1
|
Sabotič J, Bayram E, Ezra D, Gaudêncio SP, Haznedaroğlu BZ, Janež N, Ktari L, Luganini A, Mandalakis M, Safarik I, Simes D, Strode E, Toruńska-Sitarz A, Varamogianni-Mamatsi D, Varese GC, Vasquez MI. A guide to the use of bioassays in exploration of natural resources. Biotechnol Adv 2024; 71:108307. [PMID: 38185432 DOI: 10.1016/j.biotechadv.2024.108307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/05/2023] [Accepted: 01/01/2024] [Indexed: 01/09/2024]
Abstract
Bioassays are the main tool to decipher bioactivities from natural resources thus their selection and quality are critical for optimal bioprospecting. They are used both in the early stages of compounds isolation/purification/identification, and in later stages to evaluate their safety and efficacy. In this review, we provide a comprehensive overview of the most common bioassays used in the discovery and development of new bioactive compounds with a focus on marine bioresources. We present a comprehensive list of practical considerations for selecting appropriate bioassays and discuss in detail the bioassays typically used to explore antimicrobial, antibiofilm, cytotoxic, antiviral, antioxidant, and anti-ageing potential. The concept of quality control and bioassay validation are introduced, followed by safety considerations, which are critical to advancing bioactive compounds to a higher stage of development. We conclude by providing an application-oriented view focused on the development of pharmaceuticals, food supplements, and cosmetics, the industrial pipelines where currently known marine natural products hold most potential. We highlight the importance of gaining reliable bioassay results, as these serve as a starting point for application-based development and further testing, as well as for consideration by regulatory authorities.
Collapse
Affiliation(s)
- Jerica Sabotič
- Department of Biotechnology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia.
| | - Engin Bayram
- Institute of Environmental Sciences, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - David Ezra
- Department of Plant Pathology and Weed Research, ARO, The Volcani Institute, P.O.Box 15159, Rishon LeZion 7528809, Israel
| | - Susana P Gaudêncio
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal; UCIBIO - Applied Biomolecular Sciences Unit, Department of Chemistry, Blue Biotechnology & Biomedicine Lab, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
| | - Berat Z Haznedaroğlu
- Institute of Environmental Sciences, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Nika Janež
- Department of Biotechnology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Leila Ktari
- B3Aqua Laboratory, National Institute of Marine Sciences and Technologies, Carthage University, Tunis, Tunisia
| | - Anna Luganini
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy
| | - Manolis Mandalakis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71500 Heraklion, Greece
| | - Ivo Safarik
- Department of Nanobiotechnology, Biology Centre, ISBB, CAS, Na Sadkach 7, 370 05 Ceske Budejovice, Czech Republic; Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Dina Simes
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, 8005-139 Faro, Portugal; 2GenoGla Diagnostics, Centre of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
| | - Evita Strode
- Latvian Institute of Aquatic Ecology, Agency of Daugavpils University, Riga LV-1007, Latvia
| | - Anna Toruńska-Sitarz
- Department of Marine Biology and Biotechnology, Faculty of Oceanography and Geography, University of Gdańsk, 81-378 Gdynia, Poland
| | - Despoina Varamogianni-Mamatsi
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71500 Heraklion, Greece
| | | | - Marlen I Vasquez
- Department of Chemical Engineering, Cyprus University of Technology, 3036 Limassol, Cyprus
| |
Collapse
|
2
|
Walker JT, McDermott PJ. Confirming the Presence of Legionella pneumophila in Your Water System: A Review of Current Legionella Testing Methods. J AOAC Int 2021; 104:1135-1147. [PMID: 33484265 PMCID: PMC8378878 DOI: 10.1093/jaoacint/qsab003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 12/24/2022]
Abstract
Legionnaires' disease has been recognized since 1976 and Legionella pneumophila still accounts for more than 95% of cases. Approaches in countries, including France, suggest that focusing risk reduction specifically on L. pneumophila is an effective strategy, as detecting L. pneumophila has advantages over targeting multiple species of Legionella. In terms of assays, the historically accepted plate culture method takes 10 days for confirmed Legionella spp. results, has variabilities which affect trending and comparisons, requires highly trained personnel to identify colonies on a plate in specialist laboratories, and does not recover viable-but-non-culturable bacteria. PCR is sensitive, specific, provides results in less than 24 h, and determines the presence/absence of Legionella spp. and/or L. pneumophila DNA. Whilst specialist personnel and laboratories are generally required, there are now on-site PCR options, but there is no agreement on comparing genome units to colony forming units and action limits. Immunomagnetic separation assays are culture-independent, detect multiple Legionella species, and results are available in 24 h, with automated processing options. Field-use lateral flow devices provide presence/absence determination of L. pneumophila serogroup 1 where sufficient cells are present, but testing potable waters is problematic. Liquid culture most probable number (MPN) assays provide confirmed L. pneumophila results in 7 days that are equivalent to or exceed plate culture, are robust and reproducible, and can be performed in a variety of laboratory settings. MPN isolates can be obtained for epidemiological investigations. This accessible, non-technical review will be of particular interest to building owners, operators, risk managers, and water safety groups and will enable them to make informed decisions to reduce the risk of L. pneumophila.
