1
|
Yang B, Tang H, Liu Z, Cai X, Qi ZM. Analysis of tissue-substrate adhesion by hyperspectral surface plasmon resonance microscopy. Anal Bioanal Chem 2024; 416:5815-5825. [PMID: 39212699 DOI: 10.1007/s00216-024-05509-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
The preparation of histology slides is a critical step in histopathology, and poor-quality histology slides with weak adhesion of tissue sections to the substrate often affect diagnostic accuracy and sometimes lead to diagnostic failure due to tissue section detachment. This issue has been of concern and some methods have been proposed to enhance tissue-substrate adhesion. Unfortunately, quantitative analysis of the adhesion between tissue sections and glass slides is still challenging. In this work, the adhesion of mouse brain tissue sections on gold-coated glass slides was analyzed using a laboratory-fabricated hyperspectral surface plasmon resonance microscopy (HSPRM) system that enabled single-pixel spectral SPR sensing and provided two-dimensional (2D) distribution of resonance wavelengths (RWs). The existence of the nanoscale water gap between the tissue section and the substrate was verified by fitting the RW measured in each pixel using the five-layer Fresnel reflection model. In addition, a 2D image of the tissue-substrate adhesion distance (AD) was obtained from the measured 2D distribution of RWs. The results showed that tissue-substrate AD was 20-35 nm in deionized water and 4-24 nm in saline solution. The HSPRM system used in this work has a wide wavelength range of 400-1000 nm and can perform highly sensitive and label-free detection over a large dynamic detection range with high spectral and spatial resolutions, showing significant potential applications in stain-free tissue imaging, quantitative analysis of tissue-substrate adhesion, accurate identification of tumor cells, and rapid histopathological diagnosis.
Collapse
Affiliation(s)
- Bo Yang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongyi Tang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ziwei Liu
- Beijing Smartchip Microelectronics Technology Co., Ltd, Beijing, 102200, China
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi-Mei Qi
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Biosensors as diagnostic tools in clinical applications. Biochim Biophys Acta Rev Cancer 2022; 1877:188726. [DOI: 10.1016/j.bbcan.2022.188726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/18/2022] [Accepted: 03/25/2022] [Indexed: 11/19/2022]
|
3
|
Aoyama Y, Toyotama A, Okuzono T, Hirashima N, Imai H, Uchida F, Takiguchi Y, Yamanaka J. Surface Plasmon Resonance of Two-Dimensional Gold Colloidal Crystals Formed on Gold Plates. Chem Pharm Bull (Tokyo) 2022; 70:130-137. [PMID: 35110433 DOI: 10.1248/cpb.c21-00873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The free electrons inside precious metals such as Au vibrate when the surface of the metal is irradiated with an electromagnetic wave of an appropriate frequency. This oscillation is referred to as surface plasmon resonance (SPR), and the resonance frequency varies with permittivity of the medium around the metal. SPR sensors are widely applied in the fields of bioscience and pharmaceutical sciences, including biosensing for drug discovery, biomarker screening, virus detection, and testing for food safety. Here, we fabricated a metal-insulator-metal (MIM) SPR sensor by constructing two-dimensional (2D) regular array of Au colloidal particles (2D colloidal crystals) on an insulator layer over a thin Au film coated on a glass substrate surface. The 2D crystals were fabricated by electrostatically adsorbing negatively charged three-dimensional crystals onto a positively charged thin insulator formed on Au film. The plasmon peaks/dips from the MIM structure were measured in aqueous solutions of ethylene glycol (EG) at various concentrations. Multiple plasmon peaks/dips were observed due to the localized SPR (LSPR) of the Au particles and the Fano resonance between the Au particles and thin film. The plasmon peaks/dips shifted to higher wavelengths on increasing EG concentrations due to an increase in the refractive index of the media. The observed peak/dip shift was approximately twice that of LSPR from an isolated Au particle. We expect the present MIM substrate will be useful as a highly sensitive sensor in the pharmaceutical field.
Collapse
Affiliation(s)
- Yurina Aoyama
- Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Akiko Toyotama
- Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Tohru Okuzono
- Graduate School of Pharmaceutical Sciences, Nagoya City University
| | | | | | | | | | - Junpei Yamanaka
- Graduate School of Pharmaceutical Sciences, Nagoya City University
| |
Collapse
|
4
|
Calcagno M, D'Agata R, Breveglieri G, Borgatti M, Bellassai N, Gambari R, Spoto G. Nanoparticle-Enhanced Surface Plasmon Resonance Imaging Enables the Ultrasensitive Detection of Non-Amplified Cell-Free Fetal DNA for Non-Invasive Prenatal Testing. Anal Chem 2021; 94:1118-1125. [PMID: 34964602 PMCID: PMC8771635 DOI: 10.1021/acs.analchem.1c04196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
![]()
Although many potential
applications in early clinical diagnosis
have been proposed, the use of a surface plasmon resonance imaging
(SPRI) technique for non-invasive prenatal diagnostic approaches based
on maternal blood analysis is confined. Here, we report a nanoparticle-enhanced
SPRI strategy for a non-invasive prenatal fetal sex determination
based on the detection of a Y-chromosome specific sequence (single-gene
SRY) in cell-free fetal DNA from maternal plasma. The SPR assay proposed
here allows for detection of male DNA in mixtures of 2.5 aM male and
female genomic DNAs with no preliminary amplification of the DNA target
sequence, thus establishing an analytical protocol that does not require
costly, time-consuming, and prone to sample contamination PCR-based
procedures. Afterward, the developed protocol was successfully applied
to reveal male cell-free fetal DNA in the plasma of pregnant women
at different gestational ages, including early gestational ages. This
approach would pave the way for the establishment of faster and cost-effective
non-invasive prenatal testing.
