1
|
Tananaiko O, Walcarius A. Composite Silica-Based Films as Platforms for Electrochemical Sensors. CHEM REC 2024; 24:e202300194. [PMID: 37737456 DOI: 10.1002/tcr.202300194] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/29/2023] [Indexed: 09/23/2023]
Abstract
Sol-gel-derived silica thin films generated onto electrode surfaces in the form of organic-inorganic hybrid coatings or other composite layers have found tremendous interest for being used as platforms for the development of electrochemical sensors and biosensors. After a brief description of the strategies applied to prepare such materials, and their interest as electrode modifier, this review will summarize the major advances made so far with composite silica-based films in electroanalysis. It will primarily focus on electrochemical sensors involving both non-ordered composite films and vertically oriented mesoporous membranes, the biosensors exploiting the concept of sol-gel bioencapsulation on electrode, the spectroelectrochemical sensors, and some others.
Collapse
Affiliation(s)
- Oksana Tananaiko
- Department of Analytical Chemistry, National Taras Shevchenko University of Kyiv, Volodymyrska Str., 64, Kyiv, Ukraine, 01601
| | | |
Collapse
|
2
|
Scala-Benuzzi M, Fernández SN, Giménez G, Ybarra G, Soler-Illia GJAA. Ordered Mesoporous Electrodes for Sensing Applications. ACS OMEGA 2023; 8:24128-24152. [PMID: 37457464 PMCID: PMC10339336 DOI: 10.1021/acsomega.3c02013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023]
Abstract
Electrochemical sensors have become increasingly relevant in fields such as medicine, environmental monitoring, and industrial process control. Selectivity, specificity, sensitivity, signal reproducibility, and robustness are among the most important challenges for their development, especially when the target compound is present in low concentrations or in complex analytical matrices. In this context, electrode modification with Mesoporous Thin Films (MTFs) has aroused great interest in the past years. MTFs present high surface area, uniform pore distribution, and tunable pore size. Furthermore, they offer a wide variety of electrochemical signal modulation possibilities through molecular sieving, electrostatic or steric exclusion, and preconcentration effects which are due to mesopore confinement and surface functionalization. In order to fully exploit these advantages, it is central to develop reproducible routes for sensitive, selective, and robust MTF-modified electrodes. In addition, it is necessary to understand the complex mass and charge transport processes that take place through the film (particularly in the mesopores, pore surfaces, and interfaces) and on the electrode in order to design future intelligent and adaptive sensors. We present here an overview of MTFs applied to electrochemical sensing, in which we address their fabrication methods and the transport processes that are critical to the electrode response. We also summarize the current applications in biosensing and electroanalysis, as well as the challenges and opportunities brought by integrating MTF synthesis with electrode microfabrication, which is critical when moving from laboratory work to in situ sensing in the field of interest.
Collapse
Affiliation(s)
- María
L. Scala-Benuzzi
- INTI-Micro
y Nanotecnologías, Instituto Nacional
de Tecnología Industrial, Av. Gral. Paz 5445, 1560 San Martín, Buenos
Aires, Argentina
- Instituto
de Nanosistemas, Escuela de Bio y Nanotecnologías, UNSAM-CONICET, Av. 25 de Mayo 1169, 1650 San Martín, Provincia de Buenos Aires, Argentina
| | - Sol N. Fernández
- INTI-Micro
y Nanotecnologías, Instituto Nacional
de Tecnología Industrial, Av. Gral. Paz 5445, 1560 San Martín, Buenos
Aires, Argentina
- Instituto
de Nanosistemas, Escuela de Bio y Nanotecnologías, UNSAM-CONICET, Av. 25 de Mayo 1169, 1650 San Martín, Provincia de Buenos Aires, Argentina
- Instituto
de Calidad Industrial (INCALIN-UNSAM), Av. 25 de Mayo y Francia, 1650 San Martín, Provincia
de Buenos Aires Argentina
| | - Gustavo Giménez
- INTI-Micro
y Nanotecnologías, Instituto Nacional
de Tecnología Industrial, Av. Gral. Paz 5445, 1560 San Martín, Buenos
Aires, Argentina
| | - Gabriel Ybarra
- INTI-Micro
y Nanotecnologías, Instituto Nacional
de Tecnología Industrial, Av. Gral. Paz 5445, 1560 San Martín, Buenos
Aires, Argentina
| | - Galo J. A. A. Soler-Illia
- Instituto
de Nanosistemas, Escuela de Bio y Nanotecnologías, UNSAM-CONICET, Av. 25 de Mayo 1169, 1650 San Martín, Provincia de Buenos Aires, Argentina
| |
Collapse
|
3
|
He Y, Khan MA, Drake AD, Ladipo F, Rankin SE, Knutson BL. Nanoconfinement Effects on the Transport of Redox Probes in Ionic Liquid-Loaded Mesoporous Silica Thin Films. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuxin He
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F.P. Anderson Tower, Lexington 40506, Kentucky, United States
| | - M. Arif Khan
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F.P. Anderson Tower, Lexington 40506, Kentucky, United States
| | - Andrew D. Drake
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F.P. Anderson Tower, Lexington 40506, Kentucky, United States
| | - Folami Ladipo
- Department of Chemistry, University of Kentucky, 125 Chemistry/Physics Building, Lexington, Kentucky 40506, United States
| | - Stephen E. Rankin
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F.P. Anderson Tower, Lexington 40506, Kentucky, United States
| | - Barbara L. Knutson
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F.P. Anderson Tower, Lexington 40506, Kentucky, United States
| |
Collapse
|
4
|
Haroon M, Janjua MRSA. Computationally Assisted Design and Prediction of Remarkably Boosted NLO Response of Organoimido‐Substituted Hexamolybdates. J PHYS ORG CHEM 2022. [DOI: 10.1002/poc.4353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Muhammad Haroon
- Chemistry Department King Fahd University of Petroleum and Minerals Dhahran Kingdom of Saudi Arabia
| | | |
Collapse
|
5
|
Mohamed NN, Han Y, Hector AL, Houghton AR, Hunter-Sellars E, Reid G, Williams DR, Zhang W. Increasing the Diameter of Vertically Aligned, Hexagonally Ordered Pores in Mesoporous Silica Thin Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2257-2266. [PMID: 35133847 PMCID: PMC9097518 DOI: 10.1021/acs.langmuir.1c02854] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/25/2022] [Indexed: 05/30/2023]
Abstract
The variation in pore size in mesoporous films produced by electrochemically assisted self-assembly (EASA) with the surfactant chain length is described. EASA produces a hexagonal array of pores perpendicular to the substrate surface by using an applied potential to organize cationic surfactants and the resultant current to drive condensation in a silica sol. Here, we show that a range of pore sizes between 2 and 5 nm in diameter is available with surfactants of the form [Me3NCnH2n+1]Br, with alkyl chain lengths between C14 and C24. The film quality, pore order, pore size, and pore accessibility are probed with a range of techniques.