Collapse
|
3
|
Mokhodoeva OB, Maksimova VV, Dzhenloda RK, Shkinev VM. Magnetic Nanoparticles Modified by Ionic Liquids in Environmental Analysis. JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1134/s1061934821060058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Pena-Pereira F, Bendicho C, Pavlović DM, Martín-Esteban A, Díaz-Álvarez M, Pan Y, Cooper J, Yang Z, Safarik I, Pospiskova K, Segundo MA, Psillakis E. Miniaturized analytical methods for determination of environmental contaminants of emerging concern - A review. Anal Chim Acta 2020; 1158:238108. [PMID: 33863416 DOI: 10.1016/j.aca.2020.11.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 01/09/2023]
Abstract
The determination of contaminants of emerging concern (CECs) in environmental samples has become a challenging and critical issue. The present work focuses on miniaturized analytical strategies reported in the literature for the determination of CECs. The first part of the review provides brief overview of CECs whose monitoring in environmental samples is of particular significance, namely personal care products, pharmaceuticals, endocrine disruptors, UV-filters, newly registered pesticides, illicit drugs, disinfection by-products, surfactants, high technology rare earth elements, and engineered nanomaterials. Besides, an overview of downsized sample preparation approaches reported in the literature for the determination of CECs in environmental samples is provided. Particularly, analytical methodologies involving microextraction approaches used for the enrichment of CECs are discussed. Both solid phase- and liquid phase-based microextraction techniques are highlighted devoting special attention to recently reported approaches. Special emphasis is placed on newly developed materials used for extraction purposes in microextraction techniques. In addition, recent contributions involving miniaturized analytical flow techniques for the determination of CECs are discussed. Besides, the strengths, weaknesses, opportunities and threats of point of need and portable devices have been identified and critically compared with chromatographic methods coupled to mass chromatography. Finally, challenging aspects regarding miniaturized analytical methods for determination of CECs are critically discussed.
Collapse
Affiliation(s)
- Francisco Pena-Pereira
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Química Analítica e Alimentaria, Grupo QA2, Edificio CC Experimentais, Campus de Vigo, As Lagoas, Marcosende, 36310, Vigo, Spain.
| | - Carlos Bendicho
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Química Analítica e Alimentaria, Grupo QA2, Edificio CC Experimentais, Campus de Vigo, As Lagoas, Marcosende, 36310, Vigo, Spain.
