1
|
Wang M, Liao X, Tchounwou PB, Liu YM. Coupling a droplet generator with conventional ESI-MS for quantitative analysis of small-volume samples. Anal Bioanal Chem 2022; 414:1809-1817. [PMID: 35061061 PMCID: PMC8828272 DOI: 10.1007/s00216-021-03808-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 02/03/2023]
Abstract
Quantitative mass spectrometric analysis of small-volume samples (e.g., < 1 μL) has been a challenge mainly due to the difficulties with sample handling and its injection into the system for analysis. Herein we report a microfluidic analytical platform coupling a droplet generator with conventional electrospray ionization-mass spectrometry (ESI-MS) that enables multiple analyses of a μL-sized sample with sensitivity and repeatability. In an analysis by droplet generator-assisted ESI-MS (DG-ESI-MS), a sample of μL volume is pulled into a sampling capillary and its equal nL-sized portions are generated by a droplet generator and analyzed by ESI-MS at time intervals of choice. The droplet generator is made of PMMA sheets by laser engraving conveniently and at a low cost. In a study to achieve effective ESI-MS detection of water-in-oil droplets, it's found that the problem of MS signal suppression by oil can be solved by using an appropriate organic carrier with ESI-enhancing additives. The proposed DG-ESI-MS method has linear calibration curves for both adenine and phenylalanine with LODs at the sub-μM level. Application of the present analytical platform for monitoring substrate concentration changes in an enzymatic reaction solution of 3 μL is demonstrated.
Collapse
Affiliation(s)
- Meiyuan Wang
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS 39217, USA
| | - Xun Liao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China
| | - Paul B. Tchounwou
- Department of Biology, Jackson State University, 1400 Lynch Street, Jackson, MS 39217, USA
| | - Yi-Ming Liu
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS 39217, USA
| |
Collapse
|
2
|
Wu CT, Wang Y, Wang Y, Ebbels T, Karaman I, Graça G, Pinto R, Herrington DM, Wang Y, Yu G. Targeted realignment of LC-MS profiles by neighbor-wise compound-specific graphical time warping with misalignment detection. Bioinformatics 2020; 36:2862-2871. [PMID: 31950989 DOI: 10.1093/bioinformatics/btaa037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/27/2019] [Accepted: 01/15/2020] [Indexed: 12/17/2022] Open
Abstract
MOTIVATION Liquid chromatography-mass spectrometry (LC-MS) is a standard method for proteomics and metabolomics analysis of biological samples. Unfortunately, it suffers from various changes in the retention times (RT) of the same compound in different samples, and these must be subsequently corrected (aligned) during data processing. Classic alignment methods such as in the popular XCMS package often assume a single time-warping function for each sample. Thus, the potentially varying RT drift for compounds with different masses in a sample is neglected in these methods. Moreover, the systematic change in RT drift across run order is often not considered by alignment algorithms. Therefore, these methods cannot effectively correct all misalignments. For a large-scale experiment involving many samples, the existence of misalignment becomes inevitable and concerning. RESULTS Here, we describe an integrated reference-free profile alignment method, neighbor-wise compound-specific Graphical Time Warping (ncGTW), that can detect misaligned features and align profiles by leveraging expected RT drift structures and compound-specific warping functions. Specifically, ncGTW uses individualized warping functions for different compounds and assigns constraint edges on warping functions of neighboring samples. Validated with both realistic synthetic data and internal quality control samples, ncGTW applied to two large-scale metabolomics LC-MS datasets identifies many misaligned features and successfully realigns them. These features would otherwise be discarded or uncorrected using existing methods. The ncGTW software tool is developed currently as a plug-in to detect and realign misaligned features present in standard XCMS output. AVAILABILITY AND IMPLEMENTATION An R package of ncGTW is freely available at Bioconductor and https://github.com/ChiungTingWu/ncGTW. A detailed user's manual and a vignette are provided within the package. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Chiung-Ting Wu
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| | - Yizhi Wang
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| | - Yinxue Wang
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| | - Timothy Ebbels
- Section of Bioinformatics, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK
| | - Ibrahim Karaman
- Department of Epidemiology and Biostatistics, Imperial College London, London W2 1PG, UK.,UK Dementia Research Institute, Imperial College London, London, UK