Collapse
Affiliation(s)
- Nabil
A. N. Mohamed
- School
of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K.
| | - Yisong Han
- Department
of Physics, University of Warwick, Coventry CV4 7AL, U.K.
| | - Andrew L. Hector
- School
of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K.
| | - Anthony R. Houghton
- Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, U.K.
| | - Elwin Hunter-Sellars
- Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, U.K.
| | - Gillian Reid
- School
of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K.
| | - Daryl R. Williams
- Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, U.K.
| | - Wenjian Zhang
- School
of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K.
| |
Collapse
|
6
|
Zhu X, Xuan L, Gong J, Liu J, Wang X, Xi F, Chen J. Three-dimensional macroscopic graphene supported vertically-ordered mesoporous silica-nanochannel film for direct and ultrasensitive detection of uric acid in serum. Talanta 2022; 238:123027. [PMID: 34857346 DOI: 10.1016/j.talanta.2021.123027] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/16/2021] [Accepted: 10/31/2021] [Indexed: 02/09/2023]
Abstract
Direct, rapid and sensitive detection of physiologically-relevant active small molecules (ASMs) in complex biological samples is highly desirable. Herein, we present an electrochemical sensing platform by combining three-dimensional macroscopic graphene (3DG) and vertically-ordered mesoporous silica-nanochannel film (VMSF), which is able to directly detect ASMs in complex samples with high sensitivity and no need of tedious pretreatment. Free-standing and macroscopic 3DG serves as the supporting electrode and O2-plasma treatment is proposed as a simple and green approach to improve its hydrophilicity and electrochemical activity. The plasma-treated 3DG (pl-3DG) is suitable for stable modification of VMSF using electrochemically assisted self-assembly (EASA) method, conferring the electrode (VMSF/pl-3DG) with excellent anti-fouling properties. As the proof-of-concept demonstration, VMSF/pl-3DG sensor exhibits fast and ultrasensitive determination of uric acid (UA) with ultralow limit of detection (LOD, 23 nM) owing to high active surface, unhindered mass transfer, good electrical transfer of 3DG and signal amplification of VMSF nanochannel. Direct determination of UA in biological sample (serum) is also realized without the need of tedious pretreatment.
Collapse
Affiliation(s)
- Xiaoqi Zhu
- Guangxi Medical University Cancer Hospital, Guangxi Medical University, 71 Hedi Road, Nanning, 530021, PR China
| | - Lingli Xuan
- Department of Chemistry, Zhejiang Sci-Tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou, 310018, PR China
| | - Jiawei Gong
- Department of Chemistry, Zhejiang Sci-Tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou, 310018, PR China
| | - Junjie Liu
- Guangxi Medical University Cancer Hospital, Guangxi Medical University, 71 Hedi Road, Nanning, 530021, PR China
| | - Xiaobo Wang
- Guangxi Medical University Cancer Hospital, Guangxi Medical University, 71 Hedi Road, Nanning, 530021, PR China
| | - Fengna Xi
- Department of Chemistry, Zhejiang Sci-Tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou, 310018, PR China.
| | - Jie Chen
- Guangxi Medical University Cancer Hospital, Guangxi Medical University, 71 Hedi Road, Nanning, 530021, PR China.
| |
Collapse
|
7
|
Ullah W, Herzog G, Vilà N, Walcarius A. Polyaniline nanowire arrays generated through oriented mesoporous silica films: effect of pore size and spectroelectrochemical response. Faraday Discuss 2021; 233:77-99. [PMID: 34889333 DOI: 10.1039/d1fd00034a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Indium-tin oxide electrodes modified with vertically aligned silica nanochannel membranes have been produced by electrochemically assisted self-assembly of cationic surfactants (cetyl- or octadecyl-trimethylammonium bromide) and concomitant polycondensation of the silica precursors (tetraethoxysilane). They exhibited pore diameters in the 2-3 nm range depending on the surfactant used. After surfactant removal, the bottom of mesopores was derivatized with aminophenyl groups via electrografting (i.e., electrochemical reduction of in situ generated aminophenyl monodiazonium salt). These species covalently bonded to the ITO substrate were then exploited to grow polyaniline nanofilaments by electropolymerization of aniline through the nanochannels. Under potentiostatic conditions, the length of polyaniline wires is controllable by tuning the electropolymerization time. From cyclic voltammetry characterization performed either before or after dissolution of the silica template, it appeared that both the polyaniline/silica composite and the free polyaniline nanowire arrays were electroactive, yet with much larger peak currents in the latter case as a result of larger effective surface area offered to the electrolyte solution. At identical electropolymerization time, the amount of deposited polyaniline was larger when using the silica membrane with larger pore diameter. All polyaniline deposits exhibited electrochromic properties. However, the spectroelectrochemical data indicated more complete interconversion between the coloured oxidized form and colourless reduced polyaniline for the arrays of nanofilaments in comparison to bulky films. In addition, the template-free nanowire arrays (i.e., after silica dissolution) were characterized by faster electrochromic behaviour than the polyaniline/silica hybrid, confirming the potential interest of such polyaniline nano-brushes for practical applications.
