1
|
Wu J, Cao F, Yeung PWF, Li M, Ohno K, Ngai T. A Total Internal Reflection Microscopy (TIRM)-Based Approach for Direct Characterization of Polymer Brush Conformational Change in Aqueous Solution. ACS Macro Lett 2024; 13:1376-1382. [PMID: 39364913 PMCID: PMC11483946 DOI: 10.1021/acsmacrolett.4c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/16/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024]
Abstract
This study presents a novel approach utilizing total internal reflection microscopy (TIRM) to effectively characterize the swelling and collapse of polymer brushes in aqueous solutions. Zwitterionic poly(carboxybetaine methacrylate) (PCBMA) and nonionic poly[oligo(ethylene glycol) methyl ether methacrylate] (POEGMA) brushes are chosen as model systems. By investigation of an intriguing theory-experiment discrepancy observed during the measurement of near-wall hindered diffusion, valuable insights into the compressibility of polymer brushes are obtained, revealing their conformational information in aqueous solution. The results demonstrate that zwitterionic PCBMA brushes exhibit minimal antipolyelectrolyte effects in 0.1-10 mM NaCl solution but undergo significant swelling with increasing pH. On the other hand, nonionic POEGMA brushes exhibit similar responses to ionic strength as weak polyelectrolyte brushes. These unexpected findings enhance our understanding of polymer brushes beyond classical theories. The TIRM-based approach proves to be effective for characterizing polymer brushes and other soft nanomaterials.
Collapse
Affiliation(s)
- Jiahao Wu
- Department
of Chemistry, The Chinese University of
Hong Kong, Shatin, N.T., Hong Kong 999077, China
| | - Feng Cao
- Department
of Chemistry, The Chinese University of
Hong Kong, Shatin, N.T., Hong Kong 999077, China
| | - Pui Wo Felix Yeung
- Department
of Chemistry, The Chinese University of
Hong Kong, Shatin, N.T., Hong Kong 999077, China
| | - Manjia Li
- Department
of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Kohji Ohno
- Department
of Materials Science, Graduate School of Engineering, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan
| | - To Ngai
- Department
of Chemistry, The Chinese University of
Hong Kong, Shatin, N.T., Hong Kong 999077, China
| |
Collapse
|
2
|
Chen D, Ye S, Zhang X, Zhang L, Fan F, Hu J, Fu Y, Wang T. pH-Responsive, Wide Color Gamut Dynamic Color Display Enabled by PDMAEMA Brush-Based Fabry-Perot Resonant Cavity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36892-36900. [PMID: 38963902 DOI: 10.1021/acsami.4c04591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Dynamic color-changing materials have attracted broad interest due to their widespread applications in visual sensing, dynamic color display, anticounterfeiting, and image encryption/decryption. In this work, we demonstrate a novel pH-responsive dynamic color-changing material based on a metal-insulator-metal (MIM) Fabry-Perot (FP) cavity with a pH-responsive poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) brush layer as the responsive insulating layer. The pH-responsive PDMAEMA brush undergoes protonation at a low pH value (pH < 6), which induces different swelling degrees in response to pH and thus refractive index and thickness change of the insulator layer of the MIM FP cavity. This leads to significant optical property changes in transmission and a distinguishable color change spanning the whole visible region by adjusting the pH value of the external environment. Due to the reversible conformational change of the PDMAEMA and the formation of covalent bonds between the PDMAEMA molecular chain and the Ag substrate, the MIM FP cavity exhibits stable performance and good reproducibility. This pH-responsive MIM FP cavity establishes a new way to modulate transmission color in the full visible region and exhibits a broad prospect of applications in dynamic color display, real-time environment monitoring, and information encryption and decryption.