| | - Gonçalo Graça
- Section of Bioinformatics, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK
| | - Rui Pinto
- Department of Epidemiology and Biostatistics, Imperial College London, London W2 1PG, UK.,UK Dementia Research Institute, Imperial College London, London, UK
| | - David M Herrington
- Department of Internal Medicine, Wake Forest University, Winston-Salem, NC 27157, USA
| | - Yue Wang
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| | - Guoqiang Yu
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| |
Collapse
|
3
|
Das B, Patra A, Mukherjee AK. Correlation of Venom Toxinome Composition of Indian Red Scorpion ( Mesobuthus tamulus) with Clinical Manifestations of Scorpion Stings: Failure of Commercial Antivenom to Immune-Recognize the Abundance of Low Molecular Mass Toxins of This Venom. J Proteome Res 2020; 19:1847-1856. [PMID: 32125869 DOI: 10.1021/acs.jproteome.0c00120] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Indian red scorpion (Mesobuthus tamulus), with its life-threatening sting, is the world's most dangerous species of scorpion. The toxinome composition of M. tamulus venom was determined by tandem mass spectrometry (MS) analysis of venom protein bands separated by SDS-PAGE. A total of 110 venom toxins were identified from searching the MS data against the Buthidae family (taxid: 6855) of toxin entries in nonredundant protein databases. The Na+ and K+ ion channel toxins taken together are the most abundant toxins (76.7%) giving rise to the neurotoxic nature of this venom. The other minor toxin classes in the M. tamulus venom proteome are serine protease-like protein (2.9%), serine protease inhibitor (2.2%), antimicrobial peptide (2.3%), hyaluronidase (2.2%), makatoxin (2.1%), lipolysis potentiating peptides (1.2%), neurotoxin affecting Cl- channel (1%), parabutoporin (0.6%), Ca2+ channel toxins (0.8%), bradykinin potentiating peptides (0.2%), HMG CoA reductase inhibitor (0.1%), and other toxins with unknown pharmacological activity (7.7%). Several of these toxins have been shown to be promising drug candidates. M. tamulus venom does not show enzymatic activity (phospholipase A2, l-amino acid oxidase, adenosine tri-, di-, and monophosphatase, hyaluronidase, metalloproteinase, and fibrinogenolytic), in vitro hemolytic activity, interference with blood coagulation, or platelet modulation properties. The clinical manifestations post M. tamulus sting have been described in the literature and are well correlated with its venom proteome composition. An abundance of low molecular mass toxins (3-15 kDa) are responsible for exerting the major pharmacological effects of M. tamulus venom, though they are poorly immune-recognized by commercial scorpion antivenom. This is a major concern for the development of effective antivenom therapy against scorpion stings.
Collapse
Affiliation(s)
- Bhabana Das
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur 784028, Assam, India
| | - Aparup Patra
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur 784028, Assam, India
| | - Ashis Kumar Mukherjee
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur 784028, Assam, India
| |
Collapse
|
4
|
Pouvreau B, Fenske R, Ivanova A, Murcha MW, Mylne JS. An interstitial peptide is readily processed from within seed proteins. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 285:175-183. [PMID: 31203882 DOI: 10.1016/j.plantsci.2019.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/25/2019] [Accepted: 05/02/2019] [Indexed: 06/09/2023]
Abstract
The importance of de novo protein evolution is apparent, but most examples are de novo coding transcripts evolving from silent or non-coding DNA. The peptide macrocycle SunFlower Trypsin Inhibitor 1 (SFTI-1) evolved over 45 million years from genetic expansion within the N-terminal 'discarded' region of an ancestral seed albumin precursor. SFTI-1 and its adjacent albumin are both processed into separate, mature forms by asparaginyl endopeptidase (AEP). Here to determine whether the evolution of SFTI-1 in a latent region of its precursor was critical, we used a transgene approach in A. thaliana analysed by peptide mass spectrometry and RT-qPCR. SFTI could emerge from alternative locations within preproalbumin as well as emerge with precision from unrelated seed proteins via AEP-processing. SFTI production was possible with the adjacent albumin, but peptide levels dropped greatly without the albumin. The ability for SFTI to be processed from multiple sequence contexts and different proteins suggests that to make peptide, it was not crucial for the genetic expansion that gave rise to SFTI and its family to be within a latent protein region. Interstitial peptides, evolving like SFTI within existing proteins, might be more widespread and as a mechanism, SFTI exemplifies a stable, new, functional peptide that did not need a new gene to evolve de novo.
