1
|
Norouzy N, Nikdoost A, Rezai P. Parallelization of Curved Inertial Microfluidic Channels to Increase the Throughput of Simultaneous Microparticle Separation and Washing. MICROMACHINES 2024; 15:1228. [PMID: 39459102 PMCID: PMC11509581 DOI: 10.3390/mi15101228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/27/2024] [Accepted: 09/29/2024] [Indexed: 10/28/2024]
Abstract
The rising global need for clean water highlights the importance of efficient sample preparation methods to separate and wash various contaminants such as microparticles. Microfluidic methods for these purposes have emerged but they mostly deliver either separation or washing, with very low throughputs. Here, we investigate parallelization of a curved-channel particle separation and washing device in order to increase its throughput for sample preparation. A curved microchannel applies inertial forces to focus larger 10 µm microparticles at the inner wall of the channel and separate them from smaller 5 µm microparticles at the outer wall. At the same time, Dean flow recirculation is used to exchange the carrier solution of the large microparticles to a clean buffer (washing). We increased the number of curved channels in a stepwise manner from two to four to eight channels in two different arraying designs, i.e., rectangular and polar arrays. We examined efficient separation of target 10 µm particles from 5 µm particles, while transferring the larger microparticles into a clean buffer. Dean flow recirculation studies demonstrated that the rectangular arrayed device performs better, providing solution exchange efficiencies of more than 96% on average as compared to 89% for the polar array device. Our 8-curve rectangular array device provided a particle separation efficiency of 98.93 ± 0.91%, while maintaining a sample purity of 92.83 ± 1.47% at a high working flow rate of 12.8 mL/min. Moreover, the target particles were transferred into a clean buffer with a solution exchange efficiency of 96.81 ± 0.54% in our 8-curve device. Compared to the literature, our in-plane parallelization design of curved microchannels resulted in a 13-fold increase in the working flow rate of the setup while maintaining a very high performance in particle separation and washing. Our microfluidic device offers the potential to enhance the throughput and the separation and washing efficiencies in applications for biological and environmental samples.
Collapse
Affiliation(s)
| | | | - Pouya Rezai
- Department of Mechanical Engineering, York University, BRG 433B, 4700 Keele St., Toronto, ON M3J 1P3, Canada; (N.N.); (A.N.)
| |
Collapse
|
2
|
Norouzy N, Zabihihesari A, Rezai P. Simultaneous high-throughput particle-bacteria separation and solution exchange via in-plane and out-of-plane parallelization of microfluidic centrifuges. BIOMICROFLUIDICS 2024; 18:054107. [PMID: 39345266 PMCID: PMC11435783 DOI: 10.1063/5.0215930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/20/2024] [Indexed: 10/01/2024]
Abstract
Inertial microfluidic devices have gained attention for point-of-need (PoN) sample preparation. Yet, devices capable of simultaneous particle-bacteria solution exchange and separation are low in throughput, hindering their applicability to PoN settings. This paper introduces a microfluidic centrifuge for high-throughput solution exchange and separation of microparticles, addressing the need for processing large sample volumes at elevated flow rates. The device integrates Dean flow recirculation and inertial focusing of microparticles within 24 curved microchannels assembled in a three-layer configuration via in-plane and out-of-plane parallelization. We studied solution exchange and particle migration using singleplex and duplex samples across devices with varying curve numbers (2-curve, 8-curve, and 24-curve). Processing 5 and 10 μm microparticles at flow rates up to 16.8 ml/min achieved a solution exchange efficiency of 96.69%. In singleplex solutions, 10 and 5 μm particles selectively migrated to inner and outer outlets, demonstrating separation efficiencies of 99.7% and 90.3%, respectively. With duplex samples, sample purity was measured to be 93.4% and 98.6% for 10 and 5 μm particles collected from the inner and the outer outlets, respectively. Application of our device in biological assays was shown by performing duplex experiments where 10 μm particles were isolated from Salmonella bacterial suspension with purity of 97.8% while increasing the state-of-the-art particle solution exchange and separation throughput by 16 folds. This parallelization enabled desirable combinations of high throughput, low-cost, and scalability, without compromising efficiency and purity, paving the way for sample preparation at the PoN in the future.
Collapse
Affiliation(s)
- Nima Norouzy
- Department of Mechanical Engineering, York University, BRG 433B, 4700 Keele St., Toronto, Ontario M3J 1P3, Canada
| | - Alireza Zabihihesari
- Department of Mechanical Engineering, York University, BRG 433B, 4700 Keele St., Toronto, Ontario M3J 1P3, Canada
| | - Pouya Rezai
- Department of Mechanical Engineering, York University, BRG 433B, 4700 Keele St., Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
3
|
Du X, Kaneko S, Maruyama H, Sugiura H, Tsujii M, Uozumi N, Arai F. Integration of Microfluidic Chip and Probe with a Dual Pump System for Measurement of Single Cells Transient Response. MICROMACHINES 2023; 14:1210. [PMID: 37374795 DOI: 10.3390/mi14061210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023]
Abstract
The integration of liquid exchange and microfluidic chips plays a critical role in the biomedical and biophysical fields as it enables the control of the extracellular environment and allows for the simultaneous stimulation and detection of single cells. In this study, we present a novel approach for measuring the transient response of single cells using a system integrated with a microfluidic chip and a probe with a dual pump. The system was composed of a probe with a dual pump system, a microfluidic chip, optical tweezers, an external manipulator, an external piezo actuator, etc. Particularly, we incorporated the probe with the dual pump to allow for high-speed liquid change, and the localized flow control enabled a low disturbance contact force detection of single cells on the chip. Using this system, we measured the transient response of the cell swelling against the osmotic shock with a very fine time resolution. To demonstrate the concept, we first designed the double-barreled pipette, which was assembled with two piezo pumps to achieve a probe with the dual pump system, allowing for simultaneous liquid injection and suction. The microfluidic chip with on-chip probes was fabricated, and the integrated force sensor was calibrated. Second, we characterized the performance of the probe with the dual pump system, and the effect of the analysis position and area of the liquid exchange time was investigated. In addition, we optimized the applied injection voltage to achieve a complete concentration change, and the average liquid exchange time was achieved at approximately 3.33 ms. Finally, we demonstrated that the force sensor was only subjected to minor disturbances during the liquid exchange. This system was utilized to measure the deformation and the reactive force of Synechocystis sp. strain PCC 6803 in osmotic shock, with an average response time of approximately 16.33 ms. This system reveals the transient response of compressed single cells under millisecond osmotic shock which has the potential to characterize the accurate physiological function of ion channels.