Collapse
Affiliation(s)
- Marzia Calcagno
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria, 6, 95125 Catania, Italy
| | - Roberta D'Agata
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria, 6, 95125 Catania, Italy
| | - Giulia Breveglieri
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Monica Borgatti
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Noemi Bellassai
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria, 6, 95125 Catania, Italy
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Giuseppe Spoto
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria, 6, 95125 Catania, Italy.,INBB, Istituto Nazionale di Biostrutture e Biosistemi, Viale Delle Medaglie D'Oro, 305, 00136 Roma, Italy
| |
Collapse
|
5
|
D'Agata R, Bellassai N, Giuffrida MC, Aura AM, Petri C, Kögler P, Vecchio G, Jonas U, Spoto G. A new ultralow fouling surface for the analysis of human plasma samples with surface plasmon resonance. Talanta 2020; 221:121483. [PMID: 33076094 DOI: 10.1016/j.talanta.2020.121483] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/23/2020] [Accepted: 07/29/2020] [Indexed: 01/08/2023]
Abstract
Surface plasmon resonance (SPR) has been widely used to detect a variety of biomolecular systems, but only a small fraction of applications report on the analysis of patients' samples. A critical barrier to the full implementation of SPR technology in molecular diagnostics currently exists for its potential application to analyze blood plasma or serum samples. Such capability is mostly hindered by the non-specific adsorption of interfering species present in the biological sample at the functional interface of the biosensor, often referred to as fouling. Suitable polymeric layers having a thickness ranging from 15 and about 70 nm are usually deposited on the active surface of biosensors to introduce antifouling properties. A similar approach is not fully adequate for SPR detection where the exponential decay of the evanescent plasmonic field limits the thickness of the layer beyond the SPR metallic sensor surface for which a sensitive detection can be obtained. Here, a triethylene glycol (PEG(3))-pentrimer carboxybetaine system is proposed to fabricate a new surface coating bearing excellent antifouling properties with a thickness of less than 2 nm, thus compatible with sensitive SPR detection. The high variability of experimental conditions described in the literature for the quantitative assessment of the antifouling performances of surface layers moved us to compare the superior antifouling capacity of the new pentrimeric system with that of 4-aminophenylphosphorylcholine, PEG-carboxybetaine and sulfobetaine-modified surface layers, respectively, using undiluted and diluted pooled human plasma samples. The use of the new coating for the immunologic SPRI biosensing of human arginase 1 in plasma is also presented.
Collapse
Affiliation(s)
- Roberta D'Agata
- Dipartimento di Scienze Chimiche, Università Degli Studi di Catania, Viale Andrea Doria 6, Catania, Italy
| | - Noemi Bellassai
- Dipartimento di Scienze Chimiche, Università Degli Studi di Catania, Viale Andrea Doria 6, Catania, Italy
| | - Maria Chiara Giuffrida
- Consorzio Interuniversitario "Istituto Nazionale Biostrutture e Biosistemi", c/o Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, Catania, Italy
| | - Angela Margherita Aura
- Dipartimento di Scienze Chimiche, Università Degli Studi di Catania, Viale Andrea Doria 6, Catania, Italy
| | - Christian Petri
- Department Chemistry - Biology, University of Siegen, Adolf-Reichwein-Strasse 2, D-57076, Siegen, Germany
| | - Peter Kögler
- Department Chemistry - Biology, University of Siegen, Adolf-Reichwein-Strasse 2, D-57076, Siegen, Germany
| | - Graziella Vecchio
- Dipartimento di Scienze Chimiche, Università Degli Studi di Catania, Viale Andrea Doria 6, Catania, Italy
| | - Ulrich Jonas
- Department Chemistry - Biology, University of Siegen, Adolf-Reichwein-Strasse 2, D-57076, Siegen, Germany
| | - Giuseppe Spoto
- Dipartimento di Scienze Chimiche, Università Degli Studi di Catania, Viale Andrea Doria 6, Catania, Italy; Consorzio Interuniversitario "Istituto Nazionale Biostrutture e Biosistemi", c/o Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, Catania, Italy.
| |
Collapse
|
6
|
Singh V, Nand A, Sarita, Zhang J, Zhu J. Non-specific adsorption of serum and cell lysate on 3D biosensor platforms: A comparative study based on SPRi. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2015.06.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
7
|
Bellassai N, D'Agata R, Jungbluth V, Spoto G. Surface Plasmon Resonance for Biomarker Detection: Advances in Non-invasive Cancer Diagnosis. Front Chem 2019; 7:570. [PMID: 31448267 PMCID: PMC6695566 DOI: 10.3389/fchem.2019.00570] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/26/2019] [Indexed: 12/24/2022] Open
Abstract
Biomarker-based cancer analysis has great potential to lead to a better understanding of disease at the molecular level and to improve early diagnosis and monitoring. Unlike conventional tissue biopsy, liquid biopsy allows the detection of a large variety of circulating biomarkers, such as microRNA (miRNA), exosomes, circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), and proteins, in an easily accessible and minimally invasive way. In this review, we describe and evaluate the relevance and applicability of surface plasmon resonance (SPR) and localized SPR (LSPR)-based platforms for the detection of different classes of cancer biomarkers in liquid biopsy samples. Firstly, we critically discuss unsolved problems and issues in capturing and analyzing biomarkers. Secondly, we highlight current challenges which need to be resolved in applying SPR biosensors into clinical practice. Then, we mainly focus on applications of SPR-based platforms that process a patient sample aiming to detect and quantify biomarkers as a minimally invasive liquid biopsy tool for cancer patients appearing over the last 5 years. Finally, we describe the analytical performances of selected SPR biosensor assays and their significant advantages in terms of high sensitivity and specificity as well as accuracy and workflow simplicity.
Collapse
Affiliation(s)
- Noemi Bellassai
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Catania, Italy
| | - Roberta D'Agata
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Catania, Italy
| | - Vanessa Jungbluth
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Catania, Italy
| | - Giuseppe Spoto
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Catania, Italy
- Istituto Nazionale di Biostrutture e Biosistemi, Università degli Studi di Catania, Catania, Italy
| |
Collapse
|
8
|
Zhou J, Qi Q, Wang C, Qian Y, Liu G, Wang Y, Fu L. Surface plasmon resonance (SPR) biosensors for food allergen detection in food matrices. Biosens Bioelectron 2019; 142:111449. [PMID: 31279816 DOI: 10.1016/j.bios.2019.111449] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/23/2019] [Accepted: 06/18/2019] [Indexed: 11/25/2022]
Abstract
Food allergies are recognized as a growing public health concern, with an estimated 3% of adults and 6-8% of children affected by food allergy disorders. Hence, food allergen detection, labeling, and management have become significant priorities within the food industry, and there is an urgent requirement for reliable, sensitive, and user-friendly technologies to trace food allergens in food products. In this critical review, we provide a comprehensive overview of the principles and applications of surface plasmon resonance (SPR) biosensors in the identification and quantification of food allergens (milk, egg, peanut, and seafood), including fiber-optic surface plasmon resonance (FOSPR), surface plasmon resonance imaging (SPRI), localized surface plasmon resonance (LSPR), and transmission surface plasmon resonance (TSPR). Moreover, the characteristics and fitness-for-purpose of each reviewed SPR biosensor is discussed, and the potential of newly developed SPR biosensors for multi-allergen real-time detection in a complex food system is highlighted. Such SPR biosensors are also required to facilitate the reliable, high-throughput, and real-time detection of food allergens by the food control industry and food safety control officials to easily monitor cross-contamination during food processing.
