to quantifying phosphopeptides and could be useful in proteomics research.
Collapse
Affiliation(s)
- Pengyi Zhao
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Richard N Zare
- Department of Chemistry, Stanford University, Stanford, CA, 94305-5080, USA.
| | - Hao Chen
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
| |
Collapse
|
6
|
Feider CL, Krieger A, DeHoog RJ, Eberlin LS. Ambient Ionization Mass Spectrometry: Recent Developments and Applications. Anal Chem 2019; 91:4266-4290. [PMID: 30790515 PMCID: PMC7444024 DOI: 10.1021/acs.analchem.9b00807] [Citation(s) in RCA: 290] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Clara L. Feider
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Anna Krieger
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Rachel J. DeHoog
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Livia S. Eberlin
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
7
|
Electrochemical simulation of three novel cardiovascular drugs phase I metabolism and development of a new method for determination of them by liquid chromatography coupled with tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1093-1094:100-112. [PMID: 30015307 DOI: 10.1016/j.jchromb.2018.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/06/2018] [Accepted: 07/02/2018] [Indexed: 01/25/2023]
Abstract
In this study electrochemistry (EC) coupled with electrospray ionization mass spectrometry (ESI-MS) was used to study the metabolic fate of three novel cardiovascular drugs: rivaroxaban (RIV), aliskiren (ALS), and prasugrel (PRS). Mimicry of the oxidative phase I metabolism was achieved in a simple amperometric thin-layer cell equipped with a boron-doped diamond (MD) working electrode. Structures of the electrochemically-generated metabolites were elucidated from MS/MS experiments. Additionally, a sensitive, specific, and rapid ultra-high performance liquid chromatography-tandem mass spectrometer (UHPLC-MS/MS) method has been developed and validated for the selected drugs in human urine samples. Three different sample preparation methods were compared and finally, sample preparation was accomplished through an ultrasound-assisted emulsification microextraction process (USAEME). The drugs were detected using a triple quadrupole tandem mass spectrometer by multiple reaction monitoring via an electrospray ionization source with positive ionization mode (ESI(+)). The results obtained by EC-MS were compared with conventional in vivo studies by analyzing urine samples from patients. Data from in vivo experiments showed good agreement with the data from electrochemical oxidation. Thus, EC-MS is very well-suited for the simulation of the oxidative metabolism of rivaroxaban, aliskiren, and prasugrel as well. Moreover, electrochemical conversion of target compounds appears to be a new in vitro technology for the prediction of potential metabolites.
Collapse
|
8
|
Yuill EM, Baker LA. Electrochemical Aspects of Mass Spectrometry: Atmospheric Pressure Ionization and Ambient Ionization for Bioanalysis. ChemElectroChem 2017. [DOI: 10.1002/celc.201600751] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Elizabeth M. Yuill
- Department of Chemistry; Indiana University; 800 E. Kirkwood Avenue Bloomington, Indiana 47405 USA
| | - Lane A. Baker
- Department of Chemistry; Indiana University; 800 E. Kirkwood Avenue Bloomington, Indiana 47405 USA
| |
Collapse
|
9
|
Lu J, Hua X, Long YT. Recent advances in real-time and in situ analysis of an electrode–electrolyte interface by mass spectrometry. Analyst 2017; 142:691-699. [DOI: 10.1039/c6an02757a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Novelty: Recent advances in real-time and in situ monitoring of an electrode–electrolyte interface by mass spectrometry are reviewed.