Collapse
Affiliation(s)
- Wahid Ullah
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564, CNRS - Université de Lorraine, 405 Rue de Vandoeuvre, Villers-lès-Nancy, F-54600, France.
| | - Grégoire Herzog
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564, CNRS - Université de Lorraine, 405 Rue de Vandoeuvre, Villers-lès-Nancy, F-54600, France.
| | - Neus Vilà
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564, CNRS - Université de Lorraine, 405 Rue de Vandoeuvre, Villers-lès-Nancy, F-54600, France.
| | - Alain Walcarius
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564, CNRS - Université de Lorraine, 405 Rue de Vandoeuvre, Villers-lès-Nancy, F-54600, France.
| |
Collapse
|
8
|
Chung S, Bode L, Hall DA. Point-of-care human milk testing for maternal secretor status. Anal Bioanal Chem 2021; 414:3187-3196. [PMID: 34741182 PMCID: PMC8956550 DOI: 10.1007/s00216-021-03697-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 11/27/2022]
Abstract
We present an electrochemical impedimetric-based biosensor for monitoring the variation in human milk oligosaccharide (HMO) composition. 2′-Fucosyllactose (2’FL) is an HMO associated with infant growth, cognitive development, and protection from infectious diarrhea, one of the major causes of infant death worldwide. Due to genetic variation, the milk of some women (non-secretors) contains no or very little 2′FL with potential implications for infant health and development. However, there is currently no technology to analyze the presence and concentration of HMOs in human milk at the point-of-care (POC). The lack of such technology represents a major impediment to advancing human milk research and improving maternal-infant health. Towards this unmet need, we report an impedimetric assay for HMOs with an α-1,2 linkage, the most abundant of which is 2′FL. The sensor uses a lectin for affinity, specifically Ulex europaeusagglutininI (UEA), with electrochemical readout. In spiked studies, the sensor exhibited a high degree of linearity (R2 = 0.991) over 0.5 to 3.0 μM with a 330-nM detection limit. The sensor performance was clinically validated using banked human milk samples and correctly identified all secretor vs. non-secretor samples. Furthermore, despite the short 35-min assay time and low sample volume (25 μL), the assay was highly correlated with HPLC measurements. This bedside human milk testing assay enables POC, “sample-to-answer” quantitative HMO measurement, and will be a valuable tool to assess milk composition.
Collapse
Affiliation(s)
- Saeromi Chung
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Lars Bode
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA
- Mother-Milk-Infant Center of Research Excellence (MOMI CORE), University of California San Diego, La Jolla, CA, 92093, USA
| | - Drew A Hall
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA.
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
9
|
Walcarius A. Electroinduced Surfactant Self-Assembly Driven to Vertical Growth of Oriented Mesoporous Films. Acc Chem Res 2021; 54:3563-3575. [PMID: 34469107 DOI: 10.1021/acs.accounts.1c00233] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Supramolecular soft-templating approaches to mesoporous materials have revolutionized the generation of regular nanoarchitectures exhibiting unique features such as uniform pore structure with tunable dimensions, large surface area, and high pore volume, variability of composition, and/or ease of functionalization with a wide range of organo-functional groups or good hosts for the in situ synthesis of nano-objects. One appealing concept in this field is the development of ordered mesoporous thin films as such a configuration has proven to be essential for various applications including separation, sensing, catalysis (electro and photo), energy conversion and storage, photonics, solar cells, photo- and electrochromism, and low-k dielectric coatings for microelectronics, bio and nanobio devices, or biomimetic surfaces. Supported or free-standing mesoporous films are mostly prepared by evaporation induced self-assembly methods, thanks to their good processing capability and flexibility to manufacture mesostructured oxides and organic-inorganic hybrids films with periodically organized porosity.One important challenge is the control of pore orientation, especially in one-dimensional nanostructures, which is not straightforward from the above evaporation induced self-assembly methods. Accessibility of the pores represents another critical issue, which can be basically ensured in the event of effective interconnections between the pores, but the vertical alignment of mesopore channels will definitely offer the best configuration to secure the most efficient transfer processes through the mesoporous membranes. The orthogonal growth of mesochannels is however not thermodynamically favored, requiring the development of methods enabling self-organization through nonequilibrium states. We found that electrochemistry afforded a real boon to tackle this problem via the electrochemically assisted self-assembly (EASA) method, which not only provides a fast and versatile way to generate highly ordered and hexagonally packed mesopore channels but also constitutes a real platform for the development of functionalized oriented films carrying a wide range of organo-functional groups of adjustable composition and properties.This Account introduces the EASA concept and discusses its development along with the significant progress made from its discovery, notably in view of recent advances on the functionalization of oriented mesoporous silica films, which expand their fields of application. EASA is based on the in situ combination of electrochemically triggered pH-induced polycondensation of silica precursors with electrochemical interfacial surfactant templating, leading to the very fast (a few seconds) growth of vertically aligned silica walls through self-assembly around surfactant hemimicelles transiently formed onto the underlying support. This method benefits from the possibility to deposit uniform thin films onto surfaces of different natures and complex morphologies including at the microscale. From this discovery, our research expanded to cover domains beyond the simple production of bare silica films, turning to the challenge of incorporation and exploitation of organo-functional groups or nanofilaments. So far, the great majority of methods developed for the functionalization of mesoporous silica is based on postsynthesis grafting or co-condensation approaches, which suffer from serious limitations with oriented films (pore blocking, lack of ordering). We demonstrated the uniqueness of EASA combined with click chemistry to afford a versatile and universal route to oriented mesoporous films bearing organo-functional groups of multiple composition. This opened perspectives for future developments and applications, some of which (sensing, permselective coatings, energy storage, electrocatalysis, electrochromism) are also considered in this Account.
