1
|
Pan G, Au CK, Ham YH, Yu JZ, Cai Z, Chan W. Urinary Thioproline and Thioprolinyl Glycine as Specific Biomarkers of Formaldehyde Exposure in Humans. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16368-16375. [PMID: 39223712 DOI: 10.1021/acs.est.4c06921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Assessment of personal formaldehyde (FA) exposure is most commonly carried out using formate as a biomarker, as it is the major product from FA metabolism. However, formate could also have originated from the metabolism of other endogenous and exogenous substances or from dietary intake, which may give rise to overestimated results with regard to FA exposure. We have developed and validated a liquid chromatography-tandem mass spectrometry (LC-MS/MS) coupled with an isotope-dilution method for rigorous quantitation of two major urinary FA conjugation products: thioproline (SPro) and thioprolinyl glycine (SPro-Gly), formed in the reaction between FA and endogenous cysteine or cysteinyl glycine, respectively, as marker molecules to assess personal FA exposure. Using this newly developed method, we measured the FA exposure levels in cigarette smokers, occupants of a chemistry research laboratory and typical domestic household, and visitors to a Chinese temple with a Pearson correlation coefficient greater than 0.94, showing a strong linear correlation between urinary adduct levels and the airborne FA level. It is believed that quantitation of urinary SPro and SPro-Gly may represent a noninvasive, interference-free method for assessing personal FA exposure.
Collapse
Affiliation(s)
- Guanrui Pan
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Chun-Kit Au
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Yat-Hing Ham
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Jian Zhen Yu
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Kowloon , Hong Kong SAR, China
| | - Zongwei Cai
- Department of Chemistry and State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon , Hong Kong SAR, China
| | - Wan Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Kowloon , Hong Kong SAR, China
| |
Collapse
|
2
|
Ham YH, Chin ML, Pan G, Wang S, Pavlović NM, Chan W. Positive Feedback Mechanism in Aristolochic Acid I Exposure-Induced Anemia and DNA Adduct Formation: Implications for Balkan Endemic Nephropathy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18155-18161. [PMID: 39088813 DOI: 10.1021/acs.jafc.4c03508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Balkan endemic nephropathy (BEN) is a chronic kidney disease that predominantly affects inhabitants of rural farming communities along the Danube River tributaries in the Balkans. Long-standing research has identified dietary exposure to aristolochic acids (AAs) as the principal toxicological cause. This study investigates the pathophysiological role of anemia in BEN, noting its earlier and more severe manifestation in BEN patients compared to those with other chronic kidney diseases. Utilizing a mouse model, our research demonstrates that prolonged exposure to aristolochic acid I (AA-I) (the most prevalent AA variant) leads to significant red blood cell depletion through DNA damage, such as DNA adduct formation in bone marrow, prior to observable kidney function decline. Furthermore, in vitro experiments with kidney cells exposed to lowered oxygen and pH conditions mimicking an anemia environment show enhanced DNA adduct formation, suggesting increased AA-I mutagenicity and carcinogenicity. These findings indicate for the first time a positive feedback mechanism of AA-induced anemia, DNA damage, and kidney impairment in BEN progression. These results not only advance our understanding of the underlying mechanisms of BEN but also highlight anemia as a potential target for early BEN diagnosis and therapy.
Collapse
Affiliation(s)
- Yat-Hing Ham
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Man-Lung Chin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Guanrui Pan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Shuangshuang Wang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | | | - Wan Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
3
|
Thammajinno S, Buranachai C, Kanatharana P, Thavarungkul P, Thammakhet-Buranachai C. A copper nanoclusters probe for dual detection of microalbumin and creatinine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 270:120816. [PMID: 34995852 DOI: 10.1016/j.saa.2021.120816] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
A fluorescent probe based on glutathione-capped copper nanoclusters (GSH-CuNCs) was developed for the detection of dual targets, human serum albumin (HSA) and creatinine, in human urine. The GSH-CuNCs were synthesized by a one-pot green method using ascorbic acid as a reducing agent. The detection of HSA was in a turn-on mode via electrostatic interaction in a basic condition while the detection of creatinine was in a turn-off mode via non-covalent bonding in an acidic condition. Under optimal conditions, the linear range and detection limit of HSA were 5.0 nM to 150 nM and 1.510 ± 0.041 nM, while those of creatinine were 30 μM to 1000 μM and 13.0 ± 1.0 μM. This easily fabricated nanocluster probe provided a fast response with high sensitivity, and good selectivity. Recoveries from urine samples were in the range of 81.44 ± 0.25 to 109.22 ± 0.57% for HSA and 80.57 ± 0.16 to 109.0 ± 0.10% for creatinine. The urinary analytical results from the fluorescent probe were in good agreement (P > 0.05) to those obtained from immunoturbidimetric and enzymatic methods, signifying the excellent performance of this sensing system.