Collapse
Affiliation(s)
- Jusheng Lu
- School of Chemistry and Chemical Engineering
- Jiangsu Normal University
- Xuzhou
- P. R. China
| | - Xin Hua
- Key Laboratory for Advanced Materials and Department of Chemistry
- East China University of Science and Technology
- Shanghai
- P. R. China
| | - Yi-Tao Long
- Key Laboratory for Advanced Materials and Department of Chemistry
- East China University of Science and Technology
- Shanghai
- P. R. China
| |
Collapse
|
10
|
Dual reductive/oxidative electrochemistry/liquid chromatography/mass spectrometry: Towards peptide and protein modification, separation and identification. J Chromatogr A 2017; 1479:153-160. [DOI: 10.1016/j.chroma.2016.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 11/22/2016] [Accepted: 12/05/2016] [Indexed: 01/16/2023]
|
11
|
Looi WD, Chamand L, Brown B, Brajter-Toth A. Role of Electrochemistry in Desorption Ionization Mass Spectrometry (LS DESI MS) of Aqueous Samples Containing Electrolyte Salts. Anal Chem 2016; 89:603-610. [DOI: 10.1021/acs.analchem.6b02406] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Wen Donq Looi
- Department
of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200, United States
| | - Laura Chamand
- Faculty
of Chemistry, University of Strasbourg, 1 Rue Blasie Pascal, 67008 Strasbourg, France
| | - Blake Brown
- Department
of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200, United States
| | - Anna Brajter-Toth
- Department
of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200, United States
| |
Collapse
|
12
|
Zheng Q, Chen H. Development and Applications of Liquid Sample Desorption Electrospray Ionization Mass Spectrometry. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2016; 9:411-448. [PMID: 27145689 DOI: 10.1146/annurev-anchem-071015-041620] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Desorption electrospray ionization mass spectrometry (DESI-MS) is a recent advance in the field of analytical chemistry. This review surveys the development of liquid sample DESI-MS (LS-DESI-MS), a variant form of DESI-MS that focuses on fast analysis of liquid samples, and its novel analy-tical applications in bioanalysis, proteomics, and reaction kinetics. Due to the capability of directly ionizing liquid samples, liquid sample DESI (LS-DESI) has been successfully used to couple MS with various analytical techniques, such as microfluidics, microextraction, electrochemistry, and chromatography. This review also covers these hyphenated techniques. In addition, several closely related ionization methods, including transmission mode DESI, thermally assisted DESI, and continuous flow-extractive DESI, are briefly discussed. The capabilities of LS-DESI extend and/or complement the utilities of traditional DESI and electrospray ionization and will find extensive and valuable analytical application in the future.
Collapse
Affiliation(s)
- Qiuling Zheng
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, and Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701;
| | - Hao Chen
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, and Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701;
| |
Collapse
|
13
|
Zheng Q, Zhang H, Wu S, Chen H. Probing Protein 3D Structures and Conformational Changes Using Electrochemistry-Assisted Isotope Labeling Cross-Linking Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:864-875. [PMID: 26902947 PMCID: PMC4841728 DOI: 10.1007/s13361-016-1356-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 01/25/2016] [Accepted: 01/28/2016] [Indexed: 06/05/2023]
Abstract
This study presents a new chemical cross-linking mass spectrometry (MS) method in combination with electrochemistry and isotope labeling strategy for probing both protein three-dimensional (3D) structures and conformational changes. For the former purpose, the target protein/protein complex is cross-linked with equal mole of premixed light and heavy isotope labeled cross-linkers carrying electrochemically reducible disulfide bonds (i.e., DSP-d0 and DSP-d8 in this study, DSP = dithiobis[succinimidyl propionate]), digested and then electrochemically reduced followed with online MS analysis. Cross-links can be quickly identified because of their reduced intensities upon electrolysis and the presence of doublet isotopic peak characteristics. In addition, electroreduction converts cross-links into linear peptides, facilitating MS/MS analysis to gain increased information about their sequences and modification sites. For the latter purpose of probing protein conformational changes, an altered procedure is adopted, in which the protein in two different conformations is cross-linked using DSP-d0 and DSP-d8 separately, and then the two protein samples are mixed in 1:1 molar ratio. The merged sample is subjected to digestion and electrochemical mass spectrometric analysis. In such a comparative cross-linking experiment, cross-links could still be rapidly recognized based on their responses to electrolysis. More importantly, the ion intensity ratios of light and heavy isotope labeled cross-links reveal the conformational changes of the protein, as exemplified by examining the effect of Ca(2+) on calmodulin conformation alternation. This new cross-linking MS method is fast and would have high value in structural biology. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Qiuling Zheng
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA
| | - Hao Zhang
- Department of Chemistry, Washington University, St. Louis, MO, 63130, USA
| | - Shiyong Wu
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA
| | - Hao Chen
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA.