Collapse
Affiliation(s)
- Alain Walcarius
- Université de Lorraine, CNRS, Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l’Environnement (LCPME), 405 Rue de Vandoeuvre, F-54000 Nancy, France
| |
Collapse
|
10
|
Vilà N, Walcarius A. Bis(terpyridine) Iron(II) Functionalized Vertically-Oriented Nanostructured Silica Films: Toward Electrochromic Materials. Front Chem 2020; 8:830. [PMID: 33094099 PMCID: PMC7523427 DOI: 10.3389/fchem.2020.00830] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/06/2020] [Indexed: 11/17/2022] Open
Abstract
Recent and potential applications of electrochromic materials include smart windows, optoelectronic devices, and energy conversion. In this study, we have incorporated bis(terpyridine) iron (II) complexes into vertically-oriented silica thin films deposited on indium-tin oxide (ITO) and their electrochromic behavior has been investigated. If 2,2′:6′,2″-terpyridine is commonly used as a ligand for forming metallo-supramolecular assemblies, with the objective to get metal-terpyridine complexes with multiple stable redox states, their simple and reliable arrangement into linear structures enabling effective electronic communication is however more challenging. We propose to overcome this difficulty by generating such complexes within vertical nanochannels on electrode. Terpyridine ligands were firstly immobilized by combining a click chemistry azide/alkyne approach with an electrochemically-assisted self-assembly (EASA) method used to grow an oriented mesoporous silica membrane bearing azide groups which were further derivatized with 4′-ethynyl-terpyridine ligands. The resulting terpyridine-functionalized films were consecutively dipped in an aqueous solution of Fe(BF4)2 and then in a solution of terpyridine in acetonitrile to form the bis(terpyridine) iron (II) complexes in situ. The electrochromic properties of the films functionalized at various levels were examined by monitoring the changes in their UV/Vis spectra upon electrochemical oxidation at controlled potential of +1.2 V vs. Ag/AgCl. Due to facile charge delocalization during the Fe2+ to Fe3+ redox process, the bis(terpyridine) iron (II) functionalized silica films exhibited electrochromic properties by changing from violet to non-colored using TBABF4 in acetonitrile as an electrolyte. The bis(terpyridine) iron(II) film experienced reversible electrochromic switching by applying +0.5 V in a reverse reduction electrochemical process. The Fe(tpy)2-functionalized silica thin films displayed a good contrast ratio (ΔT%) of 47% and relatively high coloration efficiency (CE) of about 245 cm2/C with a response time of coloring and bleaching of a few seconds (< 4 s).
Collapse
Affiliation(s)
- Neus Vilà
- Université de Lorraine, CNRS, LCPME, Nancy, France
| | | |
Collapse
|
11
|
Basnig D, Vilá N, Herzog G, Walcarius A. Voltammetric behaviour of cationic redox probes at mesoporous silica film electrodes. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.113993] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
12
|
Permeability of Dawson–type polyoxometalates through vertically oriented nanoporous silica membranes on electrode: Effect of pore size and probe charge. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Ahoulou S, Vilà N, Pillet S, Schaniel D, Walcarius A. Non‐covalent Immobilization of Iron‐triazole (Fe(Htrz)
3
) Molecular Mediator in Mesoporous Silica Films for the Electrochemical Detection of Hydrogen Peroxide. ELECTROANAL 2019. [DOI: 10.1002/elan.201900444] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Samuel Ahoulou
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR7564 CNRS –Université de Lorraine 405 rue de Vandoeuvre 54600 Villers-les-Nancy France
- Université de Lorraine, CNRS, CRM2 UMR7036 54000 Nancy France
| | - Neus Vilà
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR7564 CNRS –Université de Lorraine 405 rue de Vandoeuvre 54600 Villers-les-Nancy France
| | | | | | - Alain Walcarius
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR7564 CNRS –Université de Lorraine 405 rue de Vandoeuvre 54600 Villers-les-Nancy France
| |
Collapse
|
14
|
Zhou P, Yao L, Chen K, Su B. Silica Nanochannel Membranes for Electrochemical Analysis and Molecular Sieving: A Comprehensive Review. Crit Rev Anal Chem 2019; 50:424-444. [DOI: 10.1080/10408347.2019.1642735] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ping Zhou
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Lina Yao
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Kexin Chen
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Bin Su
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, China
| |
Collapse
|
15
|
pH-modulated ion transport and amplified redox response of Keggin-type polyoxometalates through vertically-oriented mesoporous silica nanochannels. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.03.119] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Alberti S, Steinberg PY, Giménez G, Amenitsch H, Ybarra G, Azzaroni O, Angelomé PC, Soler-Illia GJAA. Chemical Stability of Mesoporous Oxide Thin Film Electrodes under Electrochemical Cycling: from Dissolution to Stabilization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:6279-6287. [PMID: 30990724 DOI: 10.1021/acs.langmuir.9b00224] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Mesoporous oxide thin films (MOTF) present very high surface areas and highly controlled monodisperse pores in the nanometer range. These features spurred their possible applications in separation membranes and permselective electrodes. However, their performance in real applications is limited by their reactivity. Here, we perform a basic study of the stability of MOTF toward dissolution in aqueous media using a variety of characterization techniques. In particular, we focus in their stability behavior under the influence of ionic strength, adsorption of electrochemical probes, and applied electrode potential. Mesoporous silica thin films present a limited chemical stability after electrochemical cycling, particularly under high ionic strength, due to their high specific surface area and the interactions between the electrochemical probes and the surface. In contrast, TiO2 or Si0.9Zr0.1O2 matrices present higher stability; thus, they are an adequate alternative to produce accessible, sensitive, and robust permselective electrodes or membranes that perform under a wide variety of conditions.
