1
|
Li Q, Chen Y, Gao H, Li Z, Qiu D, Hu G. In situ analysis of volatile oil in Angelica sinensis roots by fluorescence imaging combined with mass spectrometry imaging. Talanta 2023; 255:124253. [PMID: 36630786 DOI: 10.1016/j.talanta.2023.124253] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/06/2023]
Abstract
In this study, the spatial distribution and accumulation dynamics of volatile oil in Angelica sinensis roots was realized by fluorescence imaging combined with mass spectrometry imaging. The laser scanning confocal microscopy was used to determine the optimal excitation wavelength and the fluorescent stability of volatile oil in the sections of Angelica sinensis roots. The results demonstrated that 488 nm was the most suitable excitation wavelength for the identification and quantitative analysis of volatile oil. It was observed that volatile oil accumulated in the oil chamber of the phelloderm and secondary phloem, and the oil canal of the secondary xylem. The results also indicated that there were differences in content during different periods. Furthermore, the MALDI-TOF-MSI technology was used to study the spatial distribution and compare the chemical compositions of different parts of Angelica sinensis roots during the harvest period. A total of 55, 49, 50 and 30 compounds were identified from the head, body, tail of the root and root bark, respectively. The spatial distribution of phthalides, organic acids and other compounds were revealed in Angelica sinensis roots. The method developed in this study could be used for the in situ analysis of volatile oil in Angelica sinensis roots.
Collapse
Affiliation(s)
- Qian Li
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Yuying Chen
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Hui Gao
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zeyu Li
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Daiyu Qiu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Guangzhi Hu
- Department of Physics, Umeå University, Umeå, 901 87, Sweden.
| |
Collapse
|
2
|
Bai H, Manni JG, Muddiman DC. Transforming a Mid-infrared Laser Profile from Gaussian to a Top-Hat with a Diffractive Optical Element for Mass Spectrometry Imaging. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:10-16. [PMID: 36542595 PMCID: PMC9975536 DOI: 10.1021/jasms.2c00203] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Many mass spectrometry imaging (MSI) applications such as infrared matrix-assisted electrospray ionization (IR-MALDESI) employ an infrared (IR) laser with a Gaussian profile where laser irradiance is highest in the center and decreases exponentially. To enable full ablation of a square region of interest, oversampling is often needed, which results in nonuniform ablation and leads to decreased image quality. A diffractive optical element (DOE) was integrated into the optical path to generate homogeneous intensity distributions while maintaining laser energy above the ablation threshold, to enable complete sample removal from laser pulses without oversampling. 2D and 3D imaging with the DOE inserted show clear and sharp ablation patterns with satisfactory biological signals gained. Further improvements will optimize the beam profile and generate a square top-hat laser beam for MSI application at higher spatial resolution.
Collapse
Affiliation(s)
- Hongxia Bai
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | | | - David C. Muddiman
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
- Molecular Education, Technology, and Research Innovation Center (METRIC), North Carolina State University, Raleigh, NC 27695 USA
| |
Collapse
|
3
|
Detection of Cadmium-related ions by MALDI TOF mass spectrometry correlates with physicochemical properties of Cadmium/matrix adducts. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
Lin HY, Dyakov YA, Lee YT, Ni CK. Temperature Dependence of Desorbed Ions and Neutrals and Ionization Mechanism of Matrix-Assisted Laser Desorption/Ionization. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:95-105. [PMID: 32239933 DOI: 10.1021/jasms.0c00101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Two separate temperature-dependent experiments were performed to investigate the ionization mechanism of ultraviolet matrix-assisted laser desorption/ionization (UV-MALDI) of matrix 2,5-dihydroxybenzoic acid (2,5-DHB). First, the angular resolved intensity and velocity distributions of neutrals desorbed from the 2,5-DHB solid sample through UV laser (355 nm) pulse irradiation were measured using a rotating quadrupole mass spectrometer. Second, the desorbed neutrals, at an angle normal to the surface, and the desorbed ions were simultaneously detected for each laser shot using the quadrupole mass spectrometer and a time-of-flight mass spectrometer, respectively. Both experiments were conducted at two initial temperatures: 100 and 300 K. The measurements from these two experiments were used to calculate the initial temperature dependence of the ion-to-neutral ratio. The results closely agreed with the predictions of the temperature-dependent ion-to-neutral ratio using the thermal model, indicating that thermally induced proton transfer is the dominant reaction that generates initial ions of 2,5-DHB in UV-MALDI.