| |
Collapse
|
14
|
Merits of online electrochemistry liquid sample desorption electrospray ionization mass spectrometry (EC/LS DESI MS). Anal Bioanal Chem 2016; 408:2227-38. [DOI: 10.1007/s00216-015-9246-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/25/2015] [Accepted: 12/02/2015] [Indexed: 12/11/2022]
|
15
|
Cai Y, Liu P, Held MA, Dewald HD, Chen H. Coupling Electrochemistry with Probe Electrospray Ionization Mass Spectrometry. Chemphyschem 2016; 17:1104-8. [DOI: 10.1002/cphc.201600033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Indexed: 01/22/2023]
Affiliation(s)
- Yi Cai
- Center for Intelligent Chemical Instrumentation Department of Chemistry and Biochemistry Edison Biotechnology Institute Ohio University Athens OH 45701 USA
| | - Pengyuan Liu
- Center for Intelligent Chemical Instrumentation Department of Chemistry and Biochemistry Edison Biotechnology Institute Ohio University Athens OH 45701 USA
| | - Michael A. Held
- Center for Intelligent Chemical Instrumentation Department of Chemistry and Biochemistry Edison Biotechnology Institute Ohio University Athens OH 45701 USA
| | - Howard D. Dewald
- Center for Intelligent Chemical Instrumentation Department of Chemistry and Biochemistry Edison Biotechnology Institute Ohio University Athens OH 45701 USA
| | - Hao Chen
- Center for Intelligent Chemical Instrumentation Department of Chemistry and Biochemistry Edison Biotechnology Institute Ohio University Athens OH 45701 USA
| |
Collapse
|
16
|
Cramer CN, Haselmann KF, Olsen JV, Nielsen PK. Disulfide Linkage Characterization of Disulfide Bond-Containing Proteins and Peptides by Reducing Electrochemistry and Mass Spectrometry. Anal Chem 2016; 88:1585-92. [DOI: 10.1021/acs.analchem.5b03148] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Christian N. Cramer
- Protein
Engineering, Novo Nordisk A/S, Novo Nordisk Park, 2760 Måløv, Denmark
- Department
of Proteomics, The Novo Nordisk Foundation Center for Protein Research,
Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kim F. Haselmann
- Protein
Engineering, Novo Nordisk A/S, Novo Nordisk Park, 2760 Måløv, Denmark
| | - Jesper V. Olsen
- Department
of Proteomics, The Novo Nordisk Foundation Center for Protein Research,
Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | | |
Collapse
|
17
|
Development of a voltammetric assay, using screen-printed electrodes, for clonazepam and its application to beverage and serum samples. Talanta 2016; 147:510-5. [DOI: 10.1016/j.talanta.2015.10.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 10/12/2015] [Accepted: 10/13/2015] [Indexed: 11/22/2022]
|
18
|
Cheng S, Wang J, Cai Y, Loo JA, Chen H. Enhancing Performance of Liquid Sample Desorption Electrospray Ionization Mass Spectrometry Using Trap and Capillary Columns. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2015; 392:73-79. [PMID: 27239159 PMCID: PMC4878830 DOI: 10.1016/j.ijms.2015.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Desorption electrospray ionization mass spectrometry (DESI-MS) is a recent and important advance in the field that has extensive applications in surface analysis of solid samples but has also been extended to analysis of liquid samples. The liquid sample DESI typically employs a piece of fused silica capillary to transfer liquid sample for ionization. In this study, we present the improvement of liquid sample DESI-MS by replacing the sample transfer silica capillary with a trap column filled with chromatographic stationary phase materials (e.g., C4, C18). This type of trap column/liquid sample DESI can be used for trace analysis of organics and biomolecules such as proteins/peptides (in nM concentration) in high salt content matrices. Furthermore, when the sample transfer capillary is modified with enzyme covalently bound on its inside capillary wall, fast digestion (< 6 min) of proteins such as phosphoproteins can be achieved and the online digested proteins can be directly ionized using DESI with high sensitivity. The latter is ascribed to the freedom to select favorable spray solvent for the DESI analysis. Our data shows that liquid sample DESI-MS with a modified sample transfer capillary has significantly expanded its utility in bioanalysis.
Collapse
Affiliation(s)
- Si Cheng
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA
| | - Jun Wang
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA ; Department of forensic science, Jiangsu Police Institute, Nanjing, Jiang Su, 210031, China
| | - Yi Cai
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, Department of Biological Chemistry, David Geffen School of Medicine at UCLA, and UCLA/DOE Institute for Genomics and Proteomics, University of California-Los Angeles, Los Angeles, California 90095, USA
| | - Hao Chen
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA
| |
Collapse
|
19
|
Liu YM, Perry RH. Paper-Based Electrochemical Cell Coupled to Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:1702-1712. [PMID: 26311335 DOI: 10.1007/s13361-015-1224-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 06/15/2015] [Accepted: 06/17/2015] [Indexed: 06/04/2023]
Abstract
On-line coupling of electrochemistry (EC) to mass spectrometry (MS) is a powerful approach for identifying intermediates and products of EC reactions in situ. In addition, EC transformations have been used to increase ionization efficiency and derivatize analytes prior to MS, improving sensitivity and chemical specificity. Recently, there has been significant interest in developing paper-based electroanalytical devices as they offer convenience, low cost, versatility, and simplicity. This report describes the development of tubular and planar paper-based electrochemical cells (P-EC) coupled to sonic spray ionization (SSI) mass spectrometry (P-EC/SSI-MS). The EC cells are composed of paper sandwiched between two mesh stainless steel electrodes. Analytes and reagents can be added directly to the paper substrate along with electrolyte, or delivered via the SSI microdroplet spray. The EC cells are decoupled from the SSI source, allowing independent control of electrical and chemical parameters. We utilized P-EC/SSI-MS to characterize various EC reactions such as oxidations of cysteine, dopamine, polycyclic aromatic hydrocarbons, and diphenyl sulfide. Our results show that P-EC/SSI-MS has the ability to increase ionization efficiency, to perform online EC transformations, and to capture intermediates of EC reactions with a response time on the order of hundreds of milliseconds. The short response time allowed detection of a deprotonated diphenyl sulfide intermediate, which experimentally confirms a previously proposed mechanism for EC oxidation of diphenyl sulfide to pseudodimer sulfonium ion. This report introduces paper-based EC/MS via development of two device configurations (tubular and planar electrodes), as well as discusses the capabilities, performance, and limitations of the technique.