Collapse
Affiliation(s)
- Dan Chen
- College of Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Shunsheng Ye
- College of Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Xuemin Zhang
- College of Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Liying Zhang
- College of Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Fuqiang Fan
- College of Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Jianshe Hu
- College of Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Yu Fu
- College of Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Tieqiang Wang
- College of Sciences, Northeastern University, Shenyang 110819, P. R. China
| |
Collapse
|
3
|
Rahmaninejad H, Parnell AJ, Chen WL, Duzen N, Sexton T, Dunderdale G, Ankner JF, Bras W, Ober CK, Ryan AJ, Ashkar R. Synthesis and Characterization of Stimuli-Responsive Polymer Brushes in Nanofluidic Channels. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54942-54951. [PMID: 37973616 PMCID: PMC10695172 DOI: 10.1021/acsami.3c12744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/20/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
Nanochannels with controllable gating behavior are attractive features in a wide range of nanofluidic applications including viral detection, particle sorting, and flow regulation. Here, we use selective sidewall functionalization of nanochannels with a polyelectrolyte brush to investigate the channel gating response to variations in solution pH and ionic strength. The conformational and structural changes of the interfacial brush layer within the channels are interrogated by specular and off-specular neutron reflectometry. Simultaneous fits of the specular and off-specular signals, using a dynamical theory model and a fitting optimization protocol, enable detailed characterization of the brush conformations and corresponding channel geometry under different solution conditions. Our results indicate a collapsed brush state under basic pH, equivalent to an open gate, and an expanded brush state representing a partially closed gate upon decreasing the pH and salt concentration. These findings open new possibilities in noninvasive in situ characterization of tunable nanofluidics and lab-on-chip devices with advanced designs and improved functionality.
Collapse
Affiliation(s)
- Hadi Rahmaninejad
- Department
of Physics, Virginia Tech, Blacksburg, Virginia 24061, United States
- Center
for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Andrew J. Parnell
- Department
of Physics, The University of Sheffield, Sheffield S3 7RH, U.K.
| | - Wei-Liang Chen
- Department
of Material Science and Engineering, University
of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Nilay Duzen
- Department
of Material Science and Engineering, Cornell
University, Ithaca, New York 14850, United States
| | - Thomas Sexton
- Department
of Physics, The University of Sheffield, Sheffield S3 7RH, U.K.
| | - Gary Dunderdale
- Department
of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, U.K.
| | - John F. Ankner
- Second
Target Station, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Wim Bras
- Chemical
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Christopher K. Ober
- Department
of Material Science and Engineering, Cornell
University, Ithaca, New York 14850, United States
| | - Anthony J. Ryan
- Department
of Chemistry, The University of Sheffield, Sheffield S3 7HF, U.K.
| | - Rana Ashkar
- Center
for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department
of Physics, Virginia Tech, Blacksburg, Virginia 24061, United States
- Macromolecular Innovation Institute, Virginia
Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
4
|
Fan D, Bajgiran SR, Samghabadi FS, Dutta C, Gillett E, Rossky PJ, Conrad JC, Marciel AB, Landes CF. Imaging Heterogeneous 3D Dynamics of Individual Solutes in a Polyelectrolyte Brush. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37290000 DOI: 10.1021/acs.langmuir.3c00868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Understanding molecular transport in polyelectrolyte brushes (PEBs) is crucial for applications such as separations, drug delivery, anti-fouling, and biosensors, where structural features of the polymer control intermolecular interactions. The complex structure and local heterogeneity of PEBs, while theoretically predicted, are not easily accessed with conventional experimental methods. In this work, we use 3D single-molecule tracking to understand transport behavior within a cationic poly(2-(N,N-dimethylamino)ethyl acrylate) (PDMAEA) brush using an anionic dye, Alexa Fluor 546, as the probe. The analysis is done by a parallelized, unbiased 3D tracking algorithm. Our results explicitly demonstrate that spatial heterogeneity within the brush manifests as heterogeneity of single-molecule displacements. Two distinct populations of probe motion are identified, with anticorrelated axial and lateral transport confinement, which we believe to correspond to intra- vs inter-chain probe motion.