Collapse
Affiliation(s)
- Hou-Yu Lin
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yuri A Dyakov
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Yuan Tseh Lee
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Chi-Kung Ni
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
5
|
A thorough evaluation of matrix-free laser desorption ionization on structurally diverse alkaloids and their direct detection in plant extracts. Anal Bioanal Chem 2020; 412:7405-7416. [PMID: 32851457 DOI: 10.1007/s00216-020-02872-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/16/2020] [Accepted: 08/07/2020] [Indexed: 12/24/2022]
Abstract
Alkaloids represent a major group of natural products (NPs), derived from highly diverse organisms. These structurally varied specialized metabolites are widely used for medicinal purposes and also known as toxic contaminants in agriculture and dietary supplements. While the detection of alkaloids is generally facilitated by GC- or LC-MS, these techniques do require considerable efforts in sample preparation and method optimization. Bypassing these limitations and also reducing experimental time, matrix-free laser desorption ionization (LDI) and related methods may provide an interesting alternative. As many alkaloids show close structural similarities to matrices used in matrix-assisted laser desorption ionization (MALDI), they should ionize upon simple laser irradiation without matrix support. With this in mind, the current work presents a systematic evaluation of LDI properties of a wide range of structurally diverse alkaloids. Facilitating a direct comparison between LDI and ESI-MS fragmentation, all tested compounds were further studied by electrospray ionization (ESI). Moreover, crude plant extracts of Atropa belladonna, Cinchona succirubra, and Colchicum autumnale were analyzed by LDI in order to evaluate direct alkaloid detection and dereplication from complex mixtures. Finally, dose-dependent evaluation of MALDI and LDI detection using an extract of Rosmarinus officinalis spiked with atropine, colchicine, or quinine was conducted. Overall, present results suggest that LDI provides a versatile analytical tool for analyzing structurally diverse alkaloids as single compounds and from complex mixtures. It may further serve various potential applications ranging from quality control to the screening for toxic compounds as well as the build up of MS databases. Graphical abstract.
Collapse
|
6
|
Singh A, Bhardwaj N, Prasad R. Nanomaterial-Assisted Mass Spectrometry: An Evolving Cutting-Edge Technique. Nanobiomedicine (Rij) 2020. [DOI: 10.1007/978-981-32-9898-9_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
7
|
Robinson KN, Steven RT, Race AM, Bunch J. The Influence of MS Imaging Parameters on UV-MALDI Desorption and Ion Yield. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1284-1293. [PMID: 30949969 DOI: 10.1007/s13361-019-02193-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/12/2019] [Accepted: 03/11/2019] [Indexed: 06/09/2023]
Abstract
Ultraviolet matrix-assisted laser desorption/ionization mass spectrometry imaging (UV-MALDI MSI) is a widely used technique for imaging molecular distributions within biological systems. While much work exists concerning desorption in UV-MALDI MS, the effects of commonly varied parameters for imaging applications (repetition rate, use of continuous raster mode and raster speed), which determine spatial resolution and limits of detection for the technique, remain largely unknown. We use multiple surface characterization modalities to obtain quantitative measurements of material desorption and analyte ion yield in thin film model systems of two matrix compounds, arising from different UV-MALDI MSI sampling conditions. Observed changes in resulting ablation feature point to matrix-dependent spatial resolution and laser-induced matrix modification effects. Analyte ion yields of 10-9 to 10-6 are observed. Complex changes in ion yield, between spot and raster sampling and arising from varied laser repetition rate and raster speed, are observed. Graphical Abstract.
Collapse
Affiliation(s)
- Kenneth N Robinson
- National Centre of Excellence in Mass Spectrometry Imaging (NiCE-MSI), National Physical Laboratory, Teddington, UK
- Advanced Materials and Healthcare Technologies Division (AMHT), University of Nottingham, Nottingham, UK
| | - Rory T Steven
- National Centre of Excellence in Mass Spectrometry Imaging (NiCE-MSI), National Physical Laboratory, Teddington, UK.
| | - Alan M Race
- National Centre of Excellence in Mass Spectrometry Imaging (NiCE-MSI), National Physical Laboratory, Teddington, UK
| | - Josephine Bunch
- National Centre of Excellence in Mass Spectrometry Imaging (NiCE-MSI), National Physical Laboratory, Teddington, UK.