Collapse
Affiliation(s)
- Xu Du
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Shingo Kaneko
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Hisataka Maruyama
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Hirotaka Sugiura
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Masaru Tsujii
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Nobuyuki Uozumi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Fumihito Arai
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Nagoya 464-8603, Japan
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
4
|
Wang X, Zheng J, Iyer MA, Szmelter AH, Eddington DT, Lee SSY. Spatially selective cell treatment and collection for integrative drug testing using hydrodynamic flow focusing and shifting. PLoS One 2023; 18:e0279102. [PMID: 36649249 PMCID: PMC9844832 DOI: 10.1371/journal.pone.0279102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 11/30/2022] [Indexed: 01/18/2023] Open
Abstract
Hydrodynamic focusing capable of readily producing and controlling laminar flow facilitates drug treatment of cells in existing microfluidic culture devices. However, to expand applications of such devices to multiparameter drug testing, critical limitations in current hydrodynamic focusing microfluidics must be addressed. Here we describe hydrodynamic focusing and shifting as an advanced microfluidics tool for spatially selective drug delivery and integrative cell-based drug testing. We designed and fabricated a co-flow focusing, three-channel microfluidic device with a wide cell culture chamber. By controlling inlet flow rates of sample and two side solutions, we could generate hydrodynamic focusing and shifting that mediated precise regulation of the path and width of reagent and drug stream in the microfluidic device. We successfully validated a hydrodynamic focusing and shifting approach for spatially selective delivery of DiI, a lipophilic fluorophore, and doxorubicin, a chemotherapeutic agent, to tumor cells in our device. Moreover, subsequent flowing of a trypsin EDTA solution over the cells that were exposed to doxorubicin flow allowed us to selectively collect the treated cells. Our approach enabled downstream high-resolution microscopy of the cell suspension to confirm the nuclear delivery of doxorubicin into the tumor cells. In the device, we could also evaluate in situ the cytotoxic effect of doxorubicin to the tumor cells that were selectively treated by hydrodynamic flow focusing and shifting. These results show that hydrodynamic focusing and shifting enable a fast and robust approach to spatially treat and then collect cells in an optimized microfluidic device, offering an integrative assay tool for efficient drug screening and discovery.
Collapse
Affiliation(s)
- Xu Wang
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, Illinois, United States of America
| | - Jingtian Zheng
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, Illinois, United States of America
| | - Maheshwar Adiraj Iyer
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois, United States of America
| | - Adam Henry Szmelter
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois, United States of America
| | - David T. Eddington
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois, United States of America
- University of Illinois Cancer Center, University of Illinois Chicago, Chicago, Illinois, United States of America
- * E-mail: (DTE); (SSYL)
| | - Steve Seung-Young Lee
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, Illinois, United States of America
- University of Illinois Cancer Center, University of Illinois Chicago, Chicago, Illinois, United States of America
- * E-mail: (DTE); (SSYL)
| |
Collapse
|
5
|
Rail induced lateral migration of particles across intact co-flowing liquids. Sci Rep 2022; 12:21775. [PMID: 36526798 PMCID: PMC9758194 DOI: 10.1038/s41598-022-26387-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
This paper presents a rail guided method to apply a Layer-by-Layer (LbL) coating on particles in a microfluidic device. The passive microfluidic approach allows handling suspensions of particles to be coated in the system. The trajectory of the particles is controlled using engraved rails, inducing lateral movement of particles while keeping the axially oriented liquid flow (and the interface of different liquids) undisturbed. The depth and angle of the rails together with the liquid velocity were studied to determine a workable geometry of the device. A discontinuous LbL coating procedure was converted into one continuous process, demonstrating that the chip can perform seven consecutive steps normally conducted in batch operation, further easily extendable to larger cycle numbers. Coating of the particles with two bilayers was confirmed by fluorescence microscopy.
Collapse
|
6
|
A Battery-Powered Fluid Manipulation System Actuated by Mechanical Vibrations. ACTUATORS 2022. [DOI: 10.3390/act11050116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Miniaturized fluid manipulation systems are an important component of lab-on-a-chip platforms implemented in resourced-limited environments and point-of-care applications. This work aims to design, fabricate, and test a low-cost and battery-operated microfluidic diffuser/nozzle type pump to enable an alternative fluid manipulation solution for field applications. For this, CNC laser cutting and 3D printing are used to fabricate the fluidic unit and casing of the driving module of the system, respectively. This system only required 3.5-V input power and can generate flow rates up to 58 µL/min for water. In addition, this portable pump can manipulate higher viscosity fluids with kinematic viscosities up to 24 mPa·s resembling biological fluids such as sputum and saliva. The demonstrated system is a low-cost, battery-powered, and highly versatile fluid pump that can be adopted in various lab-on-a-chip applications for field deployment and remote applications.
Collapse
|
7
|
Shi X, Tan W, Lu Y, Cao W, Zhu G. A needle tip CCEA microfluidic device based on enhanced Dean flow for cell washing. MICROSYSTEMS & NANOENGINEERING 2021; 7:81. [PMID: 34721889 PMCID: PMC8519928 DOI: 10.1038/s41378-021-00311-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Particle/cell washing is an essential technique in biological and clinical manipulations. Herein, we propose a novel circular contraction-expansion array (CCEA) microdevice. It can be directly connected to a needle tip without connection tubes. Its small size and centrosymmetric structure are beneficial to low sample consumption, high connection stability, and a wide application range. Computational fluid dynamics (CFD) simulation results show that the CCEA structure can produce a stronger Dean flow and lead to faster particle/cell focusing than the circle structure and CEA structure with the same length. Experimentally, an optimal flow rate ratio of 1:3 and an optimal total flow rate of 120 μL/min were found to ensure a stable fluid distribution. Under these conditions, rapid focusing of 10-20 μm particles with high efficiencies was achieved. Compared with a normal CEA device using tubes, the particle loss rate could be reduced from 64 to 7% when washing 500 μL of a rare sample. Cell suspensions with concentrations from 3 × 105/mL to 1 × 103/mL were tested. The high cell collection efficiency (>85% for three cell lines) and stable waste removal efficiency (>80%) reflected the universality of the CCEA microfluidic device. After the washing, the cell activities of H1299 cells and MCF-7 cells were calculated to be 93.8 and 97.5%, respectively. This needle-tip CCEA microfluidic device showed potential in basic medical research and clinical diagnosis.