Collapse
Affiliation(s)
- Yao-Min Liu
- Department of Chemistry, University of Illinois, Urbana, IL, 61801, USA
| | - Richard H Perry
- Department of Chemistry, University of Illinois, Urbana, IL, 61801, USA.
| |
Collapse
|
20
|
Lu M, Liu Y, Helmy R, Martin GE, Dewald HD, Chen H. Online Investigation of Aqueous-Phase Electrochemical Reactions by Desorption Electrospray Ionization Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:1676-1685. [PMID: 26242804 DOI: 10.1007/s13361-015-1210-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 05/16/2015] [Accepted: 05/29/2015] [Indexed: 06/04/2023]
Abstract
Electrochemistry (EC) combined with mass spectrometry (MS) is a powerful tool for elucidation of electrochemical reaction mechanisms. However, direct online analysis of electrochemical reaction in aqueous phase was rarely explored. This paper presents the online investigation of several electrochemical reactions with biological relevance in the aqueous phase, such as nitrosothiol reduction, carbohydrate oxidation, and carbamazepine oxidation using desorption electrospray ionization mass spectrometry (DESI-MS). It was found that electroreduction of nitrosothiols [e.g., nitrosylated insulin B (13-23)] leads to free thiols by loss of NO, as confirmed by online MS analysis for the first time. The characteristic mass shift of 29 Da and the reduced intensity provide a quick way to identify nitrosylated species. Equally importantly, upon collision-induced dissociation (CID), the reduced peptide ion produces more fragment ions than its nitrosylated precursor ion (presumably the backbone fragmentation cannot compete with the facile NO loss for the precursor ion), thus facilitating peptide sequencing. In the case of saccharide oxidation, it was found that glucose undergoes electro-oxidation to produce gluconic acid at alkaline pH, but not at neutral and acidic pHs. Such a pH-dependent electrochemical behavior was also observed for disaccharides such as maltose and cellobiose. Upon electrochemical oxidation, carbamazepine was found to undergo ring contraction and amide bond cleavage, which parallels the oxidative metabolism observed for this drug in leucocytes. The mechanistic information of these redox reactions revealed by EC/DESI-MS would be of value in nitroso-proteome research and carbohydrate/drug metabolic studies.
Collapse
Affiliation(s)
- Mei Lu
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA
| | - Yong Liu
- Department of Process and Analytical Chemistry, Merck Research Laboratories, Merck and Co., Inc., Rahway, NJ, 07065, USA.
| | - Roy Helmy
- Department of Process and Analytical Chemistry, Merck Research Laboratories, Merck and Co., Inc., Rahway, NJ, 07065, USA
| | - Gary E Martin
- Department of Process and Analytical Chemistry, Merck Research Laboratories, Merck and Co., Inc., Rahway, NJ, 07065, USA
| | - Howard D Dewald
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA
| | - Hao Chen
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA.
| |
Collapse
|
21
|
Büter L, Faber H, Wigger T, Vogel M, Karst U. Differential Protein Labeling Based on Electrochemically Generated Reactive Intermediates. Anal Chem 2015; 87:9931-8. [DOI: 10.1021/acs.analchem.5b02497] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Lars Büter
- Westfälische Wilhelms-Universität Münster, NRW Graduate School of Chemistry, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstraße 30, 48149 Münster, Germany
| | - Helene Faber
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstraße 30, 48149 Münster, Germany
| | - Tina Wigger
- Westfälische Wilhelms-Universität Münster, NRW Graduate School of Chemistry, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstraße 30, 48149 Münster, Germany
| | - Martin Vogel
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstraße 30, 48149 Münster, Germany
| | - Uwe Karst
- Westfälische Wilhelms-Universität Münster, NRW Graduate School of Chemistry, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstraße 30, 48149 Münster, Germany
| |
Collapse
|
22
|
|
23
|
Adduct formation of electrochemically generated reactive intermediates with biomolecules. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2015.03.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
24
|
Zhang X, Jiang K, Zou J, Li Z. Two competing ionization processes in electrospray mass spectrometry of indolyl benzo[b]carbazoles: formation of M⁺• versus [M + H]⁺. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2015; 29:263-268. [PMID: 26411624 DOI: 10.1002/rcm.7103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 11/17/2014] [Indexed: 06/05/2023]
Abstract
RATIONALE Ionization in electrospray ionization mass spectrometry (ESI-MS) mainly occurs as a result of acid-base reactions or coordination with metal cations. Formation of the radical cation M(+•) in the ESI process has attracted our interest to perform further investigation. METHODS A series of indolyl benzo[b]carbazoles were investigated using a quadrupole ion trap mass spectrometer equipped with an ESI source or an atmospheric pressure chemical ionization (APCI) source in the positive-ion mode. Theoretical calculations were performed using the density functional theory (DFT) method at the B3LYP/6-31G(d) level. RESULTS Both the radical ion M(+•) and the protonated molecule [M + H](+) were obtained by ESI-MS analysis of indolyl benzo[b]carbazoles, while only [M + H](+) was observed in the APCI-MS analysis. The relative intensities of M(+•) and [M + H](+) were significantly affected by several ESI operating parameters and the nature of the substituents. CONCLUSIONS Formation of M(+•) and [M + H](+) was rationalized as two competing ionization processes in the ESI-MS analysis of indolyl benzo[b]carbazoles.