Collapse
Affiliation(s)
- Sebastián Alberti
- Gerencia Química - Centro Atómico Constituyentes , Comisión Nacional de Energía Atómica, CONICET , Avenida General Paz 1499 , 1650 San Martín , Buenos Aires , Argentina
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA) - Universidad Nacional de La Plata - CONICET , CC 16 Suc. 4 , 1900 La Plata , Buenos Aires , Argentina
| | - Paula Y Steinberg
- Gerencia Química - Centro Atómico Constituyentes , Comisión Nacional de Energía Atómica, CONICET , Avenida General Paz 1499 , 1650 San Martín , Buenos Aires , Argentina
| | - Gustavo Giménez
- Centro de Micro y Nanoelectrónica del Bicentenario , INTI-CMNB, Instituto Nacional de Tecnología Industrial , Avenida General Paz 5445 , B1650WAB San Martín , Buenos Aires , Argentina
| | - Heinz Amenitsch
- Institute for Inorganic Chemistry , Graz University of Technology , Stremayrgasse 9/IV , 8010 Graz , Austria
| | - Gabriel Ybarra
- Unidad Técnica Nanomateriales, INTI-Procesos Superficiales , Instituto Nacional de Tecnología Industrial , Avenida General Paz 5445 , B1650WAB San Martín , Buenos Aires , Argentina
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA) - Universidad Nacional de La Plata - CONICET , CC 16 Suc. 4 , 1900 La Plata , Buenos Aires , Argentina
| | - Paula C Angelomé
- Gerencia Química - Centro Atómico Constituyentes , Comisión Nacional de Energía Atómica, CONICET , Avenida General Paz 1499 , 1650 San Martín , Buenos Aires , Argentina
| | - Galo J A A Soler-Illia
- Instituto de Nanosistemas , UNSAM, CONICET , Avenida 25 de Mayo 1021 , 1650 San Martín , Buenos Aires , Argentina
| |
Collapse
|
17
|
Kovalyk A, Tananaiko O, Borets A, Etienne M, Walcarius A. Voltammetric and microscopic characteristics of MnO2 and silica-MnO2hybrid films electrodeposited on the surface of planar electrodes. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.03.156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Thickness control in electrogenerated mesoporous silica films by wet etching and electrochemical monitoring of the process. Electrochem commun 2019. [DOI: 10.1016/j.elecom.2019.01.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
19
|
Li S, Zhang D, Liu J, Cheng C, Zhu L, Li C, Lu Y, Low SS, Su B, Liu Q. Electrochemiluminescence on smartphone with silica nanopores membrane modified electrodes for nitroaromatic explosives detection. Biosens Bioelectron 2019; 129:284-291. [DOI: 10.1016/j.bios.2018.09.055] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/14/2018] [Accepted: 09/14/2018] [Indexed: 02/03/2023]
|
20
|
Nasir T, Vodolazkaya NA, Herzog G, Walcarius A. Critical Effect of Film Thickness on Preconcentration Electroanalysis with Oriented Mesoporous Silica Modified Electrodes. ELECTROANAL 2018. [DOI: 10.1002/elan.201800533] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Tauqir Nasir
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME); UMR7564 CNRS-Université de Lorraine; 405 rue de Vandoeuvre 54600 Villers-les-Nancy France
| | - Natalya A. Vodolazkaya
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME); UMR7564 CNRS-Université de Lorraine; 405 rue de Vandoeuvre 54600 Villers-les-Nancy France
- Chemical Faculty; Department of Physical Chemistry; V.N. Karazin Kharkov National University; 61022 Kharkov Ukraine
| | - Grégoire Herzog
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME); UMR7564 CNRS-Université de Lorraine; 405 rue de Vandoeuvre 54600 Villers-les-Nancy France
| | - Alain Walcarius
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME); UMR7564 CNRS-Université de Lorraine; 405 rue de Vandoeuvre 54600 Villers-les-Nancy France
| |
Collapse
|
21
|
Nasir T, Herzog G, Hébrant M, Despas C, Liu L, Walcarius A. Mesoporous Silica Thin Films for Improved Electrochemical Detection of Paraquat. ACS Sens 2018; 3:484-493. [PMID: 29338195 DOI: 10.1021/acssensors.7b00920] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
An electrochemical method was developed for rapid and sensitive detection of the herbicide paraquat in aqueous samples using mesoporous silica thin film modified glassy carbon electrodes (GCE). Vertically aligned mesoporous silica thin films were deposited onto GCE by electrochemically assisted self-assembly (EASA). Cyclic voltammetry revealed effective response to the cationic analyte (while rejecting anions) thanks to the charge selectivity exhibited by the negatively charged mesoporous channels. Square wave voltametry (SWV) was then used to detect paraquat via its one electron reduction process. Influence of various experimental parameters (i.e., pH, electrolyte concentration, and nature of electrolyte anions) on sensitivity was investigated and discussed with respect to the mesopore characteristics and accumulation efficiency, pointing out the key role of charge distribution in such confined spaces on these processes. Calibration plots for paraquat concentration ranging from 10 nM to 10 μM were constructed at mesoporous silica modified GCE which were linear with increasing paraquat concentration, showing dramatically enhanced sensitivity (almost 30 times) as compared to nonmodified electrodes. Finally, real samples from Meuse River (France) spiked with paraquat, without any pretreatment (except filtration), were analyzed by SWV, revealing the possible detection of paraquat at very low concentration (10-50 nM). Limit of detection (LOD) calculated from real sample analysis was found to be 12 nM, which is well below the permissible limits of paraquat in drinking water (40-400 nM) in various countries.