Collapse
Affiliation(s)
- Xin Shi
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350 China
| | - Wei Tan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350 China
| | - Yuwen Lu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350 China
| | - Wenfeng Cao
- Tianjin Tumor Hospital, Tianjin Medical University, Tianjin, 300070 China
| | - Guorui Zhu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350 China
| |
Collapse
|
8
|
Çağlayan Z, Demircan Yalçın Y, Külah H. A Prominent Cell Manipulation Technique in BioMEMS: Dielectrophoresis. MICROMACHINES 2020; 11:E990. [PMID: 33153069 PMCID: PMC7693018 DOI: 10.3390/mi11110990] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 12/17/2022]
Abstract
BioMEMS, the biological and biomedical applications of micro-electro-mechanical systems (MEMS), has attracted considerable attention in recent years and has found widespread applications in disease detection, advanced diagnosis, therapy, drug delivery, implantable devices, and tissue engineering. One of the most essential and leading goals of the BioMEMS and biosensor technologies is to develop point-of-care (POC) testing systems to perform rapid prognostic or diagnostic tests at a patient site with high accuracy. Manipulation of particles in the analyte of interest is a vital task for POC and biosensor platforms. Dielectrophoresis (DEP), the induced movement of particles in a non-uniform electrical field due to polarization effects, is an accurate, fast, low-cost, and marker-free manipulation technique. It has been indicated as a promising method to characterize, isolate, transport, and trap various particles. The aim of this review is to provide fundamental theory and principles of DEP technique, to explain its importance for the BioMEMS and biosensor fields with detailed references to readers, and to identify and exemplify the application areas in biosensors and POC devices. Finally, the challenges faced in DEP-based systems and the future prospects are discussed.
Collapse
Affiliation(s)
- Zeynep Çağlayan
- Department of Electrical and Electronics Engineering, Middle East Technical University, Ankara 06800, Turkey; (Z.Ç.); (Y.D.Y.)
- METU MEMS Research and Application Center, Ankara 06800, Turkey
| | - Yağmur Demircan Yalçın
- Department of Electrical and Electronics Engineering, Middle East Technical University, Ankara 06800, Turkey; (Z.Ç.); (Y.D.Y.)
- Mikro Biyosistemler Electronics Inc., Ankara 06530, Turkey
| | - Haluk Külah
- Department of Electrical and Electronics Engineering, Middle East Technical University, Ankara 06800, Turkey; (Z.Ç.); (Y.D.Y.)
- METU MEMS Research and Application Center, Ankara 06800, Turkey
- Mikro Biyosistemler Electronics Inc., Ankara 06530, Turkey
| |
Collapse
|
9
|
Shin K, Lee E, Hong JW. Nanoparticles Are Separated in a Different Pattern from Microparticles with Focused Flow Control. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:7210-7216. [PMID: 32558577 DOI: 10.1021/acs.langmuir.0c00405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Separation of particles is essential to ensure the reliability and reproducibility of experiments for nanometer-scale materials. There are several methods, such as ultracentrifugation, precipitation, filtration, etc., for separation. However, the separation of nanoparticles in a continuous operation has not been examined widely. Here, we report the separation of nanometer-scale particles on a microfluidic system and related separation phenomena of nanoparticles from microparticles. We also describe not-yet-confirmed reversed behaviors of nanoparticle separation in the process of continuous operation. The present system along with elucidated operational conditions could be applied to treat relatively large quantities of nanometer-scale particles.
Collapse
Affiliation(s)
- Kyusoon Shin
- Department of Bionanotechnology, Graduate School, Hanyang University, Seoul 04763, Korea
- Center for Exosome & Bioparticulate Research, Hanyang University, Seoul, Gyeonggi-do 15588, Korea
| | - Eunwon Lee
- Department of Bionanotechnology, Graduate School, Hanyang University, Seoul 04763, Korea
| | - Jong Wook Hong
- Department of Bionanotechnology, Graduate School, Hanyang University, Seoul 04763, Korea
- Center for Exosome & Bioparticulate Research, Hanyang University, Seoul, Gyeonggi-do 15588, Korea
- Department of Bionanoengineering, Hanyang University, Seoul, Gyeonggi-do 15588, Korea
- Department of Medical & Digital Engineering, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
10
|
Navi M, Abbasi N, Salari A, Tsai SSH. Magnetic water-in-water droplet microfluidics: Systematic experiments and scaling mathematical analysis. BIOMICROFLUIDICS 2020; 14:024101. [PMID: 32161632 PMCID: PMC7056455 DOI: 10.1063/1.5144137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/23/2020] [Indexed: 05/30/2023]
Abstract
A major barrier to the clinical utilization of microfluidically generated water-in-oil droplets is the cumbersome washing steps required to remove the non-biocompatible organic oil phase from the droplets. In this paper, we report an on-chip magnetic water-in-water droplet generation and manipulation platform using a biocompatible aqueous two-phase system of a polyethylene glycol-polypropylene glycol-polyethylene glycol triblock copolymer (PEG-PPG-PEG) and dextran (DEX), eliminating the need for subsequent washing steps. By careful selection of a ferrofluid that shows an affinity toward the DEX phase (the dispersed phase in our microfluidic device), we generate magnetic DEX droplets in a non-magnetic continuous phase of PEG-PPG-PEG. We apply an external magnetic field to manipulate the droplets and sort them into different outlets. We also perform scaling analysis to model the droplet deflection and find that the experimental data show good agreement with the model. We expect that this type of all-biocompatible magnetic droplet microfluidic system will find utility in biomedical applications, such as long-term single cell analysis. In addition, the model can be used for designing experimental parameters to achieve a desired droplet trajectory.
Collapse
|
11
|
Xuan X. Recent Advances in Continuous-Flow Particle Manipulations Using Magnetic Fluids. MICROMACHINES 2019; 10:E744. [PMID: 31683660 PMCID: PMC6915689 DOI: 10.3390/mi10110744] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022]
Abstract
Magnetic field-induced particle manipulation is simple and economic as compared to other techniques (e.g., electric, acoustic, and optical) for lab-on-a-chip applications. However, traditional magnetic controls require the particles to be manipulated being magnetizable, which renders it necessary to magnetically label particles that are almost exclusively diamagnetic in nature. In the past decade, magnetic fluids including paramagnetic solutions and ferrofluids have been increasingly used in microfluidic devices to implement label-free manipulations of various types of particles (both synthetic and biological). We review herein the recent advances in this field with focus upon the continuous-flow particle manipulations. Specifically, we review the reported studies on the negative magnetophoresis-induced deflection, focusing, enrichment, separation, and medium exchange of diamagnetic particles in the continuous flow of magnetic fluids through microchannels.