Collapse
Affiliation(s)
- Dongyu Fan
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Shahryar Ramezani Bajgiran
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Farshad Safi Samghabadi
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Chayan Dutta
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Emil Gillett
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Peter J Rossky
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Smalley Curl Institute, Rice University, Houston, Texas 77005, United States
| | - Jacinta C Conrad
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Amanda B Marciel
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Christy F Landes
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Smalley Curl Institute, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
5
|
Flemming P, Fery A, Münch AS, Uhlmann P. Does Chain Confinement Affect Thermoresponsiveness? A Comparative Study of the LCST and Induced UCST Transition of Tailored Grafting-to Polyelectrolyte Brushes. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Patricia Flemming
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
- Technische Universität Dresden, 01062 Dresden, Germany
| | - Andreas Fery
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
- Technische Universität Dresden, 01062 Dresden, Germany
| | - Alexander S. Münch
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Petra Uhlmann
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
| |
Collapse
|
6
|
Zimmermann R, Duval JF, Werner C, Sterling JD. Quantitative insights into electrostatics and structure of polymer brushes from microslit electrokinetic experiments and advanced modelling of interfacial electrohydrodynamics. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101590] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Abstract
I review experimental developments in the growth and application of surface-grafted weak polyelectrolytes (brushes), concentrating on their surface, tribological, and adhesive and bioadhesive properties, and their role as actuators.
Collapse
Affiliation(s)
- Mark Geoghegan
- School of Engineering, Newcastle University, Merz Court, Newcastle-upon-Tyne NE1 7RU, UK.
| |
Collapse
|
8
|
Li M, Fromel M, Ranaweera D, Rocha S, Boyer C, Pester CW. SI-PET-RAFT: Surface-Initiated Photoinduced Electron Transfer-Reversible Addition-Fragmentation Chain Transfer Polymerization. ACS Macro Lett 2019; 8:374-380. [PMID: 35651140 DOI: 10.1021/acsmacrolett.9b00089] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this communication, surface-initiated photoinduced electron transfer-reversible addition-fragmentation chain transfer polymerization (SI-PET-RAFT) is introduced. SI-PET-RAFT affords functionalization of surfaces with spatiotemporal control and provides oxygen tolerance under ambient conditions. All hallmarks of controlled radical polymerization (CRP) are met, affording well-defined polymerization kinetics, and chain end retention to allow subsequent extension of active chain ends to form block copolymers. The modularity and versatility of SI-PET-RAFT is highlighted through significant flexibility with respect to the choice of monomer, light source and wavelength, and photoredox catalyst. The ability to obtain complex patterns in the presence of air is a significant contribution to help pave the way for CRP-based surface functionalization into commercial application.
Collapse
Affiliation(s)
- Mingxiao Li
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Michele Fromel
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Dhanesh Ranaweera
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Sergio Rocha
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Cyrille Boyer
- School of Chemical Engineering, The University of New South Wales, UNSW, Sydney, NSW 2052, Australia
| | - Christian W. Pester
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
9
|
Koenig M, Rodenhausen KB, Rauch S, Bittrich E, Eichhorn KJ, Schubert M, Stamm M, Uhlmann P. Salt Sensitivity of the Thermoresponsive Behavior of PNIPAAm Brushes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:2448-2454. [PMID: 29356537 DOI: 10.1021/acs.langmuir.7b03919] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We report investigations on the salt sensitivity of the thermoresponsive behavior of PNIPAAm brushes applying the quartz crystal microbalance coupled with spectroscopic ellipsometry technique. This approach enables a detailed study of the optical and mechanical behavior of the polymer coatings. Additional conclusions can be drawn from the difference between both techniques due to a difference in the contrast mechanism of both methods. A linear shift of the phase-transition temperature to lower temperatures with the addition of sodium chloride was found, similar to the behavior of free polymer chains in solution. The thermal hysteresis was found to be decreased by the addition of sodium chloride to the solution, hinting to the interaction of the ions with the amide groups of the polymer, whereby the formation of hydrogen bonds is hindered. The results of this study are of relevance to the application of PNIPAAm brushes in biological fluids and demonstrate the additional potential of the ion sensitivity besides the better known thermosensitivity.