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
8
|
Sproß J, Muck A, Gröger H. Detection and fragmentation of doubly charged peptide ions in MALDI-Q-TOF-MS by ion mobility spectrometry for improved protein identification. Anal Bioanal Chem 2019; 411:6275-6285. [PMID: 30868190 DOI: 10.1007/s00216-019-01578-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/22/2018] [Accepted: 01/04/2019] [Indexed: 01/17/2023]
Abstract
Today, bottom-up protein identification in MALDI-MS is based on employing singly charged peptide ions, which are predominantly formed in the ionization process. However, peptide mass fingerprinting (PMF) with subsequent tandem MS confirmation using these peptide ions is often hampered due to the lower quality of fragment ion mass spectra caused by the higher collision energy necessary for fragmenting singly protonated peptides. Accordingly, peptide ions of higher charge states would be of high interest for analytical purposes, but they are usually not detected in MALDI-MS experiments as they overlap with singly charged matrix clusters and peptide ions. However, when utilizing ion mobility spectrometry (IMS), doubly charged peptide ions can be actively used by separating them from the singly protonated peptides, visualized, and selectively targeted for tandem MS experiments. The generated peptide fragment ion spectra can be used for a more confident protein identification using PMF with tandem MS confirmation, as most doubly protonated peptide ions yield fragment ion mass spectra of higher quality compared to tandem mass spectra of the corresponding singly protonated precursor ions. Mascot protein scores can be increased by approximately 50% when using tandem mass spectra of doubly charged peptide ions, with ion scores up to six times higher compared with ion scores of tandem mass spectra from singly charged precursors.
Collapse
Affiliation(s)
- Jens Sproß
- Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany.
| | | | - Harald Gröger
- Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany.
| |
Collapse
|
9
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2013-2014. MASS SPECTROMETRY REVIEWS 2018; 37:353-491. [PMID: 29687922 DOI: 10.1002/mas.21530] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/29/2016] [Indexed: 06/08/2023]
Abstract
This review is the eighth update of the original article published in 1999 on the application of Matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2014. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly- saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2018 Wiley Periodicals, Inc. Mass Spec Rev 37:353-491, 2018.
Collapse
Affiliation(s)
- David J Harvey
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
10
|
New insights into mechanisms of material ejection in MALDI mass spectrometry for a wide range of spot sizes. Sci Rep 2018; 8:7755. [PMID: 29773805 PMCID: PMC5958139 DOI: 10.1038/s41598-018-25946-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/25/2018] [Indexed: 01/22/2023] Open
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is widely used for the analysis of large biomolecules in numerous applications. The technique utilizes nanosecond-long laser pulses at various spot sizes to eject and ionize large molecules embedded in a highly absorptive chemical matrix. Despite the methods name, ‘molecular desorption’ from the matrix crystal surface is not the sole mechanism discussed for material ejection in MALDI, but additional ablation of larger clusters has been reported. Here we present results on the influence of laser fluence and spot size on the mechanisms of the initial material ejection in MALDI and subsequent plume development. We used a laser-based postionization (MALDI-2) as well as a complementary photoacoustic method to monitor the material ejection step. The photoacoustic data reveal a quasi-thermal sublimation process up to a transition fluence. Above this threshold fluence additional ablation processes are observed. Complementary investigations on plume dynamics by MALDI-2 showed an ejection of predominantly fast particles for desorption conditions while ablation produces considerably slower ejecta. Additionally the presented results revealed a peculiar influence of the spot size on analyte fragmentation as well as plume development and allows for new insights into the unexplained spot size effect reported for MALDI.