Collapse
Affiliation(s)
- Benjamin Pouvreau
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia; The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
| | - Ricarda Fenske
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia; The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
| | - Aneta Ivanova
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia; The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
| | - Monika W Murcha
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia; The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
| | - Joshua S Mylne
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia; The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia.
| |
Collapse
|
5
|
Vaneckova T, Vanickova L, Tvrdonova M, Pomorski A, Krężel A, Vaculovic T, Kanicky V, Vaculovicova M, Adam V. Molecularly imprinted polymers coupled to mass spectrometric detection for metallothionein sensing. Talanta 2019; 198:224-229. [DOI: 10.1016/j.talanta.2019.01.089] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 10/27/2022]
|
6
|
Kuhlmann L, Cummins E, Samudio I, Kislinger T. Cell-surface proteomics for the identification of novel therapeutic targets in cancer. Expert Rev Proteomics 2018; 15:259-275. [DOI: 10.1080/14789450.2018.1429924] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Laura Kuhlmann
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Emma Cummins
- The Centre for Drug Research and Development, Division of Biologics, Vancouver, Canada
| | - Ismael Samudio
- The Centre for Drug Research and Development, Division of Biologics, Vancouver, Canada
| | - Thomas Kislinger
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| |
Collapse
|
7
|
Rossato M, Miralles G, M'Kadmi C, Maingot M, Amblard M, Mouillac B, Gagne D, Martinez J, Subra G, Enjalbal C, Cantel S. Quantitative MALDI-MS Binding Assays: An Alternative to Radiolabeling. ChemMedChem 2016; 11:2582-2587. [PMID: 27922213 DOI: 10.1002/cmdc.201600447] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/27/2016] [Indexed: 12/20/2022]
Abstract
Radiolabeling of ligands is still the gold standard in the study of high-affinity receptor-ligand interactions. In an effort toward safer and simpler alternatives to the use of radioisotopes, we developed a quantitative and highly sensitive matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) method that relies on the use of chemically tagged ligands designed to be specifically detectable when present as traces in complex biological mixtures such as cellular lysates. This innovative technology allows easy, sensitive detection and accurate quantification of analytes at the sub-nanomolar level. After statistical validation, we were able to perform pharmacological evaluations of G protein-coupled receptor (V1A-R)-ligand interactions. Both saturation and competitive binding assays were successfully processed.
Collapse
Affiliation(s)
- Maxime Rossato
- Institut des Biomolécules Max Mousseron (IBMM), UMR5247 CNRS, ENSCM, Université de Montpellier, Place E. Bataillon, 34095, Montpellier Cedex 5, France
| | - Guillaume Miralles
- Institut des Biomolécules Max Mousseron (IBMM), UMR5247 CNRS, ENSCM, Université de Montpellier, Place E. Bataillon, 34095, Montpellier Cedex 5, France
| | - Céline M'Kadmi
- Institut des Biomolécules Max Mousseron (IBMM), UMR5247 CNRS, ENSCM, Université de Montpellier, Place E. Bataillon, 34095, Montpellier Cedex 5, France
| | - Mathieu Maingot
- Institut des Biomolécules Max Mousseron (IBMM), UMR5247 CNRS, ENSCM, Université de Montpellier, Place E. Bataillon, 34095, Montpellier Cedex 5, France
| | - Muriel Amblard
- Institut des Biomolécules Max Mousseron (IBMM), UMR5247 CNRS, ENSCM, Université de Montpellier, Place E. Bataillon, 34095, Montpellier Cedex 5, France
| | - Bernard Mouillac
- Institut de Génomique Fonctionnelle (IGF), 141 Rue de la Cardonille, 34090, Montpellier, France
| | - Didier Gagne
- Institut des Biomolécules Max Mousseron (IBMM), UMR5247 CNRS, ENSCM, Université de Montpellier, Place E. Bataillon, 34095, Montpellier Cedex 5, France
| | - Jean Martinez
- Institut des Biomolécules Max Mousseron (IBMM), UMR5247 CNRS, ENSCM, Université de Montpellier, Place E. Bataillon, 34095, Montpellier Cedex 5, France
| | - Gilles Subra
- Institut des Biomolécules Max Mousseron (IBMM), UMR5247 CNRS, ENSCM, Université de Montpellier, Place E. Bataillon, 34095, Montpellier Cedex 5, France
| | - Christine Enjalbal
- Institut des Biomolécules Max Mousseron (IBMM), UMR5247 CNRS, ENSCM, Université de Montpellier, Place E. Bataillon, 34095, Montpellier Cedex 5, France
| | - Sonia Cantel
- Institut des Biomolécules Max Mousseron (IBMM), UMR5247 CNRS, ENSCM, Université de Montpellier, Place E. Bataillon, 34095, Montpellier Cedex 5, France
| |