Collapse
Affiliation(s)
- Jinru Zhou
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, PR China
| | - Qinqin Qi
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, PR China
| | - Chong Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, PR China
| | - Yifan Qian
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, PR China
| | - Guangming Liu
- College of Food and Biological Engineering, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University, Xiamen, PR China
| | - Yanbo Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, PR China.
| | - Linglin Fu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, PR China.
| |
Collapse
|
9
|
Bocková M, Slabý J, Špringer T, Homola J. Advances in Surface Plasmon Resonance Imaging and Microscopy and Their Biological Applications. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2019; 12:151-176. [PMID: 30822102 DOI: 10.1146/annurev-anchem-061318-115106] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Surface plasmon resonance microscopy and imaging are optical methods that enable observation and quantification of interactions of nano- and microscale objects near a metal surface in a temporally and spatially resolved manner. This review describes the principles of surface plasmon resonance microscopy and imaging and discusses recent advances in these methods, in particular, in optical platforms and functional coatings. In addition, the biological applications of these methods are reviewed. These include the detection of a broad variety of analytes (nucleic acids, proteins, bacteria), the investigation of biological systems (bacteria and cells), and biomolecular interactions (drug-receptor, protein-protein, protein-DNA, protein-cell).
Collapse
Affiliation(s)
- Markéta Bocková
- Institute of Photonics and Electronics, Czech Academy of Sciences, 18251 Prague, Czech Republic;
| | - Jiří Slabý
- Institute of Photonics and Electronics, Czech Academy of Sciences, 18251 Prague, Czech Republic;
| | - Tomáš Špringer
- Institute of Photonics and Electronics, Czech Academy of Sciences, 18251 Prague, Czech Republic;
| | - Jiří Homola
- Institute of Photonics and Electronics, Czech Academy of Sciences, 18251 Prague, Czech Republic;
| |
Collapse
|
10
|
Ding W, Song C, Li T, Ma H, Yao Y, Yao C. TiO 2 nanowires as an effective sensing platform for rapid fluorescence detection of single-stranded DNA and double-stranded DNA. Talanta 2019; 199:442-448. [PMID: 30952281 DOI: 10.1016/j.talanta.2019.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 01/24/2019] [Accepted: 02/01/2019] [Indexed: 11/28/2022]
Abstract
Numerous nanomaterials have been utilized for novel biosensors with sensitivity and selectivity in the last decades due to their intrinsic unique properties. Herein, a facile fluorescence method for nucleic acid detection was developed by employing TiO2 nanowires (NWs) as the sensing platform. The quenching effect of TiO2 NWs to fluorophore-labelled single-stranded DNA (ssDNA) was found to be more significant than that to fluorophore-labelled double-stranded DNA (dsDNA) or triplex DNA probes. More importantly, the whole quenching process was also fast since it just took about ten minutes to reach the equilibrium. Based on the different affinities of TiO2 NWs to ssDNA, dsDNA and triplex DNA probes, the sequence-specific nucleic acids were detected with sensitivity and specificity. Further investigation has demonstrated that the quenching efficiency of TiO2 NWs to long ssDNA was apparently superior than that to short ssDNA. Moreover, the fluorescence from various ssDNA probes labelled with a wide spectrum of fluorescent dyes could also be quenched by TiO2 NWs. These inspiring results reveal that TiO2 NWs could be an excellent universal nanoquencher used in the next-generation biosensors.
Collapse
Affiliation(s)
- Wei Ding
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Chan Song
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Tianle Li
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Haoran Ma
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yuewei Yao
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Cheng Yao
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
11
|
Advanced methods for microRNA biosensing: a problem-solving perspective. Anal Bioanal Chem 2019; 411:4425-4444. [PMID: 30710205 DOI: 10.1007/s00216-019-01621-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/07/2019] [Accepted: 01/16/2019] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) present several features that make them more difficult to analyze than DNA and RNA. For this reason, efforts have been made in recent years to develop innovative platforms for the efficient detection of microRNAs. The aim of this review is to provide an overview of the sensing strategies able to deal with drawbacks and pitfalls related to microRNA detection. With a critical perspective of the field, we identify the main challenges to be overcome in microRNA sensing, and describe the areas where several innovative approaches are likely to come for managing those issues that put limits on improvement to the performances of the current methods. Then, in the following sections, we critically discuss the contribution of the most promising approaches based on the peculiar properties of nanomaterials or nanostructures and other hybrid strategies which are envisaged to support the adoption of these new methods useful for the detection of miRNA as biomarkers of practical clinical utility. Graphical abstract ᅟ.
Collapse
|
12
|
Abstract
Biosensors based on the principle of surface plasmon resonance (SPR) are surface-sensitive optical devices used for monitoring biomolecular interactions at the sensor surface in real time without any labeling. It is used in a wide variety of areas including proteomics, clinical diagnosis, environmental monitoring, drug discovery, and food analysis. C-reactive protein (CRP) is a marker of inflammation, which undergoes conformation changes in local lesions, leading to the formation of mCRP. Autoantibodies against mCRP are frequently detected in systemic lupus erythematosus (SLE) and associated with disease activity and prognosis. An SPR immunoassay for CRP autoantibodies at complement factor H-CRP interface is described in this chapter.