Collapse
Affiliation(s)
- Meike Koenig
- Leibniz-Institut für Polymerforschung Dresden e.V. , Hohe Straße 6, 01069 Dresden, Germany
| | - Keith Brian Rodenhausen
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln , 207 Othmer Hall, Lincoln, Nebraska 68588, United States
| | - Sebastian Rauch
- Leibniz-Institut für Polymerforschung Dresden e.V. , Hohe Straße 6, 01069 Dresden, Germany
| | - Eva Bittrich
- Leibniz-Institut für Polymerforschung Dresden e.V. , Hohe Straße 6, 01069 Dresden, Germany
| | - Klaus-Jochen Eichhorn
- Leibniz-Institut für Polymerforschung Dresden e.V. , Hohe Straße 6, 01069 Dresden, Germany
| | - Mathias Schubert
- Department of Electrical and Computer Engineering and Center for Nanohybrid Functional Materials, University of Nebraska-Lincoln , 209N Scott Engineering Center, Lincoln, Nebraska 68588, United States
- Department of Physics, Chemistry, and Biology, IFM, Linköping University , SE-581 83 Linköping, Sweden
| | - Manfred Stamm
- Leibniz-Institut für Polymerforschung Dresden e.V. , Hohe Straße 6, 01069 Dresden, Germany
- Faculty of Science, Department of Chemistry, Chair of Physical Chemistry of Polymeric Materials, Technische Universität Dresden , Bergstraße 66, 01069 Dresden, Germany
| | - Petra Uhlmann
- Leibniz-Institut für Polymerforschung Dresden e.V. , Hohe Straße 6, 01069 Dresden, Germany
- Department of Chemistry, University of Nebraska-Lincoln , Hamilton Hall, 639 North 12th Street, Lincoln, Nebraska 68588, United States
| |
Collapse
|
10
|
Zoppe JO, Ataman NC, Mocny P, Wang J, Moraes J, Klok HA. Surface-Initiated Controlled Radical Polymerization: State-of-the-Art, Opportunities, and Challenges in Surface and Interface Engineering with Polymer Brushes. Chem Rev 2017; 117:1105-1318. [PMID: 28135076 DOI: 10.1021/acs.chemrev.6b00314] [Citation(s) in RCA: 607] [Impact Index Per Article: 86.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The generation of polymer brushes by surface-initiated controlled radical polymerization (SI-CRP) techniques has become a powerful approach to tailor the chemical and physical properties of interfaces and has given rise to great advances in surface and interface engineering. Polymer brushes are defined as thin polymer films in which the individual polymer chains are tethered by one chain end to a solid interface. Significant advances have been made over the past years in the field of polymer brushes. This includes novel developments in SI-CRP, as well as the emergence of novel applications such as catalysis, electronics, nanomaterial synthesis and biosensing. Additionally, polymer brushes prepared via SI-CRP have been utilized to modify the surface of novel substrates such as natural fibers, polymer nanofibers, mesoporous materials, graphene, viruses and protein nanoparticles. The last years have also seen exciting advances in the chemical and physical characterization of polymer brushes, as well as an ever increasing set of computational and simulation tools that allow understanding and predictions of these surface-grafted polymer architectures. The aim of this contribution is to provide a comprehensive review that critically assesses recent advances in the field and highlights the opportunities and challenges for future work.
Collapse
Affiliation(s)
- Justin O Zoppe
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Nariye Cavusoglu Ataman
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Piotr Mocny
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Jian Wang
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - John Moraes
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Harm-Anton Klok
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| |
Collapse
|
11
|
Willott JD, Murdoch TJ, Webber GB, Wanless EJ. Physicochemical behaviour of cationic polyelectrolyte brushes. Prog Polym Sci 2017. [DOI: 10.1016/j.progpolymsci.2016.09.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Bui-Thi-Tuyet V, Trippé-Allard G, Ghilane J, Randriamahazaka H. Surface and Electrochemical Properties of Polymer Brush-Based Redox Poly(Ionic Liquid). ACS APPLIED MATERIALS & INTERFACES 2016; 8:28316-28324. [PMID: 27136186 DOI: 10.1021/acsami.6b02107] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Redox-active poly(ionic liquid) poly(3-(2-methacryloyloxy ethyl)-1-(N-(ferrocenylmethyl) imidazolium bis(trifluoromethylsulfonyl)imide deposited onto electrode surfaces has been prepared using surface-initiated atom transfer radical polymerization SI-ATRP. The process starts by electrochemical immobilization of initiator layer, and then methacrylate monomer carrying ferrocene and imidazolium units is polymerized in ionic liquid media via SI-ATRP process. The surfaces analyses of the polymer exhibit a well-defined polymer brushlike structure and confirm the presence of ferrocene and ionic moieties within the film. Furthermore, the electrochemical investigations of poly(redox-active ionic liquid) in different media demonstrate that the electron transfer is not restricted by the rate of counterion migration into/out of the polymer. The attractive electrochemical performance of these materials is further demonstrated by performing electrochemical measurement, of poly(ferrocene ionic liquid), in solvent-free electrolyte. The facile synthesis of such highly ordered electroactive materials based ionic liquid could be useful for the fabrication of nanostructured electrode suitable for performing electrochemistry in solvent free electrolyte. We also demonstrate possible applications of the poly(FcIL) as electrochemically reversible surface wettability system and as electrochemical sensor for the catalytic activity toward the oxidation of tyrosine.