Collapse
|
8
|
Forest S, Breault-Turcot J, Chaurand P, Masson JF. Surface Plasmon Resonance Imaging-MALDI-TOF Imaging Mass Spectrometry of Thin Tissue Sections. Anal Chem 2016; 88:2072-9. [DOI: 10.1021/acs.analchem.5b03309] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Simon Forest
- Département
de Chimie, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | - Julien Breault-Turcot
- Département
de Chimie, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | - Pierre Chaurand
- Département
de Chimie, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | - Jean-Francois Masson
- Département
de Chimie, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Québec H3C 3J7, Canada
- Centre
for Self-Assembled Chemical Structures (CSACS), McGill University, Montreal, Quebec H3A 2K6, Canada
| |
Collapse
|
9
|
Ma S, Downard KM, Wong JW. FluClass: A novel algorithm and approach to score and visualize the phylogeny of the influenza virus using mass spectrometry. Anal Chim Acta 2015; 895:54-61. [DOI: 10.1016/j.aca.2015.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/29/2015] [Accepted: 09/03/2015] [Indexed: 10/23/2022]
|
10
|
Abstract
Current proteomic technologies can effectively be used to study the proteins of the vitreous body and retina in health and disease. The use of appropriate samples, analytical platform and bioinformatic method are essential factors to consider when undertaking such studies. Certain proteins may hinder the detection and evaluation of more relevant proteins associated with pathological processes if not carefully considered, particularly in the sample preparation and data analysis stages. The utilization of more than one quantification technique and database search program to expand the level of proteome coverage and analysis will help to generate more robust and worthwhile results. This review discusses important aspects of sample processing and the use of label and label-free quantitative proteomics strategies applied to the vitreous and retina.
Collapse
|
11
|
Label-free relative quantification applied to LC-MALDI acquisition for rapid analysis of chondrocyte secretion modulation. J Proteomics 2015; 114:263-73. [DOI: 10.1016/j.jprot.2014.10.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/10/2014] [Accepted: 10/22/2014] [Indexed: 11/21/2022]
|
12
|
Zhang W, Long J, Zhang C, Cai N, Liu Z, Wang Y, Wang X, Chen P, Liang S. A method combining SPITC and ¹⁸O labeling for simultaneous protein identification and relative quantification. JOURNAL OF MASS SPECTROMETRY : JMS 2014; 49:400-408. [PMID: 24809901 DOI: 10.1002/jms.3357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 02/26/2014] [Accepted: 03/05/2014] [Indexed: 06/03/2023]
Abstract
The relative quantification and identification of proteins by matrix-assisted laser desorption ionization time-of-flight MS is very important in /MS is very important in protein research and is usually conducted separately. Chemical N-terminal derivatization with 4-sulphophenyl isothiocyanate facilitates de novo sequencing analysis and accurate protein identification, while (18)O labeling is simple, specific and widely applicable among the isotopic labeling methods used for relative quantification. In the present study, a method combining 4-sulphophenyl isothiocyanate derivatization with (18)O isotopic labeling was established to identify and quantify proteins simultaneously in one experiment. Reaction conditions were first optimized using a standard peptide (fibrin peptide) and tryptic peptides from the model protein (bovine serum albumin). Under the optimized conditions, these two independent labeling steps show good compatibility, and the linear relativity of quantification within the ten times dynamic range was stable as revealed by correlation coefficient analysis (R(2) value = 0.998); moreover, precursor peaks in MS/MS spectrum could provide accurate quantitative information, which is usually acquired from MS spectrum, enabling protein identification and quantification in a single MS/MS spectrum. Next, this method was applied to native peptides isolated from spider venoms. As expected, the de novo sequencing results of each peptide matched with the known sequence precisely, and the measured quantitative ratio of each peptide corresponded well with the theoretical ratio. Finally, complex protein mixtures of spider venoms from male and female species with unknown genome information were analyzed. Differentially expressed proteins were successfully identified, and their quantitative information was also accessed. Taken together, this protein identification and quantification method is simple, reliable and efficient, which has a good potential in the exploration of peptides/proteins from species with unknown genome.