Collapse
Affiliation(s)
- Supitcha Thammajinno
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Chittanon Buranachai
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400, Thailand
| | - Proespichaya Kanatharana
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Panote Thavarungkul
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400, Thailand
| | - Chongdee Thammakhet-Buranachai
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| |
Collapse
|
4
|
Franz S, Skopp G, Dame T, Musshoff F. Verifying the validity of creatinine measurement in low-concentrated urine spot samples-Photospectrometry versus liquid chromatography-tandem mass spectrometry. Drug Test Anal 2021; 13:1136-1144. [PMID: 33458951 DOI: 10.1002/dta.3003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 11/06/2022]
Abstract
One of the major challenges of testing drugs of abuse is the detection of highly diluted urine samples. The ingestion of a large amount of fluid can considerably reduce the concentration of substances, possibly resulting in inaccurate drug testing. For detection, determination of urinary creatinine is a widely established procedure. In this study, results from the most popular methods, including photospectrometry (Jaffe) and liquid chromatography-tandem mass spectrometry (LC-MS/MS), have been compared regarding 327 urine abstinence control samples. Because samples with creatinine concentrations close to the cutoff of 20 mg/dL are of particular interest, only samples below 50 mg/dL were considered. Results revealed a close correlation of creatinine concentrations by both analytical methods with an R2 value of 0.9005. A mean concentration difference of 3.30 ± 3.45 mg/dL was observed, indicating a moderate underestimation by the Jaffe reaction. Graphical analyses showed high accordance between both methods with only a few outliers. Due to easy handling and for economic reasons, the spectrometric method is often preferred over LC-MS/MS. For urine samples with creatinine concentrations close to the cutoff, confirmation through a second method should be performed to avoid a possible disadvantage or even severe consequences for the respective individual. It is recommended that each laboratory establishes a reliable verification method.
Collapse
Affiliation(s)
- Simon Franz
- Forensic Toxicological Center (FTC) Munich, Munich, Germany
| | - Gisela Skopp
- Forensic Toxicological Center (FTC) Munich, Munich, Germany
| | - Torsten Dame
- Forensic Toxicological Center (FTC) Munich, Munich, Germany
| | - Frank Musshoff
- Forensic Toxicological Center (FTC) Munich, Munich, Germany
| |
Collapse
|
5
|
Mathaweesansurn A, Thongrod S, Khongkaew P, Phechkrajang CM, Wilairat P, Choengchan N. Simple and fast fabrication of microfluidic paper-based analytical device by contact stamping for multiple-point standard addition assay: Application to direct analysis of urinary creatinine. Talanta 2020; 210:120675. [DOI: 10.1016/j.talanta.2019.120675] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 02/06/2023]
|
6
|
Zhang N, Lu M, Duan X, Liu CC, Wang H. In situ calibration of Direct Analysis in Real Time-mass spectrometry for direct quantification: Urine excretion rate index creatinine as an example. Talanta 2019; 201:134-142. [DOI: 10.1016/j.talanta.2019.03.092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/23/2019] [Accepted: 03/27/2019] [Indexed: 10/27/2022]
|
7
|
Tao D, Leister W, Huang W, Alimardanov A, LeClair CA. Facile High-Performance Liquid Chromatography Mass Spectrometry Method for Analysis of Cyclocreatine and Phosphocyclocreatine in Complex Mixtures of Amino Acids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7190-7196. [PMID: 31194545 PMCID: PMC7045947 DOI: 10.1021/acs.jafc.9b01878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Creatine transporter deficiency (CTD) is caused by a defect in the X-linked creatine transporter SLC6A8 gene leading to severe neurologic and physiologic conditions. Cyclocreatine and phosphocyclocreatine supplementation is seen as a potential treatment, but the presence of these compounds within commercially available dietary supplements presents the risk of self-medication. High-performance liquid chromatography-mass spectrometry (HPLC-MS) is an excellent technique to assess composition of complex amino acid mixtures. Herein, we have developed a facile HPLC-MS method using a cyano column in hydrophilic interaction liquid chromatography (HILIC) mode with isocratic elution over 4 min to identify the main components of two commercially available dietary supplements. The relative standard deviation (RSD) for retention time and extracted ion integrated area are <0.3% and 4%, respectively, showing excellent reproducibility. Cyclocreatine and phosphocyclocreatine were not detectable within the dietary supplements, even at ppm levels, demonstrating the power and importance of the developed HPLC-MS method in analyzing complex mixtures.