Collapse
|
11
|
Vacuum Ultraviolet Single-Photon Postionization of Amino Acids. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8050699] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Rzagalinski I, Hainz N, Meier C, Tschernig T, Volmer DA. MALDI Mass Spectral Imaging of Bile Acids Observed as Deprotonated Molecules and Proton-Bound Dimers from Mouse Liver Sections. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:711-722. [PMID: 29417494 PMCID: PMC5889423 DOI: 10.1007/s13361-017-1886-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/24/2017] [Accepted: 12/24/2017] [Indexed: 05/07/2023]
Abstract
Bile acids (BAs) play two vital roles in living organisms, as they are involved in (1) the secretion of cholesterol from liver, and (2) the lipid digestion/absorption in the intestine. Abnormal bile acid synthesis or secretion can lead to severe liver disorders. Even though there is extensive literature on the mass spectrometric determination of BAs in biofluids and tissue homogenates, there are no reports on the spatial distribution in the biliary network of the liver. Here, we demonstrate the application of high mass resolution/mass accuracy matrix-assisted laser desorption/ionization (MALDI)-Fourier-transform ion cyclotron resonance (FTICR) to MS imaging (MSI) of BAs at high spatial resolutions (pixel size, 25 μm). The results show chemical heterogeneity of the mouse liver sections with a number of branching biliary and blood ducts. In addition to ion signals from deprotonation of the BA molecules, MALDI-MSI generated several further intense signals at larger m/z for the BAs. These signals were spatially co-localized with the deprotonated molecules and easily misinterpreted as additional products of BA biotransformations. In-depth analysis of accurate mass shifts and additional electrospray ionization and MALDI-FTICR experiments, however, confirmed them as proton-bound dimers. Interestingly, dimers of bile acids, but also unusual mixed dimers of different taurine-conjugated bile acids and free taurine, were identified. Since formation of these complexes will negatively influence signal intensities of the desired [M - H]- ions and significantly complicate mass spectral interpretations, two simple broadband techniques were proposed for non-selective dissociation of dimers that lead to increased signals for the deprotonated BAs. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Ignacy Rzagalinski
- Institute of Bioanalytical Chemistry, Saarland University, 66123, Saarbrücken, Germany
| | - Nadine Hainz
- Institute of Anatomy and Cell Biology, Saarland University, 66421, Homburg, Germany
| | - Carola Meier
- Institute of Anatomy and Cell Biology, Saarland University, 66421, Homburg, Germany
| | - Thomas Tschernig
- Institute of Anatomy and Cell Biology, Saarland University, 66421, Homburg, Germany
| | - Dietrich A Volmer
- Institute of Bioanalytical Chemistry, Saarland University, 66123, Saarbrücken, Germany.
- Department of Chemistry, Humboldt University of Berlin, 12489, Berlin, Germany.
| |
Collapse
|
13
|
Robinson KN, Steven RT, Bunch J. Matrix Optical Absorption in UV-MALDI MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:501-511. [PMID: 29468418 DOI: 10.1007/s13361-017-1843-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/31/2017] [Accepted: 11/01/2017] [Indexed: 05/03/2023]
Abstract
In ultraviolet matrix-assisted laser desorption/ionization mass spectrometry (UV-MALDI MS) matrix compound optical absorption governs the uptake of laser energy, which in turn has a strong influence on experimental results. Despite this, quantitative absorption measurements are lacking for most matrix compounds. Furthermore, despite the use of UV-MALDI MS to detect a vast range of compounds, investigations into the effects of laser energy have been primarily restricted to single classes of analytes. We report the absolute solid state absorption spectra of the matrix compounds α-cyano-4-hydroxycinnamic acid (CHCA), para-nitroaniline (PNA), 2-mercaptobenzothiazole (MBT), 2,5-dihydroxybenzoic acid (2,5-DHB), and 2,4,6-trihydroxyacetophenone (THAP). The desorption/ionization characteristics of these matrix compounds with respect to laser fluence was investigated using mixed systems of matrix with either angiotensin II, PC(34:1) lipid standard, or haloperidol, acting as representatives for typical classes of analyte encountered in UV-MALDI MS. The first absolute solid phase spectra for PNA, MBT, and THAP are reported; additionally, inconsistencies between previously published spectra for CHCA are resolved. In light of these findings, suggestions are made for experimental optimization with regards to matrix and laser wavelength selection. The relationship between matrix optical cross-section and wavelength-dependant threshold fluence, fluence of maximum ion yield, and R, a new descriptor for the change in ion intensity with fluence, are described. A matrix cross-section of 1.3 × 10-17 cm-2 was identified as a potential minimum for desorption/ionization of analytes. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Kenneth N Robinson
- National Center of Excellence in Mass Spectrometry Imaging (NiCE-MSI), National Physical Laboratory, Teddington, UK
- Advanced Materials and Healthcare Technologies Division, University of Nottingham, Nottingham, UK
| | - Rory T Steven
- National Center of Excellence in Mass Spectrometry Imaging (NiCE-MSI), National Physical Laboratory, Teddington, UK
| | - Josephine Bunch
- National Center of Excellence in Mass Spectrometry Imaging (NiCE-MSI), National Physical Laboratory, Teddington, UK.
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
14
|
Lai YH, Wang YS. Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry: Mechanistic Studies and Methods for Improving the Structural Identification of Carbohydrates. Mass Spectrom (Tokyo) 2017; 6:S0072. [PMID: 28959517 PMCID: PMC5610957 DOI: 10.5702/massspectrometry.s0072] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 08/03/2017] [Indexed: 12/21/2022] Open
Abstract
Although matrix-assisted laser desorption/ionization (MALDI) mass spectrometry is one of the most widely used soft ionization methods for biomolecules, the lack of detailed understanding of ionization mechanisms restricts its application in the analysis of carbohydrates. Structural identification of carbohydrates achieved by MALDI mass spectrometry helps us to gain insights into biological functions and pathogenesis of disease. In this review, we highlight mechanistic details of MALDI, including both ionization and desorption. Strategies to improve the ion yield of carbohydrates are also reviewed. Furthermore, commonly used fragmentation methods to identify the structure are discussed.