Collapse
Affiliation(s)
- Qiu-Yu Li
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, People's Republic of China.
| | - Hai-Yun Li
- MOE Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shanxi, People's Republic of China
| |
Collapse
|
13
|
Qi P, Zhou B, Zhang Z, Li S, Li Y, Zhong J. Phase-sensitivity-doubled surface plasmon resonance sensing via self-mixing interference. OPTICS LETTERS 2018; 43:4001-4004. [PMID: 30106937 DOI: 10.1364/ol.43.004001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 07/23/2018] [Indexed: 06/08/2023]
Abstract
Conventional phase-based surface plasmon resonance (SPR) sensing can achieve 10-8 RIU, but commonly requires two-beam interference. It therefore leads to complexity in terms of utilized devices, poor anti-noise ability, and demand for fine working conditions. With these requirements imposed, conventional SPR sensing has difficulties in commercial use. In this Letter, we report a simple, compact, and phase-sensitivity-doubled self-mixing interference (SMI)-based SPR sensing approach. The reported approach employs SMI and, therefore, needs only one optical path, enabling the advantages of compactness and simplicity in experimental setup, and strong anti-vibration property. With the proposed setup, the phase of light from the prism to the sample changes twice. Consequently, the sensitivity of phase is doubled. For experimental demonstration, we monitor the refractive index change of NaCl solution by using the proposed technique. The experimental results coincide with the theoretical analysis and simulation results.
Collapse
|
14
|
Finotti A, Allegretti M, Gasparello J, Giacomini P, Spandidos DA, Spoto G, Gambari R. Liquid biopsy and PCR-free ultrasensitive detection systems in oncology (Review). Int J Oncol 2018; 53:1395-1434. [PMID: 30085333 PMCID: PMC6086621 DOI: 10.3892/ijo.2018.4516] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/31/2018] [Indexed: 02/07/2023] Open
Abstract
In oncology, liquid biopsy is used in the detection of next-generation analytes, such as tumor cells, cell-free nucleic acids and exosomes in peripheral blood and other body fluids from cancer patients. It is considered one of the most advanced non-invasive diagnostic systems to enable clinically relevant actions and implement precision medicine. Medical actions include, but are not limited to, early diagnosis, staging, prognosis, anticipation (lead time) and the prediction of therapy responses, as well as follow-up. Historically, the applications of liquid biopsy in cancer have focused on circulating tumor cells (CTCs). More recently, this analysis has been extended to circulating free DNA (cfDNA) and microRNAs (miRNAs or miRs) associated with cancer, with potential applications for development into multi-marker diagnostic, prognostic and therapeutic signatures. Liquid biopsies avoid some key limitations of conventional tumor tissue biopsies, including invasive tumor sampling, under-representation of tumor heterogeneity and poor description of clonal evolution during metastatic dissemination, strongly reducing the need for multiple sampling. On the other hand, this approach suffers from important drawbacks, i.e., the fragmentation of cfDNA, the instability of RNA, the low concentrations of certain analytes in body fluids and the confounding presence of normal, as well as aberrant DNAs and RNAs. For these reasons, the analysis of cfDNA has been mostly focused on mutations arising in, and pathognomonicity of, tumor DNA, while the analysis of cfRNA has been mostly focused on miRNA patterns strongly associated with neoplastic transformation/progression. This review lists some major applicative areas, briefly addresses how technology is bypassing liquid biopsy limitations, and places a particular emphasis on novel, PCR-free platforms. The ongoing collaborative efforts of major international consortia are reviewed. In addition to basic and applied research, we will consider technological transfer, including patents, patent applications and available information on clinical trials aimed at verifying the potential of liquid biopsy in cancer.
Collapse
Affiliation(s)
- Alessia Finotti
- Department of Life Sciences and Biotechnology, Ferrara University, 44121 Ferrara, Italy
| | - Matteo Allegretti
- Oncogenomics and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Jessica Gasparello
- Department of Life Sciences and Biotechnology, Ferrara University, 44121 Ferrara, Italy
| | - Patrizio Giacomini
- Oncogenomics and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Crete, Greece
| | - Giuseppe Spoto
- Department of Chemistry, Catania University, 95125 Catania, Italy
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, Ferrara University, 44121 Ferrara, Italy
| |
Collapse
|
15
|
Ma TF, Chen YP, Guo JS, Wang W, Fang F. Cellular analysis and detection using surface plasmon resonance imaging. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.03.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Liu C, Hu F, Yang W, Xu J, Chen Y. A critical review of advances in surface plasmon resonance imaging sensitivity. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.10.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
D'Agata R, Giuffrida MC, Spoto G. Peptide Nucleic Acid-Based Biosensors for Cancer Diagnosis. Molecules 2017; 22:E1951. [PMID: 29137122 PMCID: PMC6150339 DOI: 10.3390/molecules22111951] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/06/2017] [Accepted: 11/09/2017] [Indexed: 12/18/2022] Open
Abstract
The monitoring of DNA and RNA biomarkers freely circulating in the blood constitutes the basis of innovative cancer detection methods based on liquid biopsy. Such methods are expected to provide new opportunities for a better understanding of cancer disease at the molecular level, thus contributing to improved patient outcomes. Advanced biosensors can advance possibilities for cancer-related nucleic acid biomarkers detection. In this context, peptide nucleic acids (PNAs) play an important role in the fabrication of highly sensitive biosensors. This review provides an overview of recently described PNA-based biosensors for cancer biomarker detection. One of the most striking features of the described detection approaches is represented by the possibility to detect target nucleic acids at the ultra-low concentration with the capability to identify single-base mutations.
Collapse
Affiliation(s)
- Roberta D'Agata
- Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, I-95125 Catania, Italy.
| | - Maria Chiara Giuffrida
- Consorzio Interuniversitario "Istituto Nazionale di Biostrutture e Biosistemi", c/o Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, I-95125 Catania, Italy.
| | - Giuseppe Spoto
- Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, I-95125 Catania, Italy.