Collapse
Affiliation(s)
- Xiaoping Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
- Key Laboratory of Organosilicon Chemistry and Material Technology, Hangzhou Normal University, Hangzhou, 311121, China
| | - Kezhi Jiang
- Key Laboratory of Organosilicon Chemistry and Material Technology, Hangzhou Normal University, Hangzhou, 311121, China
| | - Jingfeng Zou
- Key Laboratory of Organosilicon Chemistry and Material Technology, Hangzhou Normal University, Hangzhou, 311121, China
| | - Zuguang Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
25
|
van den Brink FTG, Büter L, Odijk M, Olthuis W, Karst U, van den Berg A. Mass Spectrometric Detection of Short-Lived Drug Metabolites Generated in an Electrochemical Microfluidic Chip. Anal Chem 2015; 87:1527-35. [DOI: 10.1021/ac503384e] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Floris T. G. van den Brink
- BIOS
− Lab on a Chip group, MESA+ Institute for Nanotechnology and
MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Lars Büter
- Institute
of Inorganic and Analytical Chemistry, Westfälische Wilhelms-Universität Münster, Münster, Germany
- NRW
Graduate School of Chemistry, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Mathieu Odijk
- BIOS
− Lab on a Chip group, MESA+ Institute for Nanotechnology and
MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Wouter Olthuis
- BIOS
− Lab on a Chip group, MESA+ Institute for Nanotechnology and
MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Uwe Karst
- Institute
of Inorganic and Analytical Chemistry, Westfälische Wilhelms-Universität Münster, Münster, Germany
- NRW
Graduate School of Chemistry, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Albert van den Berg
- BIOS
− Lab on a Chip group, MESA+ Institute for Nanotechnology and
MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| |
Collapse
|
26
|
Oberacher H, Pitterl F, Erb R, Plattner S. Mass spectrometric methods for monitoring redox processes in electrochemical cells. MASS SPECTROMETRY REVIEWS 2015; 34:64-92. [PMID: 24338642 PMCID: PMC4286209 DOI: 10.1002/mas.21409] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 07/24/2013] [Accepted: 08/12/2013] [Indexed: 06/03/2023]
Abstract
Electrochemistry (EC) is a mature scientific discipline aimed to study the movement of electrons in an oxidation-reduction reaction. EC covers techniques that use a measurement of potential, charge, or current to determine the concentration or the chemical reactivity of analytes. The electrical signal is directly converted into chemical information. For in-depth characterization of complex electrochemical reactions involving the formation of diverse intermediates, products and byproducts, EC is usually combined with other analytical techniques, and particularly the hyphenation of EC with mass spectrometry (MS) has found broad applicability. The analysis of gases and volatile intermediates and products formed at electrode surfaces is enabled by differential electrochemical mass spectrometry (DEMS). In DEMS an electrochemical cell is sampled with a membrane interface for electron ionization (EI)-MS. The chemical space amenable to EC/MS (i.e., bioorganic molecules including proteins, peptides, nucleic acids, and drugs) was significantly increased by employing electrospray ionization (ESI)-MS. In the simplest setup, the EC of the ESI process is used to analytical advantage. A limitation of this approach is, however, its inability to precisely control the electrochemical potential at the emitter electrode. Thus, particularly for studying mechanistic aspects of electrochemical processes, the hyphenation of discrete electrochemical cells with ESI-MS was found to be more appropriate. The analytical power of EC/ESI-MS can further be increased by integrating liquid chromatography (LC) as an additional dimension of separation. Chromatographic separation was found to be particularly useful to reduce the complexity of the sample submitted either to the EC cell or to ESI-MS. Thus, both EC/LC/ESI-MS and LC/EC/ESI-MS are common.