Collapse
|
15
|
Niehaus M, Schnapp A, Koch A, Soltwisch J, Dreisewerd K. New Insights into the Wavelength Dependence of MALDI Mass Spectrometry. Anal Chem 2017. [PMID: 28636332 DOI: 10.1021/acs.analchem.7b01744] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The interplay between the wavelength of the laser and the absorption profile of the matrix constitutes a crucial factor in matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS). Numerous studies have shown that typically best analytical results are obtained if the laser wavelength matches the UV absorption band of the matrix in the solid state well. However, many powerful matrices exhibit peak absorptions which differ notably from the standard MALDI laser wavelengths of 337, 349, and 355 nm, respectively. Here we used two wavelength-tunable lasers to investigate the MALDI wavelength dependence with a selected set of such matrices. We studied 3-hydroxypicolinic acid (3-HPA), 2,4,6-trihydroxyacetophenon (THAP), dithranol (1,8-dihydroxy-10H-anthracen-9-on), 2-(4'-hydroxybenzeneazo)benzoic acid (HABA), and 6-aza-2-thiothymine (ATT). For analyte systems we investigated DNA oligomers (3-HPA), phospholipids (dithranol, THAP, HABA), and non-covalent peptide-peptide and protein-peptide complexes (ATT). We recorded analyte ion and total ion counts as a function of wavelength and laser fluence between 213 and 600 nm. Although the so-generated comprehensive heat maps generally corroborated the previously made findings, several fine features became notable. For example, despite a still high optical absorption exhibited by some of the matrices in the visible wavelength range, ion yields generally dropped strongly, indicating a change in ionization mechanism. Moreover, the non-covalent complexes were optimally detected at wavelengths corresponding to a relatively low optical absorptivity of the ATT matrix, presumably because of ejection of a particular cold MALDI plume. Our comprehensive data shed useful light into the MALDI mechanisms and could assist in further methodological advancement of the technique.
Collapse
Affiliation(s)
- Marcel Niehaus
- Institute for Hygiene, Biomedical Mass Spectrometry, University of Münster , D-48149 Münster, Germany
| | - Andreas Schnapp
- Institute for Hygiene, Biomedical Mass Spectrometry, University of Münster , D-48149 Münster, Germany
| | - Annika Koch
- Institute for Hygiene, Biomedical Mass Spectrometry, University of Münster , D-48149 Münster, Germany
| | - Jens Soltwisch
- Institute for Hygiene, Biomedical Mass Spectrometry, University of Münster , D-48149 Münster, Germany.,Interdisciplinary Center for Clinical Research (IZKF), University of Münster , D-48149 Münster, Germany
| | - Klaus Dreisewerd
- Institute for Hygiene, Biomedical Mass Spectrometry, University of Münster , D-48149 Münster, Germany.,Interdisciplinary Center for Clinical Research (IZKF), University of Münster , D-48149 Münster, Germany
| |
Collapse
|
16
|
Organic matrices, ionic liquids, and organic matrices@nanoparticles assisted laser desorption/ionization mass spectrometry. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.01.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
17
|
Gross JH. Matrix-Assisted Laser Desorption/Ionization. Mass Spectrom (Tokyo) 2017. [DOI: 10.1007/978-3-319-54398-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
18
|
Bashir S, Liu JL, Derrick PJ. Effect of Structured Surfaces on MALDI Analyte Peak Intensities. Aust J Chem 2017. [DOI: 10.1071/ch17456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A surface modification method is presented: a sodium chloride crystal, a transparent wide bandgap insulator, was deposited onto a stainless steel surface. The surface was subjected to various stimuli to induce surface defects either on the steel surface or salt crystal and the ion yield of substance P, a model peptide, was investigated as a function of stimuli. The interaction of the laser at potential defect sites resulted in an increase in the ion yield of substance P (3–17 fold increase relative to no stimuli).