- Consorzio Interuniversitario "Istituto Nazionale di Biostrutture e Biosistemi", c/o Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, I-95125 Catania, Italy.
| |
Collapse
|
18
|
Comparison of Sensitivity and Quantitation between Microbead Dielectrophoresis-Based DNA Detection and Real-Time PCR. BIOSENSORS-BASEL 2017; 7:bios7040044. [PMID: 28974001 PMCID: PMC5746767 DOI: 10.3390/bios7040044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/21/2017] [Accepted: 09/26/2017] [Indexed: 12/05/2022]
Abstract
In this study, we describe a microbead-based method using dielectrophoresis (DEP) for the fast detection of DNA amplified by polymerase chain reaction (PCR). This electrical method measures the change in impedance caused by DEP-trapped microbeads to which biotinylated target DNA molecules are chemically attached. Using this method, measurements can be obtained within 20 min. Currently, real-time PCR is among the most sensitive methods available for the detection of target DNA, and is often used in the diagnosis of infectious diseases. We therefore compared the quantitation and sensitivity achieved by our method to those achieved with real-time PCR. We found that the microbead DEP-based method exhibited the same detection limit as real-time PCR, although its quantitative detection range was slightly narrower at 10–105 copies/reaction compared with 10–107 copies/reaction for real-time PCR. Whereas real-time PCR requires expensive and complex instruments, as well as expertise in primer design and experimental principles, our novel method is simple to use, inexpensive, and rapid. This method could potentially detect viral and other DNAs efficiently in combination with conventional PCR.
Collapse
|
19
|
Aura AM, D'Agata R, Spoto G. Ultrasensitive Detection of Staphylococcus aureus
and Listeria monocytogenes
Genomic DNA by Nanoparticle-Enhanced Surface Plasmon Resonance Imaging. ChemistrySelect 2017. [DOI: 10.1002/slct.201700779] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Angela Margherita Aura
- Dipartimento di Scienze Chimiche; Università di Catania; Viale Andrea Doria 6, I- 95125 Catania Italy
| | - Roberta D'Agata
- Consorzio Interuniversitario “Istituto Nazionale Biostrutture e Biosistemi”, c/o Dipartimento di Scienze Chimiche; Università di Catania; Viale Andrea Doria 6, I- 95125 Catania Italy
| | - Giuseppe Spoto
- Dipartimento di Scienze Chimiche; Università di Catania; Viale Andrea Doria 6, I- 95125 Catania Italy
- Consorzio Interuniversitario “Istituto Nazionale Biostrutture e Biosistemi”, c/o Dipartimento di Scienze Chimiche; Università di Catania; Viale Andrea Doria 6, I- 95125 Catania Italy
| |
Collapse
|
20
|
Giuffrida MC, Spoto G. Integration of isothermal amplification methods in microfluidic devices: Recent advances. Biosens Bioelectron 2017; 90:174-186. [DOI: 10.1016/j.bios.2016.11.045] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/15/2016] [Accepted: 11/16/2016] [Indexed: 01/02/2023]
|
21
|
Allsop T, Mou C, Neal R, Mariani S, Nagel D, Tombelli S, Poole A, Kalli K, Hine A, Webb DJ, Culverhouse P, Mascini M, Minunni M, Bennion I. Real-time kinetic binding studies at attomolar concentrations in solution phase using a single-stage opto-biosensing platform based upon infrared surface plasmons. OPTICS EXPRESS 2017; 25:39-58. [PMID: 28085810 DOI: 10.1364/oe.25.000039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Here we present a new generic opto-bio-sensing platform combining immobilised aptamers on an infrared plasmonic sensing device generated by nano-structured thin film that demonstrates amongst the highest index spectral sensitivities of any optical fibre sensor yielding on average 3.4 × 104 nm/RIU in the aqueous index regime (with a figure of merit of 330) This offers a single stage, solution phase, atto-molar detection capability, whilst delivering real-time data for kinetic studies in water-based chemistry. The sensing platform is based upon optical fibre and has the potential to be multiplexed and used in remote sensing applications. As an example of the highly versatile capabilities of aptamer based detection using our platform, purified thrombin is detected down to 50 attomolar concentration using a volume of 1mm3 of solution without the use of any form of enhancement technique. Moreover, the device can detect nanomolar levels of thrombin in a flow cell, in the presence of 4.5% w/v albumin solution. These results are important, covering all concentrations in the human thrombin generation curve, including the problematic initial phase. Finally, selectivity is confirmed using complementary and non-complementary DNA sequences that yield performances similar to those obtained with thrombin.
Collapse
|
22
|
Giuffrida MC, D'Agata R, Spoto G. Droplet Microfluidic Device Fabrication and Use for Isothermal Amplification and Detection of MicroRNA. Methods Mol Biol 2017; 1580:71-78. [PMID: 28439827 DOI: 10.1007/978-1-4939-6866-4_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Droplet microfluidics combined with the isothermal circular strand displacement polymerization (ICSDP) represents a powerful new technique to detect both single-stranded DNA and microRNA sequences. The method here described helps in overcoming some drawbacks of the lately introduced droplet polymerase chain reaction (PCR) amplification when implemented in microfluidic devices. The method also allows the detection of nanoliter droplets of nucleic acids sequences solutions, with a particular attention to microRNA sequences that are detected at the picomolar level. The integration of the ICSDP amplification protocol in droplet microfluidic devices reduces the time of analysis and the amount of sample required. In addition, there is also the possibility to design parallel analyses to be integrated in portable devices.
Collapse
Affiliation(s)
| | | | - Giuseppe Spoto
- I.N.B.B. Consortium, Rome, Italy. .,Dipartimento di Scienze Chimiche, Università di Catania, Catania, Italy.
| |
Collapse
|
23
|
Sotnikov DV, Zherdev AV, Dzantiev BB. Detection of Intermolecular Interactions Based on Surface Plasmon Resonance Registration. BIOCHEMISTRY (MOSCOW) 2016; 80:1820-32. [PMID: 26878582 DOI: 10.1134/s0006297915130131] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Methods for registration of intermolecular interactions based on the phenomenon of surface plasmon resonance (SPR) have become one of the most efficient tools to solve fundamental and applied problems of analytical biochemistry. Nevertheless, capabilities of these methods are often insufficient to detect low concentrations of analytes or to screen large numbers of objects. That is why considerable efforts are directed at enhancing the sensitivity and efficiency of SPR-based measurements. This review describes the basic principles of the detection of intermolecular interactions using this method, provides a comparison of various types of SPR detectors, and classifies modern approaches to enhance sensitivity and efficiency of measurements.