Collapse
Affiliation(s)
- Xiangchun Xuan
- Department of Mechanical Engineering, Clemson University, Clemson, SC 29634-0921, USA.
| |
Collapse
|
12
|
Puttaswamy SV, Fishlock SJ, Steele D, Shi Q, Lee C, McLaughlin J. Versatile microfluidic platform embedded with sidewall three-dimensional electrodes for cell manipulation. Biomed Phys Eng Express 2019. [DOI: 10.1088/2057-1976/ab268e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Doonan SR, Lin M, Bailey RC. Droplet CAR-Wash: continuous picoliter-scale immunocapture and washing. LAB ON A CHIP 2019; 19:1589-1598. [PMID: 30963149 PMCID: PMC6478530 DOI: 10.1039/c9lc00125e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
To address current limitations in adapting solid phase sample capture and washing techniques to continuously flowing droplet microfluidics, we have developed the "Coalesce-Attract-Resegment Wash" (CAR-Wash) approach. This module provides efficient, high-throughput magnetic washing by electrocoalescing magnetic bead-laden input droplets with a washing buffer flow and magnetophoretically transporting beads through the buffer into a secondary droplet formation streamline. In this work, we first characterized the technology in terms of throughput, sample retention, and flow-based exclusion of waste volume, demonstrating >500 Hz droplet processing with >98% bead retention and >100-fold dilution in final droplets. Next, we showed that the technique can be adapted to alternative commercially available magnetic beads with lower magnetite content per particle. Then, we demonstrated the CAR-Wash module's effectiveness in washing away a small molecule competitive inhibitor to restore the activity of magnetic bead-immobilized β-galactosidase. Finally, we applied the system to immunomagnetically enrich a green fluorescent protein-histone H2B fusion protein from cell lysate while washing away mCherry and other lysate components. We believe this approach will bridge the gap between powerful biochemical and bioanalytical techniques and current droplet microfluidic capabilities, and we envision future application in droplet-based immunoassays, solid phase extraction, and other complex, multi-step operations.
Collapse
Affiliation(s)
- Steven R Doonan
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | |
Collapse
|
14
|
Bayat P, Rezai P. Microfluidic curved-channel centrifuge for solution exchange of target microparticles and their simultaneous separation from bacteria. SOFT MATTER 2018; 14:5356-5363. [PMID: 29781012 DOI: 10.1039/c8sm00162f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
One of the common operations in sample preparation is to separate specific particles (e.g. target cells, embryos or microparticles) from non-target substances (e.g. bacteria) in a fluid and to wash them into clean buffers for further processing like detection (called solution exchange in this paper). For instance, solution exchange is widely needed in preparing fluidic samples for biosensing at the point-of-care and point-of-use, but still conducted via the use of cumbersome and time-consuming off-chip analyte washing and purification techniques. Existing small-scale and handheld active and passive devices for washing particles are often limited to very low throughputs or require external sources of energy. Here, we integrated Dean flow recirculation of two fluids in curved microchannels with selective inertial focusing of target particles to develop a microfluidic centrifuge device that can isolate specific particles (as surrogates for target analytes) from bacteria and wash them into a clean buffer at high throughput and efficiency. We could process micron-size particles at a flow rate of 1 mL min-1 and achieve throughputs higher than 104 particles per second. Our results reveal that the device is capable of singleplex solution exchange of 11 μm and 19 μm particles with efficiencies of 86 ± 2% and 93 ± 0.7%, respectively. A purity of 96 ± 2% was achieved in the duplex experiments where 11 μm particles were isolated from 4 μm particles. Application of our device in biological assays was shown by performing duplex experiments where 11 μm or 19 μm particles were isolated from an Escherichia coli bacterial suspension with purities of 91-98%. We envision that our technique will have applications in point-of-care devices for simultaneous purification and solution exchange of cells and embryos from smaller substances in high-volume suspensions at high throughput and efficiency.
Collapse
Affiliation(s)
- Pouriya Bayat
- Department of Mechanical Engineering, York University, BRG 433B, 4700 Keele St, Toronto, ON M3J 1P3, Canada.
| | | |
Collapse
|
15
|
Gómez-Pastora J, González-Fernández C, Real E, Iles A, Bringas E, Furlani EP, Ortiz I. Computational modeling and fluorescence microscopy characterization of a two-phase magnetophoretic microsystem for continuous-flow blood detoxification. LAB ON A CHIP 2018; 18:1593-1606. [PMID: 29748668 DOI: 10.1039/c8lc00396c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Magnetic beads can be functionalized to capture and separate target pathogens from blood for extracorporeal detoxification. The beads can be magnetically separated from a blood stream and collected into a coflowing buffer solution using a two-phase liquid-liquid continuous-flow microfluidic device in the presence of an external field. However, device design and process optimization, i.e. high bead recovery with minimum blood loss or dilution remain a substantial technological challenge. We introduce a CFD-based Eulerian-Lagrangian computational model that enables the rational design and optimization of such systems. The model takes into account dominant magnetic and hydrodynamic forces on the beads as well as coupled bead-fluid interactions. Fluid flow (Navier-Stokes equations) and mass transfer (Fick's law) between the coflowing fluids are solved numerically, while the magnetic force on the beads is predicted using analytical methods. The model is demonstrated via application to a prototype device and used to predict key performance metrics; degree of bead separation, flow patterns, and mass transfer, i.e. blood diffusion to the buffer phase. The impact of different process variables and parameters - flow rates, bead and magnet dimensions and fluid viscosities - on both bead recovery and blood loss or dilution is quantified for the first time. The performance of the prototype device is characterized using fluorescence microscopy and the experimental results are found to match theoretical predictions within an absolute error of 15%. While the model is demonstrated here for analysis of a detoxification device, it can be readily adapted to a broad range of magnetically-enabled microfluidic applications, e.g. bioseparation, sorting and sensing.