| | - Dragana Mutavdžić Pavlović
- Department of Analytical Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev Trg 19, Zagreb, 10000, Croatia
| | - Antonio Martín-Esteban
- Departamento de Medio Ambiente y Agronomía, INIA, Carretera de A Coruña Km 7.5, Madrid, E-28040, Spain
| | - Myriam Díaz-Álvarez
- Departamento de Medio Ambiente y Agronomía, INIA, Carretera de A Coruña Km 7.5, Madrid, E-28040, Spain
| | - Yuwei Pan
- Cranfield Water Science Institute, Cranfield University, Cranfield, MK43 0AL, United Kingdom; School of Engineering, University of Glasgow, G12 8LT, United Kingdom
| | - Jon Cooper
- School of Engineering, University of Glasgow, G12 8LT, United Kingdom
| | - Zhugen Yang
- Cranfield Water Science Institute, Cranfield University, Cranfield, MK43 0AL, United Kingdom
| | - Ivo Safarik
- Department of Nanobiotechnology, Biology Centre, ISB, CAS, Na Sadkach 7, 370 05, Ceske Budejovice, Czech Republic; Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 27, 783 71, Olomouc, Czech Republic; Department of Magnetism, Institute of Experimental Physics, SAS, Watsonova 47, 040 01, Kosice, Slovakia
| | - Kristyna Pospiskova
- Department of Nanobiotechnology, Biology Centre, ISB, CAS, Na Sadkach 7, 370 05, Ceske Budejovice, Czech Republic; Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 27, 783 71, Olomouc, Czech Republic
| | - Marcela A Segundo
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Elefteria Psillakis
- Laboratory of Aquatic Chemistry, School of Environmental Engineering, Polytechnioupolis, Technical University of Crete, GR-73100, Chania, Crete, Greece
| |
Collapse
|
5
|
Hagarová I. Magnetic Solid Phase Extraction as a Promising Technique for Fast Separation of Metallic Nanoparticles and Their Ionic Species: A Review of Recent Advances. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2020; 2020:8847565. [PMID: 32963882 PMCID: PMC7502132 DOI: 10.1155/2020/8847565] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
The widespread use of silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) in a wide variety of industrial as well as medical sectors is indisputable. This leads to a new concern about their presence in various environmental compartments. Since their negative effect and potential toxicity impact have been confirmed, analytical chemists focus on the development of different procedures for their reliable detection, identification, characterization, and quantification, not only in homogenous and simple matrices but also in complex environmental matrices. However, nanoparticles and their ionic species can coexist and their toxicity may differ; therefore, novel analytical approaches are necessary to monitor not only the nanoparticles but also their ionic species. The aim of this article is to bring a review of recent works where magnetic solid-phase extraction (MSPE) procedures in connection with spectrometric methods were used for separation/preconcentration and quantification of (1) silver and gold ions in various environmental samples, (2) AgNPs and AuNPs in real water samples in the presence of various coexisting ions, and (3) both species (it means Ag ions and AgNPs; Au ions and AuNPs) in real water samples. The results presented herein show the great analytical potential of MSPE procedures in connection with spectrometric methods used in these fields and can be helpful in guiding analytical chemists who aim to work on this subject.
Collapse
Affiliation(s)
- Ingrid Hagarová
- Comenius University in Bratislava, Faculty of Natural Sciences, Institute of Laboratory Research on Geomaterials, Mlynská Dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia
| |
Collapse
|
6
|
Satheeshkumar M, Kumar ER, Indhumathi P, Srinivas C, Deepty M, Sathiyaraj S, Suriyanarayanan N, Sastry D. Structural, morphological and magnetic properties of algae/CoFe2O4 and algae/Ag-Fe-O nanocomposites and their biomedical applications. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2019.107578] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
7
|
Safarik I, Mullerova S, Pospiskova K. Semiquantitative determination of food acid dyes by magnetic textile solid phase extraction followed by image analysis. Food Chem 2019; 274:215-219. [DOI: 10.1016/j.foodchem.2018.08.125] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 07/18/2018] [Accepted: 08/27/2018] [Indexed: 01/16/2023]