Collapse
|
19
|
Current and Future Perspectives on the Structural Identification of Small Molecules in Biological Systems. Metabolites 2016; 6:metabo6040046. [PMID: 27983674 PMCID: PMC5192452 DOI: 10.3390/metabo6040046] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 12/04/2016] [Accepted: 12/06/2016] [Indexed: 12/29/2022] Open
Abstract
Although significant advances have been made in recent years, the structural elucidation of small molecules continues to remain a challenging issue for metabolite profiling. Many metabolomic studies feature unknown compounds; sometimes even in the list of features identified as "statistically significant" in the study. Such metabolic "dark matter" means that much of the potential information collected by metabolomics studies is lost. Accurate structure elucidation allows researchers to identify these compounds. This in turn, facilitates downstream metabolite pathway analysis, and a better understanding of the underlying biology of the system under investigation. This review covers a range of methods for the structural elucidation of individual compounds, including those based on gas and liquid chromatography hyphenated to mass spectrometry, single and multi-dimensional nuclear magnetic resonance spectroscopy, and high-resolution mass spectrometry and includes discussion of data standardization. Future perspectives in structure elucidation are also discussed; with a focus on the potential development of instruments and techniques, in both nuclear magnetic resonance spectroscopy and mass spectrometry that, may help solve some of the current issues that are hampering the complete identification of metabolite structure and function.
Collapse
|
20
|
Wiegelmann M, Dreisewerd K, Soltwisch J. Influence of the Laser Spot Size, Focal Beam Profile, and Tissue Type on the Lipid Signals Obtained by MALDI-MS Imaging in Oversampling Mode. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:1952-1964. [PMID: 27549394 DOI: 10.1007/s13361-016-1477-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/03/2016] [Accepted: 08/04/2016] [Indexed: 05/18/2023]
Abstract
To improve the lateral resolution in matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) beyond the dimensions of the focal laser spot oversampling techniques are employed. However, few data are available on the effect of the laser spot size and its focal beam profile on the ion signals recorded in oversampling mode. To investigate these dependencies, we produced 2 times six spots with dimensions between ~30 and 200 μm. By optional use of a fundamental beam shaper, square flat-top and Gaussian beam profiles were compared. MALDI-MSI data were collected using a fixed pixel size of 20 μm and both pixel-by-pixel and continuous raster oversampling modes on a QSTAR mass spectrometer. Coronal mouse brain sections coated with 2,5-dihydroxybenzoic acid matrix were used as primary test systems. Sizably higher phospholipid ion signals were produced with laser spots exceeding a dimension of ~100 μm, although the same amount of material was essentially ablated from the 20 μm-wide oversampling pixel at all spot size settings. Only on white matter areas of the brain these effects were less apparent to absent. Scanning electron microscopy images showed that these findings can presumably be attributed to different matrix morphologies depending on tissue type. We propose that a transition in the material ejection mechanisms from a molecular desorption at large to ablation at smaller spot sizes and a concomitant reduction in ion yields may be responsible for the observed spot size effects. The combined results indicate a complex interplay between tissue type, matrix crystallization, and laser-derived desorption/ablation and finally analyte ionization. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Marcel Wiegelmann
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, 48149, Münster, Germany
| | - Klaus Dreisewerd
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, 48149, Münster, Germany
- Interdisciplinary Center for Clinical Research (IZKF), University of Münster, Domagkstr. 3, 48149, Münster, Germany
| | - Jens Soltwisch
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, 48149, Münster, Germany.
| |
Collapse
|
21
|
Steven RT, Race AM, Bunch J. Probing the Relationship Between Detected Ion Intensity, Laser Fluence, and Beam Profile in Thin Film and Tissue in MALDI MSI. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:1419-1428. [PMID: 27206508 DOI: 10.1007/s13361-016-1414-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 04/14/2016] [Accepted: 04/23/2016] [Indexed: 06/05/2023]
Abstract
Matrix assisted laser desorption ionization mass spectrometry imaging (MALDI MSI) is increasingly widely used to provide information regarding molecular location within tissue samples. The nature of the photon distribution within the irradiated region, the laser beam profile, and fluence, will significantly affect the form and abundance of the detected ions. Previous studies into these phenomena have focused on circular-core optic fibers or Gaussian beam profiles irradiating dried droplet preparations, where peptides were employed as the analyte of interest. Within this work, we use both round and novel square core optic fibers of 100 and 50 μm diameter to deliver the laser photons to the sample. The laser beam profiles were recorded and analyzed to quantify aspects of the photon distributions and their relation to the spectral data obtained with each optic fiber. Beam profiles with a relatively small number of large beam profile features were found to give rise to the lowest threshold fluence. The detected ion intensity versus fluence relationship was investigated, for the first time, in both thin films of α-cyano-4-hydroxycinnamic acid (CHCA) with phosphatidylcholine (PC) 34:1 lipid standard and in CHCA coated murine tissue sections for both the square and round optic fibers in continuous raster imaging mode. The fluence threshold of ion detection was found to occur at between ~14 and ~64 J/m(2) higher in tissue compared with thin film for the same lipid, depending upon the optic fiber employed. The image quality is also observed to depend upon the fluence employed during image acquisition. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Rory T Steven
- National Centre of Excellence in Mass Spectrometry Imaging (NiCE-MSI), National Physical Laboratory (NPL), Teddington, TW11 0LW, UK
| | - Alan M Race
- National Centre of Excellence in Mass Spectrometry Imaging (NiCE-MSI), National Physical Laboratory (NPL), Teddington, TW11 0LW, UK
| | - Josephine Bunch
- National Centre of Excellence in Mass Spectrometry Imaging (NiCE-MSI), National Physical Laboratory (NPL), Teddington, TW11 0LW, UK.