Collapse
Affiliation(s)
- Herbert Oberacher
- Institute of Legal Medicine and Core Facility Metabolomics, Innsbruck Medical UniversityInnsbruck, Austria
| | - Florian Pitterl
- Institute of Legal Medicine and Core Facility Metabolomics, Innsbruck Medical UniversityInnsbruck, Austria
| | - Robert Erb
- Institute of Legal Medicine and Core Facility Metabolomics, Innsbruck Medical UniversityInnsbruck, Austria
| | - Sabine Plattner
- Institute of Legal Medicine and Core Facility Metabolomics, Innsbruck Medical UniversityInnsbruck, Austria
| |
Collapse
|
27
|
Zheng Q, Zhang H, Tong L, Wu S, Chen H. Cross-linking electrochemical mass spectrometry for probing protein three-dimensional structures. Anal Chem 2014; 86:8983-91. [PMID: 25141260 PMCID: PMC4165463 DOI: 10.1021/ac501526n] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 08/20/2014] [Indexed: 12/27/2022]
Abstract
Chemical cross-linking combined with mass spectrometry (MS) is powerful to provide protein three-dimensional structure information but difficulties in identifying cross-linked peptides and elucidating their structures limit its usefulness. To tackle these challenges, this study presents a novel cross-linking MS in conjunction with electrochemistry using disulfide-bond-containing dithiobis[succinimidyl propionate] (DSP) as the cross-linker. In our approach, electrolysis of DSP-bridged protein/peptide products, as online monitored by desorption electrospray ionization mass spectrometry is highly informative. First, as disulfide bonds are electrochemically reducible, the cross-links are subject to pronounced intensity decrease upon electrolytic reduction, suggesting a new way to identify cross-links. Also, mass shift before and after electrolysis suggests the linkage pattern of cross-links. Electrochemical reduction removes disulfide bond constraints, possibly increasing sequence coverage for tandem MS analysis and yielding linear peptides whose structures are more easily determined than their cross-linked precursor peptides. Furthermore, this cross-linking electrochemical MS method is rapid, due to the fast nature of electrochemical conversion (much faster than traditional chemical reduction) and no need for chromatographic separation, which would be of high value for structural proteomics research.
Collapse
Affiliation(s)
- Qiuling Zheng
- Center
for Intelligent Chemical Instrumentation, Department of Chemistry
and Biochemistry and Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701, United States
| | - Hao Zhang
- Department
of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Lingying Tong
- Center
for Intelligent Chemical Instrumentation, Department of Chemistry
and Biochemistry and Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701, United States
| | - Shiyong Wu
- Center
for Intelligent Chemical Instrumentation, Department of Chemistry
and Biochemistry and Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701, United States
| | - Hao Chen
- Center
for Intelligent Chemical Instrumentation, Department of Chemistry
and Biochemistry and Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701, United States
| |
Collapse
|
28
|
Espy RD, Wleklinski M, Yan X, Cooks RG. Beyond the flask: Reactions on the fly in ambient mass spectrometry. Trends Analyt Chem 2014. [DOI: 10.1016/j.trac.2014.02.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
29
|
Mysling S, Salbo R, Ploug M, Jørgensen TJD. Electrochemical Reduction of Disulfide-Containing Proteins for Hydrogen/Deuterium Exchange Monitored by Mass Spectrometry. Anal Chem 2013; 86:340-5. [DOI: 10.1021/ac403269a] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Simon Mysling
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense M DK-5230, Denmark
| | - Rune Salbo
- Protein
Technology, Novo Nordisk A/S, Novo Nordisk Park, Måløv DK-2760, Denmark
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet and Biotech Research
and Innovation Centre (BRIC), Copenhagen
Biocenter, Ole Maaløes Vej 5, Copenhagen N, DK-2200 Denmark
| | - Thomas J. D. Jørgensen
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense M DK-5230, Denmark
| |
Collapse
|
30
|
Liu P, Zhang J, Ferguson CN, Chen H, Loo JA. Measuring protein-ligand interactions using liquid sample desorption electrospray ionization mass spectrometry. Anal Chem 2013; 85:11966-72. [PMID: 24237005 PMCID: PMC3901310 DOI: 10.1021/ac402906d] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We have previously shown that liquid sample desorption electrospray ionization-mass spectrometry (DESI-MS) is able to measure large proteins and noncovalently bound protein complexes (to 150 kDa) (Ferguson et al., Anal. Chem. 2011, 83, 6468-6473). In this study, we further investigate the application of liquid sample DESI-MS to probe protein-ligand interactions. Liquid sample DESI allows the direct formation of intact protein-ligand complex ions by spraying ligands toward separate protein sample solutions. This type of "reactive" DESI methodology can provide rapid information on binding stiochiometry, selectivity, and kinetics, as demonstrated by the binding of ribonuclease A (RNaseA, 13.7 kDa) with cytidine nucleotide ligands and the binding of lysozyme (14.3 kDa) with acetyl chitose ligands. A higher throughput method for ligand screening by liquid sample DESI was demonstrated, in which different ligands were sequentially injected as a segmented flow for DESI ionization. Furthermore, supercharging to enhance analyte charge can be integrated with liquid sample DESI-MS, without interfering with the formation of protein-ligand complexes.