|
8
|
Bouzas-Ramos D, Trapiella-Alfonso L, Pons K, Encinar JR, Costa-Fernández JM, Tsatsaris V, Gagey-Eilstein N. Controlling Ligand Surface Density on Streptavidin-Magnetic Particles by a Simple, Rapid, and Reliable Chemiluminescent Test. Bioconjug Chem 2018; 29:2646-2653. [DOI: 10.1021/acs.bioconjchem.8b00347] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Diego Bouzas-Ramos
- UMR 8638 CNRS, Université Paris Descartes, Faculté des Sciences Pharmaceutiques et Biologiques, Sorbonne Paris Cité. 4 avenue de l’observatoire, 75006 Paris, France
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Avda. Julián Clavería, 8, 33006 Oviedo, Spain
| | - Laura Trapiella-Alfonso
- UMR 8638 CNRS, Université Paris Descartes, Faculté des Sciences Pharmaceutiques et Biologiques, Sorbonne Paris Cité. 4 avenue de l’observatoire, 75006 Paris, France
- Cochin Hospital, Assistance Publique-Hôpital de Paris, DHU Risques et Grossesse, Paris Descartes University, INSERM UMR 1139, PremUP Foundation, 53 Avenue de l’Observatoire, 75014 Paris, France
| | - Kelly Pons
- UMR 8638 CNRS, Université Paris Descartes, Faculté des Sciences Pharmaceutiques et Biologiques, Sorbonne Paris Cité. 4 avenue de l’observatoire, 75006 Paris, France
- Cochin Hospital, Assistance Publique-Hôpital de Paris, DHU Risques et Grossesse, Paris Descartes University, INSERM UMR 1139, PremUP Foundation, 53 Avenue de l’Observatoire, 75014 Paris, France
| | - Jorge Ruiz Encinar
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Avda. Julián Clavería, 8, 33006 Oviedo, Spain
| | - José M. Costa-Fernández
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Avda. Julián Clavería, 8, 33006 Oviedo, Spain
| | - Vassilis Tsatsaris
- Cochin Hospital, Assistance Publique-Hôpital de Paris, DHU Risques et Grossesse, Paris Descartes University, INSERM UMR 1139, PremUP Foundation, 53 Avenue de l’Observatoire, 75014 Paris, France
| | - Nathalie Gagey-Eilstein
- UMR 8638 CNRS, Université Paris Descartes, Faculté des Sciences Pharmaceutiques et Biologiques, Sorbonne Paris Cité. 4 avenue de l’observatoire, 75006 Paris, France
- Cochin Hospital, Assistance Publique-Hôpital de Paris, DHU Risques et Grossesse, Paris Descartes University, INSERM UMR 1139, PremUP Foundation, 53 Avenue de l’Observatoire, 75014 Paris, France
| |
Collapse
|
9
|
Plačková L, Oklestkova J, Pospíšková K, Poláková K, Buček J, Stýskala J, Zatloukal M, Šafařík I, Zbořil R, Strnad M, Doležal K, Novák O. Microscale magnetic microparticle-based immunopurification of cytokinins from Arabidopsis root apex. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:1065-1075. [PMID: 27943492 DOI: 10.1111/tpj.13443] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/09/2016] [Accepted: 11/24/2016] [Indexed: 06/06/2023]
Abstract
Cytokinins (CKs) are pivotal plant hormones that have crucial roles in plant growth and development. However, their isolation and quantification are usually challenging because of their extremely low levels in plant tissues (pmol g-1 fresh weight). We have developed a simple microscale magnetic immunoaffinity-based method for selective one-step isolation of CKs from very small amounts of plant tissue (less than 0.1 mg fresh weight). The capacity of the immunosorbent and the effect of the complex plant matrix on the yield of the rapid one-step purification were tested using a wide range of CK concentrations. The total recovery range of the new microscale isolation procedure was found to be 30-80% depending on individual CKs. Immunoaffinity extraction using group-specific monoclonal CK antibodies immobilized onto magnetic microparticles was combined with a highly sensitive ultrafast mass spectrometry-based method with a detection limit close to one attomole. This combined approach allowed metabolic profiling of a wide range of naturally occurring CKs (bases, ribosides and N9 -glucosides) in 1.0-mm sections of the Arabidopsis thaliana root meristematic zone. The magnetic immunoaffinity separation method was shown to be a simple and extremely fast procedure requiring minimal amounts of plant tissue.