Collapse
Affiliation(s)
- Van Bui-Thi-Tuyet
- Nano-Electro-Chemistry Group, ITODYS, UMR 7086 CNRS, Université Paris Diderot, Sorbonne Paris Cité , 15 rue Jean-Antoine de Baïf, 75205 Paris, France
| | - Gaëlle Trippé-Allard
- Nano-Electro-Chemistry Group, ITODYS, UMR 7086 CNRS, Université Paris Diderot, Sorbonne Paris Cité , 15 rue Jean-Antoine de Baïf, 75205 Paris, France
| | - Jalal Ghilane
- Nano-Electro-Chemistry Group, ITODYS, UMR 7086 CNRS, Université Paris Diderot, Sorbonne Paris Cité , 15 rue Jean-Antoine de Baïf, 75205 Paris, France
| | - Hyacinthe Randriamahazaka
- Nano-Electro-Chemistry Group, ITODYS, UMR 7086 CNRS, Université Paris Diderot, Sorbonne Paris Cité , 15 rue Jean-Antoine de Baïf, 75205 Paris, France
| |
Collapse
|
13
|
Thomas M, Gajda M, Amiri Naini C, Franzka S, Ulbricht M, Hartmann N. Poly(N,N-dimethylaminoethyl methacrylate) Brushes: pH-Dependent Switching Kinetics of a Surface-Grafted Thermoresponsive Polyelectrolyte. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:13426-13432. [PMID: 26569145 DOI: 10.1021/acs.langmuir.5b03448] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The temperature-dependent switching behavior of poly(N,N-dimethylaminoethyl methacrylate) brushes in alkaline, neutral, and acidic solutions is examined. A novel microscopic laser temperature-jump technique is employed in order to study characteristic thermodynamic and kinetic parameters. Static laser micromanipulation experiments allow one to determine the temperature-dependent variation of the swelling ratio. The data reveal a strong shift of the volume phase transition of the polymer brushes to higher temperatures when going from pH = 10 to pH = 4. Dynamic laser micromanipulation experiments offer a temporal resolution on a submillisecond time scale and provide a means to determine the intrinsic rate constants. Both the swelling and the deswelling rates strongly decrease in acidic solutions. Complementary experiments using in situ atomic force microscopy show an increased polymer layer thickness at these conditions. The data are discussed on the basis of pH-dependent structural changes of the polymer brushes including protonation of the amine groups and conformational rearrangements. Generally, repulsive electrostatic interactions and steric effects are assumed to hamper and slow down temperature-induced switching in acidic solutions. This imposes significant restrictions for smart polymer surfaces, sensors, and devices requiring fast response times.