Collapse
Affiliation(s)
- Tauqir Nasir
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l’Environnement (LCPME), UMR 7564, CNRS − Université de Lorraine, 405 Rue de Vandoeuvre, 54600 Villers-lès-Nancy, France
| | - Grégoire Herzog
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l’Environnement (LCPME), UMR 7564, CNRS − Université de Lorraine, 405 Rue de Vandoeuvre, 54600 Villers-lès-Nancy, France
| | - Marc Hébrant
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l’Environnement (LCPME), UMR 7564, CNRS − Université de Lorraine, 405 Rue de Vandoeuvre, 54600 Villers-lès-Nancy, France
| | - Christelle Despas
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l’Environnement (LCPME), UMR 7564, CNRS − Université de Lorraine, 405 Rue de Vandoeuvre, 54600 Villers-lès-Nancy, France
| | - Liang Liu
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l’Environnement (LCPME), UMR 7564, CNRS − Université de Lorraine, 405 Rue de Vandoeuvre, 54600 Villers-lès-Nancy, France
| | - Alain Walcarius
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l’Environnement (LCPME), UMR 7564, CNRS − Université de Lorraine, 405 Rue de Vandoeuvre, 54600 Villers-lès-Nancy, France
| |
Collapse
|
22
|
Kamyabi MA, Hajari N, Babaei N, Moharramnezhad M, Yahiro H. Silica template electrodeposition of copper oxide nanostructures on Ni foam as an ultrasensitive non-enzymatic glucose sensor. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.10.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Giordano G, Vilà N, Aubert E, Ghanbaja J, Walcarius A. Multi-layered, vertically-aligned and functionalized mesoporous silica films generated by sequential electrochemically assisted self-assembly. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.03.220] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Karman C, Vilà N, Walcarius A. Amplified Charge Transfer for Anionic Redox Probes through Oriented Mesoporous Silica Thin Films. ChemElectroChem 2016. [DOI: 10.1002/celc.201600303] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Cheryl Karman
- Laboratoire de Chimie Physique et Microbiologie pour l'Environnement (LCPME), UMR 7564, CNRS-; Université de Lorraine; 405 rue de Vandoeuvre 54600 Villers-les-Nancy France
| | - Neus Vilà
- Laboratoire de Chimie Physique et Microbiologie pour l'Environnement (LCPME), UMR 7564, CNRS-; Université de Lorraine; 405 rue de Vandoeuvre 54600 Villers-les-Nancy France
| | - Alain Walcarius
- Laboratoire de Chimie Physique et Microbiologie pour l'Environnement (LCPME), UMR 7564, CNRS-; Université de Lorraine; 405 rue de Vandoeuvre 54600 Villers-les-Nancy France
| |
Collapse
|
25
|
Kamyabi MA, Hajari N. Preparation of mesoporous silica templated metal nanostructure on Ni foam substrate and its application for the determination of hydrogen peroxide. J APPL ELECTROCHEM 2016. [DOI: 10.1007/s10800-016-0986-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
26
|
Ciabocco M, Berrettoni M, Zamponi S, Cox JA. Deposition and characterization of a CoHCF nanorod array in a templated ormosil film on an electrode and application to electrocatalysis. J Solid State Electrochem 2016. [DOI: 10.1007/s10008-016-3123-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Yan F, Lin X, Su B. Vertically ordered silica mesochannel films: electrochemistry and analytical applications. Analyst 2016; 141:3482-95. [DOI: 10.1039/c6an00146g] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Vertically-aligned mesoporous silica films were used for electrochemical sensing and molecular separation in terms of molecular size, charge and lipophilicity.
Collapse
Affiliation(s)
- Fei Yan
- Institute of Microanalytical Systems
- Department of Chemistry
- Zhejiang University
- 310058 Hangzhou
- China
| | - Xingyu Lin
- Institute of Microanalytical Systems
- Department of Chemistry
- Zhejiang University
- 310058 Hangzhou
- China
| | - Bin Su
- Institute of Microanalytical Systems
- Department of Chemistry
- Zhejiang University
- 310058 Hangzhou
- China
| |
Collapse
|
28
|
Said NM, Ogurtsov V, Twomey K, Nagle L, Herzog G. Chemically Modified Electrodes for Recessed Microelectrode Array. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.proche.2016.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Robertson C, Lodge A, Basa P, Carravetta M, Hector AL, Kashtiban RJ, Sloan J, Smith DC, Spencer J, Walcarius A. Surface modification and porosimetry of vertically aligned hexagonal mesoporous silica films. RSC Adv 2016. [DOI: 10.1039/c6ra23059h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Grafting vertically aligned mesoporous silica films with small organosilane precursors increases pore hydrophobicity, whereas larger reagents change only the film surfaces.
Collapse
Affiliation(s)
| | | | - Peter Basa
- Semilab Semiconductor Physics Laboratory Co. Ltd
- H-1117 Budapest
- Hungary
| | | | | | | | - Jeremy Sloan
- Department of Physics
- University of Warwick
- Coventry CV4 7AL
- UK
| | - David C. Smith
- Physics and Astronomy
- University of Southampton
- Southampton
- UK
| | - Joseph Spencer
- Physics and Astronomy
- University of Southampton
- Southampton
- UK
| | - Alain Walcarius
- Laboratoire de Chimie Physique et Microbiologie pour l'Environnement
- UMR 7564 CNRS – Université de Lorraine
- 54600 Villers-les-Nancy
- France
| |
Collapse
|
30
|
Audebert P, Vilà N, Allain C, Maisonneuve F, Walcarius A, Hapiot P. Highly Organized Ferrocene-Functionalized Nanoporous Silica Films with an Extremely Fast Electron-Transfer Rate for an Intrinsically Nonconducting Oxide-Modified Electrode. ChemElectroChem 2015. [DOI: 10.1002/celc.201500227] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Pierre Audebert
- PPSM, CNRS UMR8531; ENS Cachan, 61; Avenue du Président Wilson 94235 Cachan France
| | - Neus Vilà
- Laboratoire de Chimie Physique et Microbiologie pour l'Environnement; UMR 7564, CNRS; Université de Lorraine, 405; rue de Vandoeuvre 54600 Villers-les-Nancy France
| | - Clémence Allain
- PPSM, CNRS UMR8531; ENS Cachan, 61; Avenue du Président Wilson 94235 Cachan France
| | - Franck Maisonneuve
- PPSM, CNRS UMR8531; ENS Cachan, 61; Avenue du Président Wilson 94235 Cachan France
| | - Alain Walcarius
- Laboratoire de Chimie Physique et Microbiologie pour l'Environnement; UMR 7564, CNRS; Université de Lorraine, 405; rue de Vandoeuvre 54600 Villers-les-Nancy France
| | - Philippe Hapiot
- Institut des Sciences Chimiques de Rennes (Equipe MaCSE); CNRS, UMR 6226; Université de Rennes 1, Campus de Beaulieu, Bat 10C; 35042 Rennes Cedex France
| |
Collapse
|
31
|
Ciabocco M, Berrettoni M, Zamponi S, Cox JA. Immobilization of nanobeads on a surface to control the size, shape and distribution of pores in electrochemically generated sol-gel films. J Solid State Electrochem 2015; 19:2087-2094. [PMID: 26167128 DOI: 10.1007/s10008-014-2709-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Electrochemically assisted deposition of an ormosil film at a potential where hydrogen ion is generated as the catalyst yields insulating films on electrodes. When the base electrode is modified with 20-nm poly(styrene sulfonate), PSS, beads bound to the surface with 3-aminopropyltriethoxysilane (APTES) and using (CH3)3SiOCH3 as the precursor, the resulting film of organically modified silica (ormosil) has cylindrical channels that reflect both the diameter of the PSS and the distribution of the APTES-PSS on the electrode. At an electrode modified by a 20-min immersion in 0.5 mmol dm-3 APTES followed by a 30-s immersion in PSS, a 20-min electrolysis at 1.5 V in acidified (CH3)3SiOCH3 resulted in an ormosil film with 20-nm pores separated by 100 nm. Cyclic voltammetry of Ru(CN)64- at scan rates above 5 mVs-1 yielded currents controlled primarily by linear diffusion. Below 5 mVs-1, convection rather than the expected factor, radial diffusion, apparently limited the current.