Collapse
Affiliation(s)
- Lenka Plačková
- Laboratory of Growth Regulators, Centre of Region Haná for Biotechnological and Agricultural Research, Faculty of Sciences of Palacký University and Institute of Experimental Botany, Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science of Palacký University, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Jana Oklestkova
- Laboratory of Growth Regulators, Centre of Region Haná for Biotechnological and Agricultural Research, Faculty of Sciences of Palacký University and Institute of Experimental Botany, Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Kristýna Pospíšková
- Regional Centre of Advanced Technologies and Materials, Palacký University, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Kateřina Poláková
- Regional Centre of Advanced Technologies and Materials, Palacký University, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Jan Buček
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science of Palacký University, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Jakub Stýskala
- Department of Organic Chemistry, Faculty of Science, Palacký University, 17 Listopadu 12, CZ-77146, Olomouc, Czech Republic
| | - Marek Zatloukal
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science of Palacký University, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Ivo Šafařík
- Regional Centre of Advanced Technologies and Materials, Palacký University, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
- Department of Nanobiotechnology, Biology Centre, ISB, CAS, Na Sádkách 7, CZ-37005, České Budějovice, Czech Republic
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials, Palacký University, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Centre of Region Haná for Biotechnological and Agricultural Research, Faculty of Sciences of Palacký University and Institute of Experimental Botany, Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Karel Doležal
- Laboratory of Growth Regulators, Centre of Region Haná for Biotechnological and Agricultural Research, Faculty of Sciences of Palacký University and Institute of Experimental Botany, Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science of Palacký University, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Centre of Region Haná for Biotechnological and Agricultural Research, Faculty of Sciences of Palacký University and Institute of Experimental Botany, Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| |
Collapse
|
10
|
Evaluation of Antioxidant and Cytotoxicity Activities of Copper Ferrite (CuFe2O4) and Zinc Ferrite (ZnFe2O4) Nanoparticles Synthesized by Sol-Gel Self-Combustion Method. APPLIED SCIENCES-BASEL 2016. [DOI: 10.3390/app6090184] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Simultaneous detection of the protozoan parasites Toxoplasma, Cryptosporidium and Giardia in food matrices and their persistence on basil leaves. Food Microbiol 2016; 57:36-44. [DOI: 10.1016/j.fm.2016.01.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 01/06/2016] [Accepted: 01/09/2016] [Indexed: 11/20/2022]
|
12
|
Poole C, Mester Z, Miró M, Pedersen-Bjergaard S, Pawliszyn J. Glossary of terms used in extraction (IUPAC Recommendations 2016). PURE APPL CHEM 2016. [DOI: 10.1515/pac-2015-0903] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractApproaches for analytical-scale extraction are developing rapidly as new strategies are implemented to improve sample throughput, to minimize material use in laboratory methods, and to develop on-site capabilities. In this contribution, definitions and recommendations for symbols for the terms used in analytical extraction are presented. Exhaustive, microextraction, elevated temperature, microwave- and ultrasound-assisted, parallel batch, flow through systems, and membrane extraction approaches are discussed. An associated tutorial titled “Extraction” provides a detailed introduction to the topic.
Collapse
Affiliation(s)
- Colin Poole
- 1Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | - Zoltan Mester
- 2National Research Council of Canada, 1200 Montreal Road, Ottawa, Ontario K1A 0R6, Canada
| | - Manuel Miró
- 3FI-TRACE group, Department of Chemistry, University of the Balearic Islands, Carretera de Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | | | - Janusz Pawliszyn
- 5Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
13
|
Tolmacheva VV, Apyari VV, Kochuk EV, Dmitrienko SG. Magnetic adsorbents based on iron oxide nanoparticles for the extraction and preconcentration of organic compounds. JOURNAL OF ANALYTICAL CHEMISTRY 2016. [DOI: 10.1134/s1061934816040079] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Kanagesan S, Aziz SBA, Hashim M, Ismail I, Tamilselvan S, Alitheen NBBM, Swamy MK, Purna Chandra Rao B. Synthesis, Characterization and in Vitro Evaluation of Manganese Ferrite (MnFe2O4) Nanoparticles for Their Biocompatibility with Murine Breast Cancer Cells (4T1). Molecules 2016; 21:312. [PMID: 26978339 PMCID: PMC6273739 DOI: 10.3390/molecules21030312] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/23/2016] [Accepted: 02/24/2016] [Indexed: 01/29/2023] Open
Abstract
Manganese ferrite (MnFe2O4) magnetic nanoparticles were successfully prepared by a sol-gel self-combustion technique using iron nitrate and manganese nitrate, followed by calcination at 150 °C for 24 h. Calcined sample was systematically characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and vibrational sample magnetometry (VSM) in order to identify the crystalline phase, functional group, morphology, particle size, shape and magnetic behavior. It was observed that the resultant spinal ferrites obtained at low temperature exhibit single phase, nanoparticle size and good magnetic behavior. The study results have revealed the existence of a potent dose dependent cytotoxic effect of MnFe2O4 nanoparticles against 4T1 cell lines at varying concentrations with IC50 values of 210, 198 and 171 μg/mL after 24 h, 48 h and 72 h of incubation, respectively. Cells exposed to higher concentrations of nanoparticles showed a progressive increase of apoptotic and necrotic activity. Below 125 μg/mL concentration the nanoparticles were biocompatible with 4T1 cells.