Collapse
Affiliation(s)
- D V Sotnikov
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia.
| | | | | |
Collapse
|
24
|
Biosensors for liquid biopsy: circulating nucleic acids to diagnose and treat cancer. Anal Bioanal Chem 2016; 408:7255-64. [PMID: 27497966 DOI: 10.1007/s00216-016-9806-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 07/05/2016] [Accepted: 07/18/2016] [Indexed: 01/05/2023]
Abstract
The detection of cancer biomarkers freely circulating in blood offers new opportunities for cancer early diagnosis, patient follow-up, and therapy efficacy assessment based on liquid biopsy. In particular, circulating cell-free nucleic acids released from tumor cells have recently attracted great attention also because they become detectable in blood before the appearance of other circulating biomarkers, such as circulating tumor cells. The detection of circulating nucleic acids poses several technical challenges that arise from their low concentration and relatively small size. Here, possibilities offered by innovative biosensing approaches for the detection of circulating DNA in peripheral blood and blood-derived products such as plasma and serum blood are discussed. Different transduction principles are used to detect circulating DNAs and great advantages are derived from the combined use of nanostructured materials.
Collapse
|
25
|
Breveglieri G, Bassi E, Carlassara S, Cosenza LC, Pellegatti P, Guerra G, Finotti A, Gambari R, Borgatti M. Y-chromosome identification in circulating cell-free fetal DNA using surface plasmon resonance. Prenat Diagn 2016; 36:353-61. [DOI: 10.1002/pd.4788] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/14/2015] [Accepted: 02/01/2016] [Indexed: 01/19/2023]
Affiliation(s)
- Giulia Breveglieri
- Department of Life Sciences and Biotechnology, Biochemistry and Molecular Biology Section; University of Ferrara; Ferrara Italy
- Biotechnology Center; University of Ferrara; Ferrara Italy
| | - Elisabetta Bassi
- Department of Life Sciences and Biotechnology, Biochemistry and Molecular Biology Section; University of Ferrara; Ferrara Italy
| | - Silvia Carlassara
- Department of Life Sciences and Biotechnology, Biochemistry and Molecular Biology Section; University of Ferrara; Ferrara Italy
| | - Lucia Carmela Cosenza
- Department of Life Sciences and Biotechnology, Biochemistry and Molecular Biology Section; University of Ferrara; Ferrara Italy
- Biotechnology Center; University of Ferrara; Ferrara Italy
| | - Patrizia Pellegatti
- Operative Unit of Laboratory Analysis; University Hospital S. Anna; Ferrara Italy
| | - Giovanni Guerra
- Operative Unit of Laboratory Analysis; University Hospital S. Anna; Ferrara Italy
| | - Alessia Finotti
- Department of Life Sciences and Biotechnology, Biochemistry and Molecular Biology Section; University of Ferrara; Ferrara Italy
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, Biochemistry and Molecular Biology Section; University of Ferrara; Ferrara Italy
- Biotechnology Center; University of Ferrara; Ferrara Italy
| | - Monica Borgatti
- Department of Life Sciences and Biotechnology, Biochemistry and Molecular Biology Section; University of Ferrara; Ferrara Italy
| |
Collapse
|
26
|
Castiello FR, Heileman K, Tabrizian M. Microfluidic perfusion systems for secretion fingerprint analysis of pancreatic islets: applications, challenges and opportunities. LAB ON A CHIP 2016; 16:409-31. [PMID: 26732665 DOI: 10.1039/c5lc01046b] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A secretome signature is a heterogeneous profile of secretions present in a single cell type. From the secretome signature a smaller panel of proteins, namely a secretion fingerprint, can be chosen to feasibly monitor specific cellular activity. Based on a thorough appraisal of the literature, this review explores the possibility of defining and using a secretion fingerprint to gauge the functionality of pancreatic islets of Langerhans. It covers the state of the art regarding microfluidic perfusion systems used in pancreatic islet research. Candidate analytical tools to be integrated within microfluidic perfusion systems for dynamic secretory fingerprint monitoring were identified. These analytical tools include patch clamp, amperometry/voltametry, impedance spectroscopy, field effect transistors and surface plasmon resonance. Coupled with these tools, microfluidic devices can ultimately find applications in determining islet quality for transplantation, islet regeneration and drug screening of therapeutic agents for the treatment of diabetes.
Collapse
Affiliation(s)
- F Rafael Castiello
- Biomedical Engineering Department, McGill University, Montreal, QC H3A 2B4, Canada.
| | - Khalil Heileman
- Biomedical Engineering Department, McGill University, Montreal, QC H3A 2B4, Canada.
| | - Maryam Tabrizian
- Biomedical Engineering Department, McGill University, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|
27
|
Giglio V, Viale M, Monticone M, Aura AM, Spoto G, Natile G, Intini FP, Vecchio G. Cyclodextrin polymers as carriers for the platinum-based anticancer agent LA-12. RSC Adv 2016. [DOI: 10.1039/c5ra22398a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Cyclodextrin-based drug nanocarriers look very promising for improving the cytotoxicity of LA-12.
Collapse
Affiliation(s)
- Valentina Giglio
- Dipartimento di Scienze Chimiche
- Università di Catania
- 95125 Catania
- Italy
| | - Maurizio Viale
- IRCCS Azienda Ospedaliera Universitaria San Martino-IST Istituto Nazionale per la Ricerca sul Cancro
- U.O.C. Bioterapie
- Genova
- Italy
| | - Massimiliano Monticone
- IRCCS Azienda Ospedaliera Universitaria San Martino-IST Istituto Nazionale per la Ricerca sul Cancro
- U.O.C. Bioterapie
- Genova
- Italy
| | - Angela M. Aura
- Dipartimento di Scienze Chimiche
- Università di Catania
- 95125 Catania
- Italy
| | - Giuseppe Spoto
- Dipartimento di Scienze Chimiche
- Università di Catania
- 95125 Catania
- Italy
| | | | | | - Graziella Vecchio
- Dipartimento di Scienze Chimiche
- Università di Catania
- 95125 Catania
- Italy
| |
Collapse
|
28
|
Lanza V, D'Agata R, Iacono G, Bellia F, Spoto G, Vecchio G. Cyclam glycoconjugates as lectin ligands and protective agents of metal-induced amyloid aggregation. J Inorg Biochem 2015; 153:377-382. [DOI: 10.1016/j.jinorgbio.2015.06.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/15/2015] [Accepted: 06/15/2015] [Indexed: 01/17/2023]
|
29
|
A reusable optical biosensor for the ultrasensitive and selective detection of unamplified human genomic DNA with gold nanostars. Biosens Bioelectron 2015; 74:981-8. [DOI: 10.1016/j.bios.2015.07.071] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/29/2015] [Accepted: 07/30/2015] [Indexed: 01/01/2023]
|
30
|
Palladino P, Aura AM, Spoto G. Surface plasmon resonance for the label-free detection of Alzheimer's β-amyloid peptide aggregation. Anal Bioanal Chem 2015; 408:849-54. [PMID: 26558762 DOI: 10.1007/s00216-015-9172-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 10/25/2015] [Accepted: 11/03/2015] [Indexed: 02/06/2023]
Abstract
Amyloid peptide oligomers and fibrils are studied as targets for therapy and diagnosis of Alzheimer's disease. They are usually detected by amyloid incubation, but such method is necessarily associated with Aβ1-42 depletion and dye binding or conjugation, which have a complex influence on fibril growth, provide information about fibril elongation over long time periods only, and might lead to false-positive results in amyloid inhibition assay. Surface plasmon resonance (SPR) is used to study with no labelling and in real time the aggregation of Aβ1-42 amyloid on specific antibodies. SPR data show, for the first time by using SPR, a multi-phase association behavior for Aβ1-42 oligomers accounting for a sigmoidal growth of amyloid as a function of time, with two antibody-dependent aggregation patterns. The new method represents an advantageous alternative to traditional procedures for investigating amyloid self-assembly and inhibition from early-stage oligomer association, on the time scale of seconds to minutes, to long-term polymerization, on the time scale of hours to days.