Collapse
Affiliation(s)
- Marc Thomas
- Physical Chemistry, Department of Chemistry, and ‡Technical Chemistry II, Department of Chemistry, University of Duisburg-Essen , 45117, Essen, Germany
- Center for Nanointegration Duisburg-Essen (CENIDE) and ∥Interdisciplinary Center for Analytics on the Nanoscale (ICAN), University of Duisburg-Essen , 47057 Duisburg, Germany
| | - Martyna Gajda
- Physical Chemistry, Department of Chemistry, and ‡Technical Chemistry II, Department of Chemistry, University of Duisburg-Essen , 45117, Essen, Germany
- Center for Nanointegration Duisburg-Essen (CENIDE) and ∥Interdisciplinary Center for Analytics on the Nanoscale (ICAN), University of Duisburg-Essen , 47057 Duisburg, Germany
| | - Crispin Amiri Naini
- Physical Chemistry, Department of Chemistry, and ‡Technical Chemistry II, Department of Chemistry, University of Duisburg-Essen , 45117, Essen, Germany
- Center for Nanointegration Duisburg-Essen (CENIDE) and ∥Interdisciplinary Center for Analytics on the Nanoscale (ICAN), University of Duisburg-Essen , 47057 Duisburg, Germany
| | - Steffen Franzka
- Physical Chemistry, Department of Chemistry, and ‡Technical Chemistry II, Department of Chemistry, University of Duisburg-Essen , 45117, Essen, Germany
- Center for Nanointegration Duisburg-Essen (CENIDE) and ∥Interdisciplinary Center for Analytics on the Nanoscale (ICAN), University of Duisburg-Essen , 47057 Duisburg, Germany
| | - Mathias Ulbricht
- Physical Chemistry, Department of Chemistry, and ‡Technical Chemistry II, Department of Chemistry, University of Duisburg-Essen , 45117, Essen, Germany
- Center for Nanointegration Duisburg-Essen (CENIDE) and ∥Interdisciplinary Center for Analytics on the Nanoscale (ICAN), University of Duisburg-Essen , 47057 Duisburg, Germany
| | - Nils Hartmann
- Physical Chemistry, Department of Chemistry, and ‡Technical Chemistry II, Department of Chemistry, University of Duisburg-Essen , 45117, Essen, Germany
- Center for Nanointegration Duisburg-Essen (CENIDE) and ∥Interdisciplinary Center for Analytics on the Nanoscale (ICAN), University of Duisburg-Essen , 47057 Duisburg, Germany
| |
Collapse
|
14
|
Effect of extracellular polymeric substances on the mechanical properties of Rhodococcus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:518-26. [DOI: 10.1016/j.bbamem.2014.11.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 11/01/2014] [Accepted: 11/06/2014] [Indexed: 11/19/2022]
|
15
|
Willott JD, Humphreys BA, Murdoch TJ, Edmondson S, Webber GB, Wanless EJ. Hydrophobic effects within the dynamic pH-response of polybasic tertiary amine methacrylate brushes. Phys Chem Chem Phys 2015; 17:3880-90. [DOI: 10.1039/c4cp05292g] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Monomer hydrophobicity dominates the kinetics of the pH-response of tertiary amine methacrylate brushes as determined by in situ ellipsometry and QCM-D kinetic and equilibrium measurements.
Collapse
Affiliation(s)
- Joshua D. Willott
- Priority Research Centre for Advanced Particle Processing and Transport
- University of Newcastle
- Callaghan
- Australia
| | - Ben A. Humphreys
- Priority Research Centre for Advanced Particle Processing and Transport
- University of Newcastle
- Callaghan
- Australia
| | - Timothy J. Murdoch
- Priority Research Centre for Advanced Particle Processing and Transport
- University of Newcastle
- Callaghan
- Australia
| | | | - Grant B. Webber
- Priority Research Centre for Advanced Particle Processing and Transport
- University of Newcastle
- Callaghan
- Australia
| | - Erica J. Wanless
- Priority Research Centre for Advanced Particle Processing and Transport
- University of Newcastle
- Callaghan
- Australia
| |
Collapse
|
16
|
Krishnamoorthy M, Hakobyan S, Ramstedt M, Gautrot JE. Surface-initiated polymer brushes in the biomedical field: applications in membrane science, biosensing, cell culture, regenerative medicine and antibacterial coatings. Chem Rev 2014; 114:10976-1026. [PMID: 25353708 DOI: 10.1021/cr500252u] [Citation(s) in RCA: 393] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mahentha Krishnamoorthy
- Institute of Bioengineering and ‡School of Engineering and Materials Science, Queen Mary University of London , Mile End Road, London E1 4NS, United Kingdom