Collapse
Affiliation(s)
- Michela Ciabocco
- Dipartimento di Chimica Industriale "Toso Montanari", UOS, Campus di Rimini, Università di Bologna, Rimini, Italy
| | - Mario Berrettoni
- Dipartimento di Chimica Industriale "Toso Montanari", UOS, Campus di Rimini, Università di Bologna, Rimini, Italy
| | - Silvia Zamponi
- Scuola di Scienze e Tecnologie, Università di Camerino, Camerino, Italy
| | - James A Cox
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH USA 45056
| |
Collapse
|
32
|
|
33
|
Serrano MB, Despas C, Herzog G, Walcarius A. Mesoporous silica thin films for molecular sieving and electrode surface protection against biofouling. Electrochem commun 2015. [DOI: 10.1016/j.elecom.2015.01.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
34
|
Despas C, Vodolazkaya NA, Ghanbaja J, Walcarius A. Preparation of ordered and oriented mesoporous silica thin films bearing octyl or hexadecyl groups by electrochemically assisted self-assembly and evaluation of their transport properties. J Solid State Electrochem 2015. [DOI: 10.1007/s10008-014-2726-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Robertson C, Beanland R, Boden SA, Hector AL, Kashtiban RJ, Sloan J, Smith DC, Walcarius A. Ordered mesoporous silica films with pores oriented perpendicular to a titanium nitride substrate. Phys Chem Chem Phys 2015; 17:4763-70. [DOI: 10.1039/c4cp05730a] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thin mesoporous films are demonstrated with pores oriented perpendicular to a titanium nitride growth surface.
Collapse
Affiliation(s)
| | | | - Stuart A. Boden
- Electronics and Computer Science
- University of Southampton
- Southampton SO17 1BJ
- UK
| | | | | | - Jeremy Sloan
- Department of Physics
- University of Warwick
- Coventry CV4 7AL
- UK
| | - David C. Smith
- Physics and Astronomy
- University of Southampton
- Southampton SO17 1BJ
- UK
| | - Alain Walcarius
- Laboratoire de Chimie Physique et Microbiologie pour l'Environnement
- UMR 7564
- CNRS-Université de Lorraine
- 54600 Villers-les-Nancy
- France
| |
Collapse
|
36
|
Mousty C, Walcarius A. Electrochemically assisted deposition by local pH tuning: a versatile tool to generate ordered mesoporous silica thin films and layered double hydroxide materials. J Solid State Electrochem 2014. [DOI: 10.1007/s10008-014-2570-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
37
|
Carraro M, Gross S. Hybrid Materials Based on the Embedding of Organically Modified Transition Metal Oxoclusters or Polyoxometalates into Polymers for Functional Applications: A Review. MATERIALS (BASEL, SWITZERLAND) 2014; 7:3956-3989. [PMID: 28788659 PMCID: PMC5453212 DOI: 10.3390/ma7053956] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/22/2014] [Accepted: 04/25/2014] [Indexed: 11/16/2022]
Abstract
The covalent incorporation of inorganic building blocks into a polymer matrix to obtain stable and robust materials is a widely used concept in the field of organic-inorganic hybrid materials, and encompasses the use of different inorganic systems including (but not limited to) nanoparticles, mono- and polynuclear metal complexes and clusters, polyhedral oligomeric silsesquioxanes (POSS), polyoxometalates (POM), layered inorganic systems, inorganic fibers, and whiskers. In this paper, we will review the use of two particular kinds of structurally well-defined inorganic building blocks, namely transition metals oxoclusters (TMO) and polyoxometalates (POM), to obtain hybrid materials with enhanced functional (e.g., optical, dielectric, magnetic, catalytic) properties.
Collapse
Affiliation(s)
- Mauro Carraro
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, I-35131 Padova, Italy.
- ITM-CNR, UOS di Padova, via Marzolo 1, I-35131 Padova, Italy.
| | - Silvia Gross
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, I-35131 Padova, Italy.