Collapse
Affiliation(s)
- Wenlong Zhang
- Key laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Recent methodological advances in MALDI mass spectrometry. Anal Bioanal Chem 2014; 406:2261-78. [PMID: 24652146 DOI: 10.1007/s00216-014-7646-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/17/2014] [Accepted: 01/21/2014] [Indexed: 10/25/2022]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is widely used for characterization of large, thermally labile biomolecules. Advantages of this analytical technique are high sensitivity, robustness, high-throughput capacity, and applicability to a wide range of compound classes. For some years, MALDI-MS has also been increasingly used for mass spectrometric imaging as well as in other areas of clinical research. Recently, several new concepts have been presented that have the potential to further advance the performance characteristics of MALDI. Among these innovations are novel matrices with low proton affinities for particularly efficient protonation of analyte molecules, use of wavelength-tunable lasers to achieve optimum excitation conditions, and use of liquid matrices for improved quantification. Instrumental modifications have also made possible MALDI-MS imaging with cellular resolution as well as an efficient generation of multiply charged MALDI ions by use of heated vacuum interfaces. This article reviews these recent innovations and gives the author's personal outlook of possible future developments.
Collapse
|
14
|
Wöhlbrand L, Trautwein K, Rabus R. Proteomic tools for environmental microbiology-A roadmap from sample preparation to protein identification and quantification. Proteomics 2013; 13:2700-30. [DOI: 10.1002/pmic.201300175] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 06/07/2013] [Accepted: 06/28/2013] [Indexed: 02/03/2023]
Affiliation(s)
- Lars Wöhlbrand
- Institute for Chemistry and Biology of the Marine Environment (ICBM); Carl von Ossietzky University Oldenburg; Oldenburg Germany
| | - Kathleen Trautwein
- Institute for Chemistry and Biology of the Marine Environment (ICBM); Carl von Ossietzky University Oldenburg; Oldenburg Germany
| | - Ralf Rabus
- Institute for Chemistry and Biology of the Marine Environment (ICBM); Carl von Ossietzky University Oldenburg; Oldenburg Germany
| |
Collapse
|
15
|
Kachala VV, Khemchyan LL, Kashin AS, Orlov NV, Grachev AA, Zalesskiy SS, Ananikov VP. Target-oriented analysis of gaseous, liquid and solid chemical systems by mass spectrometry, nuclear magnetic resonance spectroscopy and electron microscopy. RUSSIAN CHEMICAL REVIEWS 2013. [DOI: 10.1070/rc2013v082n07abeh004413] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Megger DA, Bracht T, Meyer HE, Sitek B. Label-free quantification in clinical proteomics. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1581-90. [DOI: 10.1016/j.bbapap.2013.04.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 03/26/2013] [Accepted: 04/01/2013] [Indexed: 12/31/2022]
|
17
|
Shrivas K, Mindaye ST, Getie-Kebtie M, Alterman MA. Mass spectrometry-based proteomic analysis of human liver cytochrome(s) P450. Toxicol Appl Pharmacol 2013; 267:125-36. [DOI: 10.1016/j.taap.2012.12.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 12/12/2012] [Accepted: 12/13/2012] [Indexed: 11/26/2022]
|