| | | | | | | |
Collapse
|
17
|
Galvin CJ, Dimitriou MD, Satija SK, Genzer J. Swelling of polyelectrolyte and polyzwitterion brushes by humid vapors. J Am Chem Soc 2014; 136:12737-45. [PMID: 25134061 DOI: 10.1021/ja5065334] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Swelling behavior of polyelectrolyte and polyzwitterion brushes derived from poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) in water vapor is investigated using a combination of neutron and X-ray reflectivity and spectroscopic ellipsometry over a wide range of relative humidity (RH) levels. The extent of swelling depends strongly on the nature of the side-chain chemistry. For parent PDMAEMA, there is an apparent enrichment of water vapor at the polymer/air interface. Despite extensive swelling at high humidity level, no evidence of charge repulsion is found in weak or strong polyelectrolyte brushes. Polyzwitterionic brushes swell to a greater extent than the quaternized brushes studied. However, for RH levels beyond 70%, the polyzwitterionic brushes take up less water molecules, leading to a decline in water volume fraction from the maximum of ~0.30 down to ~0.10. Using a gradient in polymer chain grafting density (σ), we provide evidence that this behavior stems from the formation of inter- and intramolecular zwitterionic complexes.
Collapse
Affiliation(s)
- Casey J Galvin
- Department of Chemical and Biomolecular Engineering, North Carolina State University , Raleigh, North Carolina 27695-7905, United States
| | | | | | | |
Collapse
|
18
|
Stimuli-Responsive Polyelectrolyte Brushes As a Matrix for the Attachment of Gold Nanoparticles: The Effect of Brush Thickness on Particle Distribution. Polymers (Basel) 2014. [DOI: 10.3390/polym6071877] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
19
|
Willott JD, Murdoch TJ, Humphreys BA, Edmondson S, Webber GB, Wanless EJ. Critical salt effects in the swelling behavior of a weak polybasic brush. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:1827-36. [PMID: 24476028 DOI: 10.1021/la4047275] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The swelling behavior of poly(2-(diethylamino)ethyl methacrylate) (PDEA) brushes in response to changes in solution pH and ionic strength has been investigated. The brushes were synthesized by ARGET ATRP methodology at the silica-aqueous solution interface via two different surface-bound initiator approaches: electrostatically adsorbed cationic macroinitiator and covalently anchored silane-based ATRP initiator moieties. The pH-response of these brushes is studied as a function of the solvated brush thickness in a constant flow regime that elucidates the intrinsic behavior of polymer brushes. In situ ellipsometry equilibrium measurements show the pH-induced brush swelling and collapse transitions are hysteretic in nature. Furthermore, high temporal resolution kinetic studies demonstrate that protonation and solvent ingress during swelling occur much faster than the brush charge neutralization and solvent expulsion during collapse. This hysteresis is attributed to the formation of a dense outer region or skin during collapse that retards solvent egress. Moreover, at a constant pH below its pKa, the PDEA brush exhibited a critical conformational change in the range 0.5-1 mM electrolyte, a range much narrower than predicted by the theory of the osmotic brush regime. This behavior is attributed to the hydrophobicity of the collapsed brush. The swelling and collapse kinetics for this salt-induced transition are nearly identical. This is in contrast to the asymmetry in the rate of the pH-induced response, suggesting an alternative mechanism for the two processes dependent on the nature of the environmental trigger.
Collapse
Affiliation(s)
- Joshua D Willott
- Priority Research Centre for Advanced Particle Processing and Transport, University of Newcastle , Callaghan, NSW 2308, Australia
| | | | | | | | | | | |
Collapse
|
20
|
Roldán-Carmona C, Rubia-Payá C, Pérez-Morales M, Martín-Romero MT, Giner-Casares JJ, Camacho L. UV-Vis reflection spectroscopy under variable angle incidence at the air–liquid interface. Phys Chem Chem Phys 2014; 16:4012-22. [DOI: 10.1039/c3cp54658f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|