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK.
| |
Collapse
|
22
|
Steven RT, Dexter A, Bunch J. Investigating MALDI MSI parameters (Part 1) – A systematic survey of the effects of repetition rates up to 20 kHz in continuous raster mode. Methods 2016; 104:101-10. [DOI: 10.1016/j.ymeth.2016.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/15/2016] [Accepted: 04/08/2016] [Indexed: 12/30/2022] Open
|
23
|
Kiss A, Hopfgartner G. Laser-based methods for the analysis of low molecular weight compounds in biological matrices. Methods 2016; 104:142-53. [DOI: 10.1016/j.ymeth.2016.04.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/28/2016] [Accepted: 04/13/2016] [Indexed: 01/26/2023] Open
|
24
|
Körsgen M, Pelster A, Dreisewerd K, Arlinghaus HF. 3D ToF-SIMS Analysis of Peptide Incorporation into MALDI Matrix Crystals with Sub-micrometer Resolution. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:277-284. [PMID: 26419771 DOI: 10.1007/s13361-015-1275-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 09/04/2015] [Accepted: 09/10/2015] [Indexed: 06/05/2023]
Abstract
The analytical sensitivity in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is largely affected by the specific analyte-matrix interaction, in particular by the possible incorporation of the analytes into crystalline MALDI matrices. Here we used time-of-flight secondary ion mass spectrometry (ToF-SIMS) to visualize the incorporation of three peptides with different hydrophobicities, bradykinin, Substance P, and vasopressin, into two classic MALDI matrices, 2,5-dihydroxybenzoic acid (DHB) and α-cyano-4-hydroxycinnamic acid (HCCA). For depth profiling, an Ar cluster ion beam was used to gradually sputter through the matrix crystals without causing significant degradation of matrix or biomolecules. A pulsed Bi3 ion cluster beam was used to image the lateral analyte distribution in the center of the sputter crater. Using this dual beam technique, the 3D distribution of the analytes and spatial segregation effects within the matrix crystals were imaged with sub-μm resolution. The technique could in the future enable matrix-enhanced (ME)-ToF-SIMS imaging of peptides in tissue slices at ultra-high resolution. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Martin Körsgen
- Physikalisches Institut, University of Münster, 48149, Münster, Germany.
| | - Andreas Pelster
- Physikalisches Institut, University of Münster, 48149, Münster, Germany
| | - Klaus Dreisewerd
- Institute for Hygiene, University of Münster, 48149, Münster, Germany
- Interdisciplinary Center for Clinical Research (IZKF), University of Münster, 48149, Münster, Germany
| | | |
Collapse
|
25
|
Recent methodological advances in MALDI mass spectrometry. Anal Bioanal Chem 2014; 406:2261-78. [PMID: 24652146 DOI: 10.1007/s00216-014-7646-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/17/2014] [Accepted: 01/21/2014] [Indexed: 10/25/2022]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is widely used for characterization of large, thermally labile biomolecules. Advantages of this analytical technique are high sensitivity, robustness, high-throughput capacity, and applicability to a wide range of compound classes. For some years, MALDI-MS has also been increasingly used for mass spectrometric imaging as well as in other areas of clinical research. Recently, several new concepts have been presented that have the potential to further advance the performance characteristics of MALDI. Among these innovations are novel matrices with low proton affinities for particularly efficient protonation of analyte molecules, use of wavelength-tunable lasers to achieve optimum excitation conditions, and use of liquid matrices for improved quantification. Instrumental modifications have also made possible MALDI-MS imaging with cellular resolution as well as an efficient generation of multiply charged MALDI ions by use of heated vacuum interfaces. This article reviews these recent innovations and gives the author's personal outlook of possible future developments.