Collapse
Affiliation(s)
- Dingyin Tao
- Corresponding authors: Dr. Dingyin Tao,
; and Dr. Christopher A. LeClair,
| | | | | | | | | |
Collapse
|
8
|
Zahoor N, Danilenko U, Vesper HW. A fully automated high-throughput liquid chromatography tandem mass spectrometry method for measuring creatinine in urine. CLINICAL MASS SPECTROMETRY (DEL MAR, CALIF.) 2019; 11:1-7. [PMID: 34414261 PMCID: PMC8372835 DOI: 10.1016/j.clinms.2018.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 10/27/2022]
Abstract
Reliable creatinine measurements are important to evaluate kidney function and for creatinine correction to reduce biological variability of other urinary analytes. A high-throughput, accurate liquid chromatography tandem mass spectrometry method for quantitation of human urinary creatinine has been developed and validated. Sample preparation was fully automated including cryovial decapping, sample ID scanning and two serial dilution steps. Quantitation was performed using a stable isotope-labeled internal standard. Multiplexed chromatographic separation of creatinine was achieved within a one-minute analysis and followed by tandem mass spectrometry in positive electrospray ionization mode. The precursor and product ions of creatinine and D3-creatinine were monitored in selected reaction monitoring mode. Method validation results showed reproducibility with within-run precision of 3.59, 3.49 and 2.84% and between-run precision of 4.01, 3.28 and 3.57% for low, medium and high quality control materials prepared from pooled donor urine, respectively. The method showed excellent accuracy with a bias of -1.94%, -0.78% and -1.07% for three levels of certified reference material. The calibration curve was linear throughout a 7.50-300 mg/dL (0.663-26.5 mmol/L) measurement range (R2 = 0.999), with the mean slope of 0.0115 (95%CI, 0.0108-0.0122) and intercept of 0.0027 (95%CI, 0.0003-0.0051). The limit of detection (LOD) of the method was 3.17 mg/dL (0.280 mmol/L). Analytical specificity was achieved by chromatographically separating creatinine from potentially interfering creatine within a one-minute run and monitoring the Quantitation Ion/Confirmation Ion (QI/CI) ratios in samples. A simple, accurate, high-throughput method was successfully developed for measuring creatinine in human urine samples.
Collapse
Affiliation(s)
- Neelam Zahoor
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy NE, MS F25, Atlanta, GA 30341, USA
| | - Uliana Danilenko
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy NE, MS F25, Atlanta, GA 30341, USA
| | - Hubert W. Vesper
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy NE, MS F25, Atlanta, GA 30341, USA
| |
Collapse
|
9
|
Aluminum(III) triggered aggregation-induced emission of glutathione-capped copper nanoclusters as a fluorescent probe for creatinine. Mikrochim Acta 2018; 186:29. [DOI: 10.1007/s00604-018-3111-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 11/25/2018] [Indexed: 11/26/2022]
|
10
|
Jurdáková H, Górová R, Addová G, Šalingová A, Ostrovský I. FIA-MS/MS determination of creatinine in urine samples undergoing butylation. Anal Biochem 2018; 549:113-118. [PMID: 29567404 DOI: 10.1016/j.ab.2018.03.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/16/2018] [Accepted: 03/17/2018] [Indexed: 01/15/2023]
Abstract
Flow injection analysis-tandem mass spectrometry has become widely used for analysis of many biomarkers in various biological matrices. To improve the sensitivity, the compounds are often determined as their butylesters. Since the concentration of urinary excreted compounds are generally reported after normalization to creatinine, the aim of this study was to investigate the possibility of creatinine determination in urine samples which underwent butylation. The impact of derivatization on urinary creatinine determination was investigated by measuring of underivatized and derivatized samples. The 10% creatine to creatinine conversion was observed during butylation, what above 700 μmol creatine/mmol creatinine caused significant creatinine overestimation. In that case, correction for creatine conversion rate was done. QC samples at six concentration levels were examined and precision and accuracy values fulfill the European Medicine Agency validation requirements. The elaborated method was applied for determination of creatinine in 41 real human urine samples. Determined creatinine concentrations were in the range of 0.27-22.3 mmol/L, linearity was confirmed within the concentration range of 0.27-31.7 mmol/L. Obtained results highly correlated with routinely used enzymatic assay for all tested samples and proposed method provide reliable determination of creatinine in butylated urine in a single run with butylesters of other analytes of interest.