Collapse
Affiliation(s)
- Jenifer Gómez-Pastora
- Department of Chemical and Biomolecular Engineering, University of Cantabria, Av. de los Castros s/n, 39005, Santander, Cantabria, Spain.
| | | | | | | | | | | | | |
Collapse
|
16
|
Alorabi AQ, Tarn MD, Gómez-Pastora J, Bringas E, Ortiz I, Paunov VN, Pamme N. On-chip polyelectrolyte coating onto magnetic droplets - towards continuous flow assembly of drug delivery capsules. LAB ON A CHIP 2017; 17:3785-3795. [PMID: 28991297 DOI: 10.1039/c7lc00918f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Polyelectrolyte (PE) microcapsules for drug delivery are typically fabricated via layer-by-layer (LbL) deposition of PE layers of alternating charge on sacrificial template microparticles, which usually requires multiple incubation and washing steps that render the process repetitive and time-consuming. Here, ferrofluid droplets were explored for this purpose as an elegant alternative of templates that can be easily manipulated via an external magnetic field, and require only a simple microfluidic chip design and setup. Glass microfluidic devices featuring T-junctions or flow focusing junctions for the generation of oil-based ferrofluid droplets in an aqueous continuous phase were investigated. Droplet size was controlled by the microfluidic channel dimensions as well as the flow rates of the ferrofluid and aqueous phases. The generated droplets were stabilised by a surface active polymer, polyvinylpyrrolidone (PVP), and then guided into a chamber featuring alternating, co-laminar PE solutions and wash streams, and deflected across them by means of an external permanent magnet. The extent of droplet deflection was tailored by the flow rates, the concentration of magnetic nanoparticles in the droplets, and the magnetic field strength. PVP-coated ferrofluid droplets were deflected through solutions of polyelectrolyte and washing streams using several iterations of multilaminar flow designs. This culminated in an innovative "Snakes-and-Ladders" inspired microfluidic chip design that overcame various issues of the previous iterations for the deposition of layers of anionic poly(sodium-4-styrene sulfonate) (PSS) and cationic poly(fluorescein isothiocyanate allylamine hydrochloride) (PAH-FITC) onto the droplets. The presented method demonstrates a simple and rapid process for PE layer deposition in <30 seconds, and opens the way towards rapid layer-by-layer assembly of PE microcapsules for drug delivery applications.
Collapse
Affiliation(s)
- Ali Q Alorabi
- School of Mathematics and Physical Sciences, University of Hull, Cottingham Road, Hull, HU6 7RX, UK.
| | | | | | | | | | | | | |
Collapse
|
17
|
Zhao W, Cheng R, Lim SH, Miller JR, Zhang W, Tang W, Xie J, Mao L. Biocompatible and label-free separation of cancer cells from cell culture lines from white blood cells in ferrofluids. LAB ON A CHIP 2017; 17:2243-2255. [PMID: 28590489 PMCID: PMC5543773 DOI: 10.1039/c7lc00327g] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
This paper reports a biocompatible and label-free cell separation method using ferrofluids that can separate a variety of low-concentration cancer cells from cell culture lines (∼100 cancer cells per mL) from undiluted white blood cells, with a throughput of 1.2 mL h-1 and an average separation efficiency of 82.2%. The separation is based on the size difference of the cancer cells and white blood cells, and is conducted in a custom-made biocompatible ferrofluid that retains not only excellent short-term viabilities but also normal proliferations of 7 commonly used cancer cell lines. A microfluidic device is designed and optimized specifically to shorten the time of live cells' exposure to ferrofluids from hours to seconds, by eliminating time-consuming off-chip sample preparation and extraction steps and integrating them on-chip to achieve a one-step process. As a proof-of-concept demonstration, a ferrofluid with 0.26% volume fraction was used in this microfluidic device to separate spiked cancer cells from cell lines at a concentration of ∼100 cells per mL from white blood cells with a throughput of 1.2 mL h-1. The separation efficiencies were 80 ± 3%, 81 ± 5%, 82 ± 5%, 82 ± 4%, and 86 ± 6% for A549 lung cancer, H1299 lung cancer, MCF-7 breast cancer, MDA-MB-231 breast cancer, and PC-3 prostate cancer cell lines, respectively. The separated cancer cells' purity was between 25.3% and 28.8%. In addition, the separated cancer cells from this strategy showed an average short-term viability of 94.4 ± 1.3%, and these separated cells were cultured and demonstrated normal proliferation to confluence even after the separation process. Owing to its excellent biocompatibility and label-free operation and its ability to recover low concentrations of cancer cells from white blood cells, this method could lead to a promising tool for rare cell separation.
Collapse
Affiliation(s)
- Wujun Zhao
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Chen Q, Li D, Lin J, Wang M, Xuan X. Simultaneous Separation and Washing of Nonmagnetic Particles in an Inertial Ferrofluid/Water Coflow. Anal Chem 2017; 89:6915-6920. [PMID: 28548482 DOI: 10.1021/acs.analchem.7b01608] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Magnetic fluids (e.g., paramagnetic solutions and ferrofluids) have been increasingly used for label-free separation of nonmagnetic particles in microfluidic devices. Their biocompatibility, however, becomes a concern in high-throughput or large-volume applications. One way to potentially resolve this issue is resuspending the particles that are separated in a magnetic fluid immediately into a biocompatible buffer. We demonstrate herein the proof-of-principle of the first integration of negative magnetophoresis and inertial focusing for a simultaneous separation and washing of nonmagnetic particles in coflowing ferrofluid and water streams. The two operations take place in parallel in a simple T-shaped rectangular microchannel with a nearby permanent magnet. We find that the larger and smaller particles' exiting positions (and hence their separation distance) in the sheath water and ferrofluid suspension, respectively, vary with the total flow rate or the flow rate ratio between the two streams.
Collapse
Affiliation(s)
- Qi Chen
- Department of Mechanical Engineering, Clemson University , Clemson, South Carolina 29634-0921, United States.,MOA Key Laboratory of Agricultural Information Acquisition Technology (Beijing), China Agricultural University , Beijing 10083, China
| | - Di Li
- Department of Mechanical Engineering, Clemson University , Clemson, South Carolina 29634-0921, United States
| | - Jianhan Lin
- MOA Key Laboratory of Agricultural Information Acquisition Technology (Beijing), China Agricultural University , Beijing 10083, China
| | - Maohua Wang
- MOA Key Laboratory of Agricultural Information Acquisition Technology (Beijing), China Agricultural University , Beijing 10083, China
| | - Xiangchun Xuan
- Department of Mechanical Engineering, Clemson University , Clemson, South Carolina 29634-0921, United States
| |
Collapse
|
19
|
Tarn MD, Pamme N. On-Chip Magnetic Particle-Based Immunoassays Using Multilaminar Flow for Clinical Diagnostics. Methods Mol Biol 2017; 1547:69-83. [PMID: 28044288 DOI: 10.1007/978-1-4939-6734-6_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Magnetic particles have become popular in recent years for immunoassays due to their high surface-to-volume ratio and the ease of their manipulation. However, such assays also require multiple reaction and washing steps that are both time-consuming and manually laborious. Here, we describe a setup and methodology for performing rapid immunoassays on magnetic particles in continuous flow via their deflection through multiple laminar flow streams of reagents and washing solutions. In particular, we focus on the use of the microfluidic platform for a C-reactive protein (CRP) sandwich immunoassay in less than 60 s.