Collapse
Affiliation(s)
- Samikannu Kanagesan
- Materials Synthesis and Characterization Laboratory (MSCL), Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia.
| | - Sidek Bin Ab Aziz
- Materials Synthesis and Characterization Laboratory (MSCL), Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia.
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia.
| | - Mansor Hashim
- Materials Synthesis and Characterization Laboratory (MSCL), Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia.
| | - Ismayadi Ismail
- Materials Synthesis and Characterization Laboratory (MSCL), Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia.
| | - Subramani Tamilselvan
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Noorjahan Banu Binti Mohammed Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Mallappa Kumara Swamy
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
- Department of Crop Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia.
| | - Bandaru Purna Chandra Rao
- Department of Applied Science and Humanities, Sasi Intitute of Technology and Engineering, Tadepalligudem, West Godavari District 534101, Andhra Pradesh, India.
| |
Collapse
|
15
|
Díaz-Flores Á, Montero JC, Castro FJ, Alejandres EM, Bayón C, Solís I, Fernández-Lafuente R, Rodríguez G. Comparing methods of determining Legionella spp. in complex water matrices. BMC Microbiol 2015; 15:91. [PMID: 25925400 PMCID: PMC4436101 DOI: 10.1186/s12866-015-0423-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 04/15/2015] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Legionella testing conducted at environmental laboratories plays an essential role in assessing the risk of disease transmission associated with water systems. However, drawbacks of culture-based methodology used for Legionella enumeration can have great impact on the results and interpretation which together can lead to underestimation of the actual risk. Up to 20% of the samples analysed by these laboratories produced inconclusive results, making effective risk management impossible. Overgrowth of competing microbiota was reported as an important factor for culture failure. For quantitative polymerase chain reaction (qPCR), the interpretation of the results from the environmental samples still remains a challenge. Inhibitors may cause up to 10% of inconclusive results. This study compared a quantitative method based on immunomagnetic separation (IMS method) with culture and qPCR, as a new approach to routine monitoring of Legionella. RESULTS First, pilot studies evaluated the recovery and detectability of Legionella spp using an IMS method, in the presence of microbiota and biocides. The IMS method results were not affected by microbiota while culture counts were significantly reduced (1.4 log) or negative in the same samples. Damage by biocides of viable Legionella was detected by the IMS method. Secondly, a total of 65 water samples were assayed by all three techniques (culture, qPCR and the IMS method). Of these, 27 (41.5%) were recorded as positive by at least one test. Legionella spp was detected by culture in 7 (25.9%) of the 27 samples. Eighteen (66.7%) of the 27 samples were positive by the IMS method, thirteen of them reporting counts below 10(3) colony forming units per liter (CFU l(-1)), six presented interfering microbiota and three presented PCR inhibition. Of the 65 water samples, 24 presented interfering microbiota by culture and 8 presented partial or complete inhibition of the PCR reaction. So the rate of inconclusive results of culture and PCR was 36.9 and 12.3%, respectively, without any inconclusive results reported for the IMS method. CONCLUSION The IMS method generally improved the recovery and detectability of Legionella in environmental matrices, suggesting the possibility to use IMS method as valuable indicator of risk. Thus, this method may significantly improve our knowledge about the exposure risk to these bacteria, allowing us to implement evidence-based monitoring and disinfection strategies.
