1
|
D’Archivio AA, Maggi MA. Investigation by response surface methodology of the combined effect of pH and composition of water-methanol mixtures on the stability of curcuminoids. Food Chem 2017; 219:414-418. [DOI: 10.1016/j.foodchem.2016.09.167] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 08/29/2016] [Accepted: 09/27/2016] [Indexed: 01/19/2023]
|
2
|
Gao Y, Nieuwendaal R, Dimitriadis EK, Hammouda B, Douglas JF, Xu B, Horkay F. Supramolecular Self-assembly of a Model Hydrogelator: Characterization of Fiber Formation and Morphology. Gels 2016; 2:27. [PMID: 28649573 PMCID: PMC5482529 DOI: 10.3390/gels2040027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/22/2016] [Indexed: 11/16/2022] Open
Abstract
Hydrogels are of intense recent interest in connection with biomedical applications ranging from 3-D cell cultures and stem cell differentiation to regenerative medicine, controlled drug delivery and tissue engineering. This prototypical form of soft matter has many emerging material science applications outside the medical field. The physical processes underlying this type of solidification are incompletely understood and this limits design efforts aimed at optimizing these materials for applications. We address this general problem by applying multiple techniques (e.g., NMR, dynamic light scattering, small angle neutron scattering, rheological measurements) to the case of a peptide derivative hydrogelator (molecule 1, NapFFKYp) over a broad range of concentration and temperature to characterize both the formation of individual nanofibers and the fiber network. We believe that a better understanding of the hierarchical self-assembly process and control over the final morphology of this kind of material should have broad significance for biological and medicinal applications utilizing hydrogels.
Collapse
Affiliation(s)
- Yuan Gao
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA;
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA;
| | - Ryan Nieuwendaal
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA;
| | - Emilios K. Dimitriadis
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Boualem Hammouda
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA;
| | - Jack F. Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA;
| | - Bing Xu
- Department of Chemistry, Brandeis University, Waltham, MA 02453, USA;
| | - Ferenc Horkay
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
3
|
Dispersive Liquid-Liquid Microextraction Combined with Gas Chromatography-Mass Spectrometry for the Determination of Multiple Pesticides in Celery. FOOD ANAL METHOD 2016. [DOI: 10.1007/s12161-015-0390-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
4
|
Quick Supramolecular Solvent-Based Microextraction Combined with Ultra-High Performance Liquid Chromatography for the Analysis of Isoflavones in Soy Foods. FOOD ANAL METHOD 2015. [DOI: 10.1007/s12161-015-0365-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|