- Istituto per l'Energetica e le Interfasi, IENI-CNR and INSTM, UdR Padova, via Marzolo 1, I-35131 Padova, Italy.
| |
Collapse
|
38
|
Yin X, Guo M, Xia Y, Huang W, Li Z. Amperometric sensing of hydrogen peroxide on a modified electrode with layered Au/TiO2 nanofilms from self-assembly at air/water interface. J Electroanal Chem (Lausanne) 2014. [DOI: 10.1016/j.jelechem.2014.02.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
39
|
Versatility of Evaporation-Induced Self-Assembly (EISA) Method for Preparation of Mesoporous TiO₂ for Energy and Environmental Applications. MATERIALS 2014; 7:2697-2746. [PMID: 28788590 PMCID: PMC5453358 DOI: 10.3390/ma7042697] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 02/25/2014] [Accepted: 03/24/2014] [Indexed: 11/17/2022]
Abstract
Evaporation-Induced Self-Assembly (EISA) method for the preparation of mesoporous titanium dioxide materials is reviewed. The versatility of EISA method for the rapid and facile synthesis of TiO₂ thin films and powders is highlighted. Non-ionic surfactants such as Pluronic P123, F127 and cationic surfactants such as cetyltrimethylammonium bromide have been extensively employed for the preparation of mesoporous TiO₂. In particular, EISA method allows for fabrication of highly uniform, robust, crack-free films with controllable thickness. Eleven characterization techniques for elucidating the structure of the EISA prepared mesoporous TiO₂ are discussed in this paper. These many characterization methods provide a holistic picture of the structure of mesoporous TiO₂. Mesoporous titanium dioxide materials have been employed in several applications that include Dye Sensitized Solar Cells (DSSCs), photocatalytic degradation of organics and splitting of water, and batteries.
Collapse
|
40
|
Vilà N, Ghanbaja J, Aubert E, Walcarius A. Electrochemically assisted generation of highly ordered azide-functionalized mesoporous silica for oriented hybrid films. Angew Chem Int Ed Engl 2014; 53:2945-50. [PMID: 24519958 DOI: 10.1002/anie.201309447] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 01/07/2014] [Indexed: 11/09/2022]
Abstract
One key challenge in inorganic mesoporous films is the development of oriented mesostructures with vertical channels, and even more challenging is their functionalization while maintaining accessible the selected surface groups. Combining the electrochemically assisted deposition of ordered and oriented azide-functionalized mesoporous silica with alkyne-azide click chemistry enables such nanostructured and vertically aligned hybrid films to be obtained with significant amounts of active organic functional groups, as illustrated for ferrocene and pyridine functions. A good level of mesostructural order was obtained, namely up to 40% of organosilane in the starting sol. The method could be applied to a wide variety of functional groups, thus offering numerous new opportunities for applications in various fields.
Collapse
Affiliation(s)
- Neus Vilà
- Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, UMR 7564, CNRS-Université de Lorraine, 405 rue de Vandoeuvre, 54600 Villers-les-Nancy (France)
| | | | | | | |
Collapse
|
41
|
Vilà N, Ghanbaja J, Aubert E, Walcarius A. Electrochemically Assisted Generation of Highly Ordered Azide-Functionalized Mesoporous Silica for Oriented Hybrid Films. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201309447] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
42
|
Electrocatalytic Oxidation and Determination of Cysteine at Oxovanadium(IV) Salen Coated Electrodes. INTERNATIONAL JOURNAL OF ELECTROCHEMISTRY 2014. [DOI: 10.1155/2014/316254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A transition metal complex, oxovanadium(IV) salen (where salen representsN,N′-bis(salicylidene)ethylenediamine) is immobilized on glassy carbon (GC) electrodes and utilized for electrocatalytic oxidation of cysteine. In presence of oxovanadium(IV) salen, increased oxidation current is observed due to the effective oxidation of cysteine by the electrogenerated oxovanadium(V) salen species. The oxidation current linearly varies with the concentration of cysteine from 0.1 to 1.0 mM. The modified electrode has good sensitivity and low limit of detection. These properties make the oxovanadium(IV) salen as an effective electrocatalyst for the determination of cysteine.
Collapse
|
43
|
Li W, Ding L, Wang Q, Su B. Differential pulse voltammetry detection of dopamine and ascorbic acid by permselective silica mesochannels vertically attached to the electrode surface. Analyst 2014; 139:3926-31. [DOI: 10.1039/c4an00605d] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Silica mesochannels vertically aligned on the electrode surface have been employed for permselective detection of dopamine and ascorbic acid.
Collapse
Affiliation(s)
- Wanzhen Li
- Institute of Microanalytical Systems
- Department of Chemistry
- Zhejiang University
- Hangzhou 310058, China
| | - Longhua Ding
- Institute of Microanalytical Systems
- Department of Chemistry
- Zhejiang University
- Hangzhou 310058, China
| | - Qiaohong Wang
- Institute of Microanalytical Systems
- Department of Chemistry
- Zhejiang University
- Hangzhou 310058, China
| | - Bin Su
- Institute of Microanalytical Systems
- Department of Chemistry
- Zhejiang University
- Hangzhou 310058, China
| |
Collapse
|
44
|
In-situ formation of mesoporous silica films controlled by ion transfer voltammetry at the polarized liquid–liquid interface. Electrochem commun 2013. [DOI: 10.1016/j.elecom.2013.10.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
45
|
|
46
|
Herzog G, Vodolazkaya NA, Walcarius A. Platinum Ultramicroelectrodes Modified with Electrogenerated Surfactant-Templated Mesoporous Organosilica Films: Effect of Film Formation Conditions on Its Performance in Preconcentration Electroanalysis. ELECTROANAL 2013. [DOI: 10.1002/elan.201300415] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
47
|
Walcarius A, Minteer SD, Wang J, Lin Y, Merkoçi A. Nanomaterials for bio-functionalized electrodes: recent trends. J Mater Chem B 2013; 1:4878-4908. [DOI: 10.1039/c3tb20881h] [Citation(s) in RCA: 261] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
48
|
|
49
|
Herzog G, Sibottier E, Etienne M, Walcarius A. Electrochemically assisted self-assembly of ordered and functionalized mesoporous silica films: impact of the electrode geometry and size on film formation and properties. Faraday Discuss 2013; 164:259-73. [DOI: 10.1039/c3fd00021d] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|