Collapse
Affiliation(s)
- Pengyuan Liu
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California 90095, United States
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, United States
| | - Jiang Zhang
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Carly N. Ferguson
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Hao Chen
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, United States
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California 90095, United States
- Department of Biological Chemistry, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
31
|
Ren Y, Liu J, Li L, McLuckey MN, Ouyang Z. Direct Mass Spectrometry Analysis of Untreated Samples of Ultralow Amounts Using Extraction Nano-Electrospray. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2013; 5:10.1039/C3AY41149D. [PMID: 24312137 PMCID: PMC3845969 DOI: 10.1039/c3ay41149d] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Direct mass spectrometry analysis of untreated samples of volumes as low as 0.2 µL were achieved using fast extraction and nanoESI (electrospray ionization) in a combined fashion. The analytes in dried samples on paper substrates were extracted by organic solvent in a nanoESI tube and ionized with a high voltage applied for generating a spray. The ionization source produced stable signals for different atmospheric pressure interfaces of triple quadrupole instruments. Analysis time more than 20 minutes were available with 10 µL solvent consumed for the entire analysis process. The performance in qualitative and quantitative analysis was characterized with a wide variety of samples. Limits of detection as low as 0.1 ng/mL (corresponding to an absolute amount of 0.05 pg) were obtained for analysis of atrazine in river water, thiabendazole in orange homogenate, and methamphetamine in blood.
Collapse
Affiliation(s)
- Yue Ren
- Weldon School of Biomedical Engineering, Purdue, West Lafayette, IN 47906
| | | | | | | | | |
Collapse
|
32
|
Nicolardi S, Giera M, Kooijman P, Kraj A, Chervet JP, Deelder AM, van der Burgt YEM. On-line electrochemical reduction of disulfide bonds: improved FTICR-CID and -ETD coverage of oxytocin and hepcidin. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:1980-7. [PMID: 24018861 PMCID: PMC3837188 DOI: 10.1007/s13361-013-0725-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 07/25/2013] [Accepted: 07/25/2013] [Indexed: 05/21/2023]
Abstract
Particularly in the field of middle- and top-down peptide and protein analysis, disulfide bridges can severely hinder fragmentation and thus impede sequence analysis (coverage). Here we present an on-line/electrochemistry/ESI-FTICR-MS approach, which was applied to the analysis of the primary structure of oxytocin, containing one disulfide bridge, and of hepcidin, containing four disulfide bridges. The presented workflow provided up to 80% (on-line) conversion of disulfide bonds in both peptides. With minimal sample preparation, such reduction resulted in a higher number of peptide backbone cleavages upon CID or ETD fragmentation, and thus yielded improved sequence coverage. The cycle times, including electrode recovery, were rapid and, therefore, might very well be coupled with liquid chromatography for protein or peptide separation, which has great potential for high-throughput analysis.
Collapse
Affiliation(s)
- Simone Nicolardi
- Leiden University Medical Center (LUMC), Center for Proteomics and Metabolomics, 2300 RC Leiden, The Netherlands
| | - Martin Giera
- Leiden University Medical Center (LUMC), Center for Proteomics and Metabolomics, 2300 RC Leiden, The Netherlands
| | - Pieter Kooijman
- Leiden University Medical Center (LUMC), Center for Proteomics and Metabolomics, 2300 RC Leiden, The Netherlands
| | | | | | - André M. Deelder
- Leiden University Medical Center (LUMC), Center for Proteomics and Metabolomics, 2300 RC Leiden, The Netherlands
| | - Yuri E. M. van der Burgt
- Leiden University Medical Center (LUMC), Center for Proteomics and Metabolomics, 2300 RC Leiden, The Netherlands
| |
Collapse
|
33
|
Zheng Q, Zhang H, Chen H. Integration of online digestion and electrolytic reduction with mass spectrometry for rapid disulfide-containing protein structural analysis. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2013; 353:84-92. [PMID: 25419170 PMCID: PMC4240030 DOI: 10.1016/j.ijms.2013.04.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Bottom-up structural analysis of disulfide-bond containing proteins usually involves time-consuming offline enzymatic digestion, chemical reduction and thiol protection prior to mass spectrometric detection, which takes many hours. This paper presents an expedited bottom-up approach, employing desorption electrospray ionization-mass spectrometry (DESI-MS) coupled with online pepsin digestion and online electrochemical reduction of disulfide bonds. Peptides are generated in high digestion yield as its precursor protein in acidic aqueous solution flows through a pepsin column, which can undergo direct electrolysis. The electrolytic behaviors of peptides, as online monitored by DESI-MS, suggest the presence or absence of disulfide bonds in the peptides, and also provide information to relate disulfide bond-containing peptide precursors to their corresponding reduced products. Furthermore, selective electrolysis simply using different reduction potentials can be adopted to generate either partially or fully reduced peptides to assist disulfide bond mapping. In addition, it turns out that DESI is suitable for ionizing peptides in water without organic solvent additives (organic solvent additives would not be compatible with the use of pepsin column). The feasibility of this method was demonstrated using insulin, a protein carrying three pairs of disulfide-bonds as an example, in which all disulfide bond linkages and most of the protein sequence were successfully determined. Strikingly, this method shortens the sample digestion, reduction and MS detection from hours to less than 7 min, which could be of high value in high-throughput proteomics research.