Collapse
Affiliation(s)
- Mark D Tarn
- Department of Chemistry, The University of Hull, Cottingham Road, Hull, HU6 7RX, UK
| | - Nicole Pamme
- Department of Chemistry, The University of Hull, Cottingham Road, Hull, HU6 7RX, UK.
| |
Collapse
|
20
|
Ayan B, Ozcelik A, Bachman H, Tang SY, Xie Y, Wu M, Li P, Huang TJ. Acoustofluidic coating of particles and cells. LAB ON A CHIP 2016; 16:4366-4372. [PMID: 27754503 PMCID: PMC5465870 DOI: 10.1039/c6lc00951d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
On-chip microparticle and cell coating technologies enable a myriad of applications in chemistry, engineering, and medicine. Current microfluidic coating technologies often rely on magnetic labeling and concurrent deflection of particles across laminar streams of chemicals. Herein, we introduce an acoustofluidic approach for microparticle and cell coating by implementing tilted-angle standing surface acoustic waves (taSSAWs) into microchannels with multiple inlets. The primary acoustic radiation force generated by the taSSAW field was exploited in order to migrate the particles across the microchannel through multiple laminar streams, which contained the buffer and coating chemicals. We demonstrate effective coating of polystyrene microparticles and HeLa cells without the need for magnetic labelling. We characterized the coated particles and HeLa cells with fluorescence microscopy and scanning electron microscopy. Our acoustofluidic-based particle and cell coating method is label-free, biocompatible, and simple. It can be useful in the on-chip manufacturing of many functional particles and cells.
Collapse
Affiliation(s)
- Bugra Ayan
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Adem Ozcelik
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA.
| | - Hunter Bachman
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA.
| | - Shi-Yang Tang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Yuliang Xie
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Mengxi Wu
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA.
| | - Peng Li
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Tony Jun Huang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA and Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
21
|
Li S, Ren L, Huang PH, Yao X, Cuento RA, McCoy JP, Cameron CE, Levine SJ, Huang TJ. Acoustofluidic Transfer of Inflammatory Cells from Human Sputum Samples. Anal Chem 2016; 88:5655-61. [PMID: 27183317 PMCID: PMC5466821 DOI: 10.1021/acs.analchem.5b03383] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
For sputum analysis, the transfer of inflammatory cells from liquefied sputum samples to a culture medium or buffer solution is a critical step because it removes the inflammatory cells from the presence of residual dithiothreitol (DTT), a reagent that reduces cell viability and interferes with further sputum analyses. In this work, we report an acoustofluidic platform for transferring inflammatory cells using standing surface acoustic waves (SSAW). In particular, we exploit the acoustic radiation force generated from a SSAW field to actively transfer inflammatory cells from a solution containing residual DTT to a buffer solution. The viability and integrity of the inflammatory cells are maintained during the acoustofluidic-based cell transfer process. Our acoustofluidic technique removes residual DTT generated in sputum liquefaction and facilitates immunophenotyping of major inflammatory cells from sputum samples. It enables cell transfer in a continuous flow, which aids the development of an automated, integrated system for on-chip sputum processing and analysis.
Collapse
Affiliation(s)
- Sixing Li
- Department of Engineering Science and Mechanics, The Huck Institutes of the Life Sciences, University Park, Pennsylvania 16802, United States
- The Molecular, Cellular and Integrative Biosciences (MCIBS) Graduate Program, The Huck Institutes of the Life Sciences, University Park, Pennsylvania 16802, United States
| | - Liqiang Ren
- Department of Engineering Science and Mechanics, The Huck Institutes of the Life Sciences, University Park, Pennsylvania 16802, United States
| | - Po-Hsun Huang
- Department of Engineering Science and Mechanics, The Huck Institutes of the Life Sciences, University Park, Pennsylvania 16802, United States
| | - Xianglan Yao
- National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland 20892, United States
| | - Rosemarie A. Cuento
- National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland 20892, United States
| | - J. Philip McCoy
- National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland 20892, United States
| | - Craig E. Cameron
- The Molecular, Cellular and Integrative Biosciences (MCIBS) Graduate Program, The Huck Institutes of the Life Sciences, University Park, Pennsylvania 16802, United States
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Stewart J. Levine
- National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland 20892, United States
| | - Tony Jun Huang
- Department of Engineering Science and Mechanics, The Huck Institutes of the Life Sciences, University Park, Pennsylvania 16802, United States
- The Molecular, Cellular and Integrative Biosciences (MCIBS) Graduate Program, The Huck Institutes of the Life Sciences, University Park, Pennsylvania 16802, United States
| |
Collapse
|
22
|
Boken J, Soni SK, Kumar D. Microfluidic Synthesis of Nanoparticles and their Biosensing Applications. Crit Rev Anal Chem 2016; 46:538-61. [DOI: 10.1080/10408347.2016.1169912] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
23
|
Jones SG, Abbasi N, Moon BU, Tsai SSH. Microfluidic magnetic self-assembly at liquid-liquid interfaces. SOFT MATTER 2016; 12:2668-2675. [PMID: 26854215 DOI: 10.1039/c5sm03104d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We present a microfluidic method that controllably self-assembles microparticles into clusters at an aqueous two-phase liquid-liquid interface. The liquid-liquid interface is formed between converging flows of aqueous dextran and polyethylene glycol, in a microfluidic cross-slot device. We control the size of the self-assembled particle clusters as they pass through the liquid-liquid interface, by systematically varying the applied magnetic field gradient, and the interfacial tension of the liquid-liquid interface. We find that upon penetration through the interface, the number of particles within a cluster increases with increasing interfacial tension, and decreasing magnetic field gradient. We also develop a scaling model of the number of particles within a cluster, and observe an inverse scaling of the number of particles within a cluster with the dimensionless magnetic Bond number. Upon cluster penetration across the liquid-liquid interface, we find magnetic Bond number regimes where the fluid coating drains away from the surface of the cluster, and where the clusters are encapsulated inside a thin film coating layer. This self-assembly technique may find application in controlling the size of microscale self-assemblies, and coating such assemblies; for example, in clustering and coating of cells for immunoisolated cell transplants.