Collapse
Affiliation(s)
- Pasquale Palladino
- Consorzio Interuniversitario Istituto Nazionale Biostrutture e Biosistemi (I.N.B.B.), Viale delle Medaglie D'Oro 305, 00136, Rome, Italy
| | - Angela M Aura
- Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Giuseppe Spoto
- Consorzio Interuniversitario Istituto Nazionale Biostrutture e Biosistemi (I.N.B.B.), Viale delle Medaglie D'Oro 305, 00136, Rome, Italy. .,Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, 95125, Catania, Italy.
| |
Collapse
|
31
|
Mariani S, Scarano S, Carrai M, Barale R, Minunni M. Direct genotyping of C3435T single nucleotide polymorphism in unamplified human MDR1 gene using a surface plasmon resonance imaging DNA sensor. Anal Bioanal Chem 2015; 407:4023-8. [DOI: 10.1007/s00216-014-8424-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 12/16/2014] [Indexed: 11/30/2022]
|
32
|
Isothermal circular-strand-displacement polymerization of DNA and microRNA in digital microfluidic devices. Anal Bioanal Chem 2015; 407:1533-43. [PMID: 25579461 DOI: 10.1007/s00216-014-8405-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 11/12/2014] [Accepted: 12/10/2014] [Indexed: 12/17/2022]
Abstract
Nucleic-acid amplification is a crucial step in nucleic-acid-sequence-detection assays. The use of digital microfluidic devices to miniaturize amplification techniques reduces the required sample volume and the analysis time and offers new possibilities for process automation and integration in a single device. The recently introduced droplet polymerase-chain-reaction (PCR) amplification methods require repeated cycles of two or three temperature-dependent steps during the amplification of the nucleic-acid target sequence. In contrast, low-temperature isothermal-amplification methods have no need for thermal cycling, thus requiring simplified microfluidic-device features. Here, the combined use of digital microfluidics and molecular-beacon (MB)-assisted isothermal circular-strand-displacement polymerization (ICSDP) to detect microRNA-210 sequences is described. MicroRNA-210 has been described as the most consistently and predominantly upregulated hypoxia-inducible factor. The nmol L(-1)-pmol L(-1) detection capabilities of the method were first tested by targeting single-stranded DNA sequences from the genetically modified Roundup Ready soybean. The ability of the droplet-ICSDP method to discriminate between full-matched, single-mismatched, and unrelated sequences was also investigated. The detection of a range of nmol L(-1)-pmol L(-1) microRNA-210 solutions compartmentalized in nanoliter-sized droplets was performed, establishing the ability of the method to detect as little as 10(-18) mol of microRNA target sequences compartmentalized in 20 nL droplets. The suitability of the method for biological samples was tested by detecting microRNA-210 from transfected K562 cells.
Collapse
|
33
|
Mariani S, Scarano S, Ermini ML, Bonini M, Minunni M. Investigating nanoparticle properties in plasmonic nanoarchitectures with DNA by surface plasmon resonance imaging. Chem Commun (Camb) 2015; 51:6587-90. [DOI: 10.1039/c4cc09889g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The optimal optical coupling conditions between SPWs and nanoparticle LSPs can be achieved by overlapping the source wavelength with the wavelength of excitation of LSPs.
Collapse
Affiliation(s)
- Stefano Mariani
- Dipartimento di Chimica “Ugo Schiff”
- Università di Firenze
- 50019 Sesto Fiorentino
- Italy
| | - Simona Scarano
- Dipartimento di Chimica “Ugo Schiff”
- Università di Firenze
- 50019 Sesto Fiorentino
- Italy
| | - Maria Laura Ermini
- Dipartimento di Chimica “Ugo Schiff”
- Università di Firenze
- 50019 Sesto Fiorentino
- Italy
| | - Massimo Bonini
- Dipartimento di Chimica “Ugo Schiff”
- Università di Firenze
- 50019 Sesto Fiorentino
- Italy
- Consorzio dei Sistemi a Grande Interfase (CSGI)
| | - Maria Minunni
- Dipartimento di Chimica “Ugo Schiff”
- Università di Firenze
- 50019 Sesto Fiorentino
- Italy
- Consorzio dei Sistemi a Grande Interfase (CSGI)
| |
Collapse
|
34
|
Isothermal cycling and cascade signal amplification strategy for ultrasensitive colorimetric detection of nucleic acids. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1385-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
35
|
Zhang Q, Jing L, Zhang J, Ren Y, Wang Y, Wang Y, Wei T, Liedberg B. Surface plasmon resonance sensor for femtomolar detection of testosterone with water-compatible macroporous molecularly imprinted film. Anal Biochem 2014; 463:7-14. [PMID: 24991687 DOI: 10.1016/j.ab.2014.06.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 06/20/2014] [Accepted: 06/21/2014] [Indexed: 11/25/2022]
Abstract
A novel water-compatible macroporous molecularly imprinted film (MIF) has been developed for rapid, sensitive, and label-free detection of small molecule testosterone in urine. The MIF was synthesized by photo copolymerization of monomers (methacrylic acid [MAA] and 2-hydroxyethyl methacrylate [HEMA]), cross-linker (ethylene glycol dimethacrylate, EGDMA), and polystyrene nanoparticles (PS NPs) in combination with template testosterone molecules. The PS NPs and template molecules were subsequently removed to form an MIF with macroporous structures and the specific recognition sites of testosterone. Incubation of artificial urine and human urine on the MIF and the non-imprinted film (NIF), respectively, indicated undetectable nonspecific adsorption. Accordingly, the MIF was applied on a surface plasmon resonance (SPR) sensor for the detection of testosterone in phosphate-buffered saline (PBS) and artificial urine with a limit of detection (LOD) down to 10(-15)g/ml. To the best of our knowledge, the LOD is considered as one of the lowest among the SPR sensors for the detection of small molecules. The control experiments performed with analogue molecules such as progesterone and estradiol demonstrated the good selectivity of this MIF for sensing testosterone. Furthermore, this MIF-based SPR sensor shows high stability and reproducibility over 8months of storage at room temperature, which is more robust than protein-based biosensors.