Collapse
Affiliation(s)
- Qiuling Zheng
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA
| | - Hao Zhang
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
- Corresponding author. Tel.: +1 314 935 7486
| | - Hao Chen
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA
- Corresponding author. Tel.: +1 740 593 0719; fax: +1 740 597 3157
| |
Collapse
|
34
|
Badu-Tawiah AK, Eberlin LS, Ouyang Z, Cooks RG. Chemical aspects of the extractive methods of ambient ionization mass spectrometry. Annu Rev Phys Chem 2013; 64:481-505. [PMID: 23331308 DOI: 10.1146/annurev-physchem-040412-110026] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ambient ionization techniques allow complex chemical samples to be analyzed in their native state with minimal sample preparation. This brings the obvious advantages of simplicity, speed, and versatility to mass spectrometry: Desorption electrospray ionization (DESI), for example, is used in chemical imaging for tumor margin diagnosis. This review on the extractive methods of ambient ionization focuses on chemical aspects, mechanistic considerations, and the accelerated chemical reactions occurring in charged liquid droplets generated in the spray process. DESI uses high-velocity solvent droplets to extract analytes from surfaces. Nano-DESI employs liquid microjunctions for analyte dissolution, whereas paper-spray ionization uses DC potentials applied to wet porous material such as paper or biological tissue to field emit charged analyte-containing solvent droplets. These methods also operate in a reactive mode in which added reagents allow derivatization during ionization. The accelerated reaction rates seen in charged microdroplets are useful in small-scale rapid chemical synthesis.
Collapse
|
35
|
Monge ME, Harris GA, Dwivedi P, Fernández FM. Mass Spectrometry: Recent Advances in Direct Open Air Surface Sampling/Ionization. Chem Rev 2013; 113:2269-308. [DOI: 10.1021/cr300309q] [Citation(s) in RCA: 404] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- María Eugenia Monge
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332,
United States
| | - Glenn A. Harris
- Department
of Biochemistry and
the Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Prabha Dwivedi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332,
United States
| | - Facundo M. Fernández
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332,
United States
| |
Collapse
|
36
|
Liu P, Lu M, Zheng Q, Zhang Y, Dewald HD, Chen H. Recent advances of electrochemical mass spectrometry. Analyst 2013; 138:5519-39. [DOI: 10.1039/c3an00709j] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
37
|
Liu P, Lanekoff IT, Laskin J, Dewald HD, Chen H. Study of Electrochemical Reactions Using Nanospray Desorption Electrospray Ionization Mass Spectrometry. Anal Chem 2012; 84:5737-43. [DOI: 10.1021/ac300916k] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Pengyuan Liu
- Center for Intelligent Chemical
Instrumentation, Department of Chemistry and Biochemistry, Clippinger
Laboratories, Ohio University, Athens,
Ohio 45701, United States
| | - Ingela T. Lanekoff
- Chemical and Materials Sciences
Division, Pacific Northwest National Laboratory, P.O. Box 999 K8-88, Richland, Washington 99352, United States
| | - Julia Laskin
- Chemical and Materials Sciences
Division, Pacific Northwest National Laboratory, P.O. Box 999 K8-88, Richland, Washington 99352, United States
| | - Howard D. Dewald
- Center for Intelligent Chemical
Instrumentation, Department of Chemistry and Biochemistry, Clippinger
Laboratories, Ohio University, Athens,
Ohio 45701, United States
| | - Hao Chen
- Center for Intelligent Chemical
Instrumentation, Department of Chemistry and Biochemistry, Clippinger
Laboratories, Ohio University, Athens,
Ohio 45701, United States
| |
Collapse
|