Collapse
Affiliation(s)
- Steven G Jones
- Ryerson University, Mechanical and Industrial Engineering, Toronto, Canada.
| | | | | | | |
Collapse
|
24
|
Jha AK, Bahga SS. Uncertainty quantification in modeling of microfluidic T-sensor based diffusion immunoassay. BIOMICROFLUIDICS 2016; 10:014105. [PMID: 26858817 PMCID: PMC4714986 DOI: 10.1063/1.4940040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 01/05/2016] [Indexed: 06/05/2023]
Abstract
Comparison of experimental data with modeling predictions is essential for making quantitative measurements of species properties, such as diffusion coefficients and species concentrations using a T-sensor. To make valid comparisons between experimental data and model predictions, it is necessary to account for uncertainty in model predictions due to uncertain values of model parameters. We present an analysis of uncertainty induced in model predictions of a T-sensor based competitive diffusion immunoassay due to uncertainty in diffusion constants, binding reaction rate constants, and inlet flow speed. We use a non-intrusive stochastic uncertainty quantification method employing polynomial chaos expansions to represent the dependence of uncertain species concentrations on the uncertainty in model parameters. Our simulations show that the uncertainties in model parameters lead to significant spatially varying uncertainty in predicted concentration. In particular, the diffusivity of fluorescently labeled probe antigen dominates the overall uncertainty. The predicted uncertainty in fluorescence intensity is minimum near the centerline of T-sensor and relatively high in the regions with gradients in fluorescence intensity. We show that using centerline fluorescence intensity instead of first derivative of fluorescence intensity as the system response for measuring sample antigen concentration in T-sensor based competitive diffusion immunoassay leads to lower uncertainty and higher detection sensitivity.
Collapse
Affiliation(s)
- Aman Kumar Jha
- Department of Mechanical Engineering, Indian Institute of Technology Delhi , New Delhi 110016, India
| | - Supreet Singh Bahga
- Department of Mechanical Engineering, Indian Institute of Technology Delhi , New Delhi 110016, India
| |
Collapse
|
25
|
Leng Y, Sun K, Chen X, Li W. Suspension arrays based on nanoparticle-encoded microspheres for high-throughput multiplexed detection. Chem Soc Rev 2015; 44:5552-95. [PMID: 26021602 PMCID: PMC5223091 DOI: 10.1039/c4cs00382a] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Spectrometrically or optically encoded microsphere based suspension array technology (SAT) is applicable to the high-throughput, simultaneous detection of multiple analytes within a small, single sample volume. Thanks to the rapid development of nanotechnology, tremendous progress has been made in the multiplexed detecting capability, sensitivity, and photostability of suspension arrays. In this review, we first focus on the current stock of nanoparticle-based barcodes as well as the manufacturing technologies required for their production. We then move on to discuss all existing barcode-based bioanalysis patterns, including the various labels used in suspension arrays, label-free platforms, signal amplification methods, and fluorescence resonance energy transfer (FRET)-based platforms. We then introduce automatic platforms for suspension arrays that use superparamagnetic nanoparticle-based microspheres. Finally, we summarize the current challenges and their proposed solutions, which are centered on improving encoding capacities, alternative probe possibilities, nonspecificity suppression, directional immobilization, and "point of care" platforms. Throughout this review, we aim to provide a comprehensive guide for the design of suspension arrays, with the goal of improving their performance in areas such as multiplexing capacity, throughput, sensitivity, and cost effectiveness. We hope that our summary on the state-of-the-art development of these arrays, our commentary on future challenges, and some proposed avenues for further advances will help drive the development of suspension array technology and its related fields.
Collapse
Affiliation(s)
- Yuankui Leng
- The State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | | | | | | |
Collapse
|
26
|
Chen Y, Abrams ES, Boles TC, Pedersen JN, Flyvbjerg H, Austin RH, Sturm JC. Concentrating genomic length DNA in a microfabricated array. PHYSICAL REVIEW LETTERS 2015; 114:198303. [PMID: 26024203 DOI: 10.1103/physrevlett.114.198303] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Indexed: 05/19/2023]
Abstract
We demonstrate that a microfabricated bump array can concentrate genomic-length DNA molecules efficiently at continuous, high flow velocities, up to 40 μm/s, if the single-molecule DNA globule has a sufficiently large shear modulus. Increase in the shear modulus is accomplished by compacting the DNA molecules to minimal coil size using polyethylene glycol (PEG) derived depletion forces. We map out the sweet spot, where concentration occurs, as a function of PEG concentration and flow speed using a combination of theoretical analysis and experiment. Purification of DNA from enzymatic reactions for next-generation DNA-sequencing libraries will be an important application of this development.
Collapse
Affiliation(s)
- Yu Chen
- Princeton Institute for Science and Technology of Materials (PRISM), Princeton, New Jersey 08540, USA
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Ezra S Abrams
- Sage Science, Inc., Beverly, Massachusetts 01915, USA
| | | | - Jonas N Pedersen
- Department of Micro- and Nanotechnology, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Henrik Flyvbjerg
- Department of Micro- and Nanotechnology, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Robert H Austin
- Princeton Institute for Science and Technology of Materials (PRISM), Princeton, New Jersey 08540, USA
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - James C Sturm
- Princeton Institute for Science and Technology of Materials (PRISM), Princeton, New Jersey 08540, USA
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
27
|
Three dimensional simulation of negative-magnetophoretic filtration of non-magnetic nanoparticles. Chem Eng Res Des 2015. [DOI: 10.1016/j.cherd.2015.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
28
|
Li S, Ding X, Mao Z, Chen Y, Nama N, Guo F, Li P, Wang L, Cameron CE, Huang TJ. Standing surface acoustic wave (SSAW)-based cell washing. LAB ON A CHIP 2015; 15:331-8. [PMID: 25372273 PMCID: PMC4442640 DOI: 10.1039/c4lc00903g] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cell/bead washing is an indispensable sample preparation procedure used in various cell studies and analytical processes. In this article, we report a standing surface acoustic wave (SSAW)-based microfluidic device for cell and bead washing in a continuous flow. In our approach, the acoustic radiation force generated in a SSAW field is utilized to actively extract cells or beads from their original medium. A unique configuration of tilted-angle standing surface acoustic wave (taSSAW) is employed in our device, enabling us to wash beads with >98% recovery rate and >97% washing efficiency. We also demonstrate the functionality of our device by preparing high-purity (>97%) white blood cells from lysed blood samples through cell washing. Our SSAW-based cell/bead washing device has the advantages of label-free manipulation, simplicity, high biocompatibility, high recovery rate, and high washing efficiency. It can be useful for many lab-on-a-chip applications.