Collapse
|
26
|
Stoyanovsky DA, Sparvero LJ, Amoscato AA, He RR, Watkins S, Pitt BR, Bayir H, Kagan VE. Improved spatial resolution of matrix-assisted laser desorption/ionization imaging of lipids in the brain by alkylated derivatives of 2,5-dihydroxybenzoic acid. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:403-12. [PMID: 24497278 PMCID: PMC3973445 DOI: 10.1002/rcm.6796] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 11/26/2013] [Accepted: 11/28/2013] [Indexed: 05/27/2023]
Abstract
RATIONALE Matrix-assisted laser desorption/ionization (MALDI) is one of the major techniques for mass spectrometry imaging (MSI) of biological systems along with secondary-ion mass spectrometry (SIMS) and desorption electrospray mass spectrometry (DESI). The inherent variability of MALDI-MSI signals within intact tissues is related to the heterogeneity of both the sample surface and the matrix crystallization. To circumvent some of these limitations of MALDI-MSI, we have developed improved matrices for lipid analysis based on structural modification of the commonly used matrix 2,5-dihydroxybenzoic acid (DHB). METHODS We have synthesized DHB containing -C6H13 and -C12H25 alkyl chains and applied these matrices to rat brain using a capillary sprayer. We utilized a Bruker Ultraflex II MALDI-TOF/TOF mass spectrometer to analyze lipid extracts and tissue sections, and examined these sections with polarized light microscopy and differential interference contrast microscopy. RESULTS O-alkylation of DHB yields matrices, which, when applied to brain sections, follow a trend of phase transition from crystals to an oily layer in the sequence DHB → DHB-C6H13 → DHB-C12H25 . MALDI-MSI images acquired with DHB-C12H25 exhibited a considerably higher density of lipids than DHB. CONCLUSIONS Comparative experiments with DHB and DHB-C12H25 are presented, which indicate that the latter matrix affords higher lateral resolution than the former.
Collapse
Affiliation(s)
- D A Stoyanovsky
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Knochenmuss R. MALDI mechanisms: wavelength and matrix dependence of the coupled photophysical and chemical dynamics model. Analyst 2014; 139:147-56. [DOI: 10.1039/c3an01446k] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Soltwisch J, Jaskolla TW, Dreisewerd K. Color matters--material ejection and ion yields in UV-MALDI mass spectrometry as a function of laser wavelength and laser fluence. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:1477-88. [PMID: 23943430 DOI: 10.1007/s13361-013-0699-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 06/24/2013] [Accepted: 07/01/2013] [Indexed: 05/20/2023]
Abstract
The success of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) as a widely employed analytical tool in the biomolecular sciences builds strongly on an effective laser-material interaction that is resulting in a soft co-desorption and ionization of matrix and imbedded biomolecules. To obtain a maximized ion yield for the analyte(s) of interest, in general both wavelength and fluence need to be tuned to match the specific optical absorption profile of the used matrix. However, commonly only lasers with fixed emission wavelengths of either 337 or 355 nm are used for MALDI-MS. Here, we employed a wavelength-tunable dye laser and recorded both the neutral material ejection and the MS ion data in a wide wavelength and fluence range between 280 and 377.5 nm. α-Cyano-4-hydroxycinnamic acid (HCCA), 4-chloro-α-cyanocinnamic acid (ClCCA), α-cyano-2,4-difluorocinnamic acid (DiFCCA), and 2,5-dihydroxybenzoic acid (DHB) were investigated as matrices, and several peptides as analytes. Recording of the material ejection was achieved by adopting a photoacoustic approach. Relative ion yields were derived by division of photoacoustic and ion signals. In this way, distinct wavelength/fluence regions can be identified for which maximum ion yields were obtained. For the tested matrices, optimal results were achieved for wavelengths corresponding to areas of high optical absorption of the respective matrix and at fluences about a factor of 2-3 above the matrix- and wavelength-dependent ion detection threshold fluences. The material ejection as probed by the photoacoustic method is excellently fitted by the quasithermal model, while a sigmoidal function allows for an empirical description of the ion signal-fluence relationship.
Collapse
Affiliation(s)
- Jens Soltwisch
- Institute for Hygiene, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
| | | | | |
Collapse
|
29
|
Repeat MALDI MS imaging of a single tissue section using multiple matrices and tissue washes. Anal Bioanal Chem 2013; 405:4719-28. [DOI: 10.1007/s00216-013-6899-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 02/28/2013] [Accepted: 03/05/2013] [Indexed: 01/03/2023]
|