Collapse
Affiliation(s)
- Álvaro Díaz-Flores
- Departamento de Microbiología General III, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Campus Moncloa, 28040, Madrid, Spain.
| | - Juan Carlos Montero
- Instituto de Ciencias de la Salud Ctra, de Extremadura Km. 114, 45600, Talavera de la Reina, Spain.
| | - Francisco Javier Castro
- Laboratorio Regional de Salud Pública Consejería de Sanidad y Consumo/Comunidad de Madrid, C/ Sierra del Alquife N 8, 2 Planta, 28053, Madrid, Spain.
| | - Eva María Alejandres
- Laboratorio Regional de Salud Pública Consejería de Sanidad y Consumo/Comunidad de Madrid, C/ Sierra del Alquife N 8, 2 Planta, 28053, Madrid, Spain.
| | - Carmen Bayón
- Laboratorio Regional de Salud Pública Consejería de Sanidad y Consumo/Comunidad de Madrid, C/ Sierra del Alquife N 8, 2 Planta, 28053, Madrid, Spain.
| | | | - Roberto Fernández-Lafuente
- Departamento de Biocatálisis, Instituto de Catálisis y Petroleoquímica, Consejo Superior de Investigaciones Científicas, Campus UAM-CSIC, 28049, Cantoblanco, Madrid, Spain.
| | - Guillermo Rodríguez
- Biótica, Bioquímica Analítica, S.L, Science and Technology Park of Jaume I University, Campus RiuSec - Espaitec 2, planta baja, E12071, Castellón de la Plana, Spain.
| |
Collapse
|
16
|
Cui X, Belo S, Krüger D, Yan Y, de Rosales RTM, Jauregui-Osoro M, Ye H, Su S, Mathe D, Kovács N, Horváth I, Semjeni M, Sunassee K, Szigeti K, Green MA, Blower PJ. Aluminium hydroxide stabilised MnFe2O4 and Fe3O4 nanoparticles as dual-modality contrasts agent for MRI and PET imaging. Biomaterials 2014; 35:5840-6. [PMID: 24768194 PMCID: PMC4026944 DOI: 10.1016/j.biomaterials.2014.04.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 04/01/2014] [Indexed: 12/02/2022]
Abstract
Magnetic nanoparticles (NPs) MnFe2O4 and Fe3O4 were stabilised by depositing an Al(OH)3 layer via a hydrolysis process. The particles displayed excellent colloidal stability in water and a high affinity to [(18)F]-fluoride and bisphosphonate groups. A high radiolabeling efficiency, 97% for (18)F-fluoride and 100% for (64)Cu-bisphosphonate conjugate, was achieved by simply incubating NPs with radioactivity solution at room temperature for 5 min. The properties of particles were strongly dependant on the thickness and hardness of the Al(OH)3 layer which could in turn be controlled by the hydrolysis method. The application of these Al(OH)3 coated magnetic NPs in molecular imaging has been further explored. The results demonstrated that these NPs are potential candidates as dual modal probes for MR and PET. In vivo PET imaging showed a slow release of (18)F from NPs, but no sign of efflux of (64)Cu.