Collapse
Affiliation(s)
- Qingwen Zhang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Institute of Technology, Beijing 100081, China
| | - Lijing Jing
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Institute of Technology, Beijing 100081, China
| | - Jinling Zhang
- Centre for Biomimetic Sensor Science, Nanyang Technological University, Singapore 637553, Singapore
| | - Yamin Ren
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Institute of Technology, Beijing 100081, China
| | - Yang Wang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Institute of Technology, Beijing 100081, China
| | - Yi Wang
- Centre for Biomimetic Sensor Science, Nanyang Technological University, Singapore 637553, Singapore.
| | - Tianxin Wei
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Institute of Technology, Beijing 100081, China.
| | - Bo Liedberg
- Centre for Biomimetic Sensor Science, Nanyang Technological University, Singapore 637553, Singapore
| |
Collapse
|
36
|
Ermini ML, Mariani S, Scarano S, Minunni M. Bioanalytical approaches for the detection of single nucleotide polymorphisms by Surface Plasmon Resonance biosensors. Biosens Bioelectron 2014; 61:28-37. [PMID: 24841091 DOI: 10.1016/j.bios.2014.04.052] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 04/23/2014] [Indexed: 11/16/2022]
Abstract
The mapping of specific single nucleotide polymorphisms (SNPs) in patients' genome is a main goal in theranostics, aiming to the development of therapies based on personalized medicine. In this review, Surface Plasmon Resonance (SPR) and Surface Plasmon Resonance imaging (SPRi) biosensors applied to the recognition of SNPs were reviewed, since these technologies are emerging in clinical diagnosis as powerful tools thanks to their analytical features, mainly the real-time and label-free monitoring based on array format for parallel analysis. Since the literature is heterogeneous, a critical classification and a systemic comparison of the analytical performances of published methods were here reviewed on the basis of the analytical strategy and the assay design. In particular, the use of helping agents (i.e. proteins, nanoparticles (NPs), intercalating agents) or artificial DNAs, often coupled to SPR to achieve allele discrimination and/or enhanced sensitivity, were here revised and classified. Finally, the real suitability of SPR biosensors to clinical diagnostics for SNPs detection was addressed by comparing their features and performances with those of other biosensors based on other techniques (e.g. electrochemical biosensors).
Collapse
Affiliation(s)
- Maria Laura Ermini
- Dipartimento di Chimica "Ugo Schiff", Università di Firenze, via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy
| | - Stefano Mariani
- Dipartimento di Chimica "Ugo Schiff", Università di Firenze, via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy
| | - Simona Scarano
- Dipartimento di Chimica "Ugo Schiff", Università di Firenze, via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy
| | - Maria Minunni
- Dipartimento di Chimica "Ugo Schiff", Università di Firenze, via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy; Consorzio Sistemi a Grande Interfase, Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy.
| |
Collapse
|
37
|
Mariani S, Minunni M. Surface plasmon resonance applications in clinical analysis. Anal Bioanal Chem 2014; 406:2303-23. [PMID: 24566759 PMCID: PMC7080119 DOI: 10.1007/s00216-014-7647-5] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 01/20/2014] [Accepted: 01/21/2014] [Indexed: 12/20/2022]
Abstract
In the last 20 years, surface plasmon resonance (SPR) and its advancement with imaging (SPRi) emerged as a suitable and reliable platform in clinical analysis for label-free, sensitive, and real-time monitoring of biomolecular interactions. Thus, we report in this review the state of the art of clinical target detection with SPR-based biosensors in complex matrices (e.g., serum, saliva, blood, and urine) as well as in standard solution when innovative approaches or advanced instrumentations were employed for improved detection. The principles of SPR-based biosensors are summarized first, focusing on the physical properties of the transducer, on the assays design, on the immobilization chemistry, and on new trends for implementing system analytical performances (e.g., coupling with nanoparticles (NPs). Then we critically review the detection of analytes of interest in molecular diagnostics, such as hormones (relevant also for anti-doping control) and biomarkers of interest in inflammatory, cancer, and heart failure diseases. Antibody detection is reported in relation to immune disorder diagnostics. Subsequently, nucleic acid targets are considered for revealing genetic diseases (e.g., point mutation and single nucleotides polymorphism, SNPs) as well as new emerging clinical markers (microRNA) and for pathogen detection. Finally, examples of pathogen detection by immunosensing were also analyzed. A parallel comparison with the reference methods was duly made, indicating the progress brought about by SPR technologies in clinical routine analysis.
Collapse
Affiliation(s)
- Stefano Mariani
- Dipartimento di Chimica Ugo Schiff, Università di Firenze, via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI Italy
| | - Maria Minunni
- Dipartimento di Chimica Ugo Schiff, Università di Firenze, via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI Italy
- Istituto Nazionale Biostrutture e Biosistemi, Consorzio Interuniversitario, 50019 Sesto Fiorentino, FI Italy
| |
Collapse
|
38
|
Improving surface plasmon resonance imaging of DNA by creating new gold and silver based surface nanostructures. Mikrochim Acta 2013. [DOI: 10.1007/s00604-013-1023-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|