Collapse
Affiliation(s)
- Sixing Li
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Tarn MD, Elders LT, Peyman SA, Pamme N. Diamagnetic repulsion of particles for multilaminar flow assays. RSC Adv 2015. [DOI: 10.1039/c5ra21867e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A continuous multilaminar flow reaction was performed on functionalised polymer particlesviadiamagnetic repulsion forces, using a simple, inexpensive setup.
Collapse
|
30
|
Konnova SA, Danilushkina AA, Fakhrullina GI, Akhatova FS, Badrutdinov AR, Fakhrullin RF. Silver nanoparticle-coated “cyborg” microorganisms: rapid assembly of polymer-stabilised nanoparticles on microbial cells. RSC Adv 2015. [DOI: 10.1039/c4ra15857a] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Silver nanoparticles-coated “cyborg” cells.
Collapse
Affiliation(s)
- S. A. Konnova
- Bionanotechnology Lab
- Institute of Fundamental Medicine and Biology
- Kazan Federal University
- Kazan
- Russian Federation
| | - A. A. Danilushkina
- Bionanotechnology Lab
- Institute of Fundamental Medicine and Biology
- Kazan Federal University
- Kazan
- Russian Federation
| | - G. I. Fakhrullina
- Bionanotechnology Lab
- Institute of Fundamental Medicine and Biology
- Kazan Federal University
- Kazan
- Russian Federation
| | - F. S. Akhatova
- Bionanotechnology Lab
- Institute of Fundamental Medicine and Biology
- Kazan Federal University
- Kazan
- Russian Federation
| | - A. R. Badrutdinov
- Bionanotechnology Lab
- Institute of Fundamental Medicine and Biology
- Kazan Federal University
- Kazan
- Russian Federation
| | - R. F. Fakhrullin
- Bionanotechnology Lab
- Institute of Fundamental Medicine and Biology
- Kazan Federal University
- Kazan
- Russian Federation
| |
Collapse
|
31
|
Phurimsak C, Tarn MD, Peyman SA, Greenman J, Pamme N. On-Chip Determination of C-Reactive Protein Using Magnetic Particles in Continuous Flow. Anal Chem 2014; 86:10552-9. [DOI: 10.1021/ac5023265] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chayakom Phurimsak
- Department
of Chemistry, The University of Hull, Cottingham Road, Hull, HU6 7RX, United Kingdom
| | - Mark D. Tarn
- Department
of Chemistry, The University of Hull, Cottingham Road, Hull, HU6 7RX, United Kingdom
| | - Sally A. Peyman
- Department
of Chemistry, The University of Hull, Cottingham Road, Hull, HU6 7RX, United Kingdom
| | - John Greenman
- School
of Biological, Biomedical and Environmental Sciences, The University of Hull, Cottingham Road, Hull, HU6 7RX, United Kingdom
| | - Nicole Pamme
- Department
of Chemistry, The University of Hull, Cottingham Road, Hull, HU6 7RX, United Kingdom
| |
Collapse
|
32
|
Moon BU, Hakimi N, Hwang DK, Tsai SSH. Microfluidic conformal coating of non-spherical magnetic particles. BIOMICROFLUIDICS 2014; 8:052103. [PMID: 25332731 PMCID: PMC4189426 DOI: 10.1063/1.4892542] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 07/28/2014] [Indexed: 05/17/2023]
Abstract
We present the conformal coating of non-spherical magnetic particles in a co-laminar flow microfluidic system. Whereas in the previous reports spherical particles had been coated with thin films that formed spheres around the particles; in this article, we show the coating of non-spherical particles with coating layers that are approximately uniform in thickness. The novelty of our work is that while liquid-liquid interfacial tension tends to minimize the surface area of interfaces-for example, to form spherical droplets that encapsulate spherical particles-in our experiments, the thin film that coats non-spherical particles has a non-minimal interfacial area. We first make bullet-shaped magnetic microparticles using a stop-flow lithography method that was previously demonstrated. We then suspend the bullet-shaped microparticles in an aqueous solution and flow the particle suspension with a co-flow of a non-aqueous mixture. A magnetic field gradient from a permanent magnet pulls the microparticles in the transverse direction to the fluid flow, until the particles reach the interface between the immiscible fluids. We observe that upon crossing the oil-water interface, the microparticles become coated by a thin film of the aqueous fluid. When we increase the two-fluid interfacial tension by reducing surfactant concentration, we observe that the particles become trapped at the interface, and we use this observation to extract an approximate magnetic susceptibility of the manufactured non-spherical microparticles. Finally, using fluorescence imaging, we confirm the uniformity of the thin film coating along the entire curved surface of the bullet-shaped particles. To the best of our knowledge, this is the first demonstration of conformal coating of non-spherical particles using microfluidics.
Collapse
Affiliation(s)
- Byeong-Ui Moon
- Department of Mechanical and Industrial Engineering, Ryerson University , 350 Victoria St., Toronto, Ontario M5B 2K3, Canada
| | - Navid Hakimi
- Department of Chemical Engineering, Ryerson University , 350 Victoria St., Toronto, Ontario M5B 2K3, Canada
| | - Dae Kun Hwang
- Department of Chemical Engineering, Ryerson University , 350 Victoria St., Toronto, Ontario M5B 2K3, Canada
| | - Scott S H Tsai
- Department of Mechanical and Industrial Engineering, Ryerson University , 350 Victoria St., Toronto, Ontario M5B 2K3, Canada
| |
Collapse
|
33
|
Phurimsak C, Yildirim E, Tarn MD, Trietsch SJ, Hankemeier T, Pamme N, Vulto P. Phaseguide assisted liquid lamination for magnetic particle-based assays. LAB ON A CHIP 2014; 14:2334-2343. [PMID: 24832933 DOI: 10.1039/c4lc00139g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We have developed a magnetic particle-based assay platform in which functionalised magnetic particles are transferred sequentially through laminated volumes of reagents and washing buffers. Lamination of aqueous liquids is achieved via the use of phaseguide technology; microstructures that control the advancing air-liquid interface of solutions as they enter a microfluidic chamber. This allows manual filling of the device, eliminating the need for external pumping systems, and preparation of the system requires only a few minutes. Here, we apply the platform to two on-chip strategies: (i) a one-step streptavidin-biotin binding assay, and (ii) a two-step C-reactive protein immunoassay. With these, we demonstrate how condensing multiple reaction and washing processes into a single step significantly reduces procedural times, with both assay procedures requiring less than 8 seconds.
Collapse
Affiliation(s)
- Chayakom Phurimsak
- Department of Chemistry, The University of Hull, Cottingham Road, Hull, HU6 7RX, UK.
| | | | | | | | | | | | | |
Collapse
|