Collapse
Affiliation(s)
- Xianjin Cui
- King's College London, Division of Imaging Sciences and Biomedical Engineering, 4th Floor Lambeth Wing, St Thomas' Hospital, London SE1 7EH, UK
| | - Salome Belo
- King's College London, Division of Imaging Sciences and Biomedical Engineering, 4th Floor Lambeth Wing, St Thomas' Hospital, London SE1 7EH, UK
| | - Dirk Krüger
- King's College London, Division of Imaging Sciences and Biomedical Engineering, 4th Floor Lambeth Wing, St Thomas' Hospital, London SE1 7EH, UK
| | - Yong Yan
- School of Chemistry, Nottingham University, Nottingham NG7 2RD, UK
| | - Rafael T M de Rosales
- King's College London, Division of Imaging Sciences and Biomedical Engineering, 4th Floor Lambeth Wing, St Thomas' Hospital, London SE1 7EH, UK
| | - Maite Jauregui-Osoro
- King's College London, Division of Imaging Sciences and Biomedical Engineering, 4th Floor Lambeth Wing, St Thomas' Hospital, London SE1 7EH, UK
| | - Haitao Ye
- School of Engineering and Applied Science, Aston University, Birmingham B4 7ET, UK
| | - Shi Su
- School of Engineering and Applied Science, Aston University, Birmingham B4 7ET, UK
| | - Domokos Mathe
- CROmed Ltd., Baross u. 91-95, Budapest H-1047, Hungary
| | - Noémi Kovács
- CROmed Ltd., Baross u. 91-95, Budapest H-1047, Hungary
| | | | | | - Kavitha Sunassee
- King's College London, Division of Imaging Sciences and Biomedical Engineering, 4th Floor Lambeth Wing, St Thomas' Hospital, London SE1 7EH, UK
| | - Krisztian Szigeti
- Department of Biophysics and Radiation Biology, Nanobiotechnology & In Vivo Imaging Center, Semmelweis University, IX. Tűzoltó u. 37-47, Budapest H-1094, Hungary
| | - Mark A Green
- King's College London, Division of Imaging Sciences and Biomedical Engineering, 4th Floor Lambeth Wing, St Thomas' Hospital, London SE1 7EH, UK; King's College London, Department of Physics, Strand Campus, London WC2R 2LS, UK.
| | - Philip J Blower
- King's College London, Division of Imaging Sciences and Biomedical Engineering, 4th Floor Lambeth Wing, St Thomas' Hospital, London SE1 7EH, UK; King's College London, Division of Chemistry, Britannia House, 7 Trinity St, London SE1 1DB, UK.
| |
Collapse
|
17
|
Nanometer-sized ceria-coated silica–iron oxide for the reagentless microextraction/preconcentration of heavy metals in environmental and biological samples followed by slurry introduction to ICP-OES. Talanta 2014; 121:127-35. [DOI: 10.1016/j.talanta.2013.12.045] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/17/2013] [Accepted: 12/22/2013] [Indexed: 11/16/2022]
|
18
|
Hohweyer J, Dumètre A, Aubert D, Azas N, Villena I. Tools and methods for detecting and characterizing giardia, cryptosporidium, and toxoplasma parasites in marine mollusks. J Food Prot 2013; 76:1649-57. [PMID: 23992514 DOI: 10.4315/0362-028x.jfp-13-002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Foodborne infections are of public health importance and deeply impact the global economy. Consumption of bivalve mollusks generates risk for humans because these filtering aquatic invertebrates often concentrate microbial pathogens from their environment. Among them, Giardia, Cryptosporidium, and Toxoplasma are major parasites of humans and animals that may retain their infectivity in raw or undercooked mollusks. This review aims to detail current and future tools and methods for ascertaining the load and potential infectivity of these parasites in marine bivalve mollusks, including sampling strategies, parasite extraction procedures, and their characterization by using microscopy and/or molecular techniques. Method standardization should lead to better risk assessment of mollusks as a source of these major environmental parasitic pathogens and to the development of safety regulations, similar to those existing for bacterial and viral pathogens encountered in the same mollusk species.
Collapse
Affiliation(s)
- Jeanne Hohweyer
- Université de Reims Champagne-Ardenne, Laboratoire de Parasitologie-Mycologie, EA 3800, Protozooses Transmises par l'Alimentation, Faculté de Médecine, SFR Cap-Santé Fed 4231, 51 Rue Cognacq-Jay, 51096 Reims, France
| | | | | | | | | |
Collapse
|
19
|
Ibarra IS, Rodríguez JA, Aguilar-Arteaga K, Contreras-Lopez E, Barrado E. Sequential Injection Magneto Chromatography Determination of Non-Steroidal Anti-Inflammatory Drugs in Pharmaceutical Formulations. ANAL LETT 2013. [DOI: 10.1080/00032719.2012.755685] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
A stir-bar sorptive extraction coating based on chemically bonded silica for the analysis of polar organic compounds and heavy metal ions. MENDELEEV COMMUNICATIONS 2013. [DOI: 10.1016/j.mencom.2013.03.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|