Collapse
Affiliation(s)
- Helena Jurdáková
- Institute of Chemistry, Faculty of Natural Sciences, Comenius University, Mlynská dolina CH-2, Ilkovičova 6, 84215 Bratislava, Slovakia.
| | - Renáta Górová
- Institute of Chemistry, Faculty of Natural Sciences, Comenius University, Mlynská dolina CH-2, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Gabriela Addová
- Institute of Chemistry, Faculty of Natural Sciences, Comenius University, Mlynská dolina CH-2, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Anna Šalingová
- Department of Laboratory Medicine, Comenius University Children's Hospital, Limbová 1, 83340 Bratislava, Slovakia
| | - Ivan Ostrovský
- Institute of Chemistry, Faculty of Natural Sciences, Comenius University, Mlynská dolina CH-2, Ilkovičova 6, 84215 Bratislava, Slovakia
| |
Collapse
|
11
|
Chan W, Pavlović NM, Li W, Chan CK, Liu J, Deng K, Wang Y, Milosavljević B, Kostić EN. Quantitation of Aristolochic Acids in Corn, Wheat Grain, and Soil Samples Collected in Serbia: Identifying a Novel Exposure Pathway in the Etiology of Balkan Endemic Nephropathy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:5928-5934. [PMID: 27362729 DOI: 10.1021/acs.jafc.6b02203] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
While to date investigations provided convincing evidence on the role of aristolochic acids (AAs) in the etiology of Balkan endemic nephropathy (BEN) and upper urothelial cancer (UUC), the exposure pathways by which AAs enter human bodies to cause BEN and UUC remain obscure. The goal of this study is to test the hypothesis that environmental pollution by AAs and root uptake of AAs in the polluted soil may be one of the pathways by which AAs enter the human food chain. The hypothesis driving this study was that the decay of Aristolochia clematitis L., a AA-containing herbaceous plant that is found growing widespread in the endemic regions, could release free AAs to the soil, which could be taken up by food crops growing nearby, thereby transferring this potent human nephrotoxin and carcinogen into their edible parts. Using the highly sensitive and selective high-performance liquid chromatography coupled with fluorescence detection method, we identified and quantitated in this study for the first time AAs in corn, wheat grain, and soil samples collected from the endemic village Kutles in Serbia. Our results provide the first direct evidence that food crops and soil in the Balkans are contaminated with AAs. It is possible that the presence of AAs in edible parts of crops originating from the AA-contaminated soil could be one of the major pathways by which humans become exposed to AAs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Biljana Milosavljević
- Institute for Forensic Medicine Medical Faculty, University of Niš , 18000 Niš, Serbia
| | - Emina N Kostić
- Clinic of Nephrology, Clinical Center Niš , 18000 Niš, Serbia
| |
Collapse
|
12
|
Meng X, Tong T, Wang L, Liu H, Chan W. Determination of 2-alkylcyclobutanones by combining precolumn derivatization with 1-naphthalenyl hydrazine and ultra-performance liquid chromatography with fluorescence detection. Anal Bioanal Chem 2016; 408:3707-14. [PMID: 27000564 DOI: 10.1007/s00216-016-9455-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/19/2016] [Accepted: 02/28/2016] [Indexed: 10/22/2022]
Abstract
2-Alkylcyclobutanones (2-ACBs) are uniquely formed when triglycerides-containing food products are exposed to ionizing radiation. Thus, 2-ACBs have been used as marker molecules to identify irradiated food. Most methods to determine 2-ACBs involve mass spectrometric detection after chromatographic separation. The spectrofluorometer is rarely used to determine 2-ACBs because these molecules do not fluoresce. In this study, we developed an ultra-performance liquid chromatography (UPLC) method to determine 2-ACBs. 2-ACBs were converted into fluorophores after reacting with 1-naphthalenyl hydrazine to facilitate their sensitive and selective detection using a fluorescence detector (FLD). Analysis of 2-ACBs using our developed UPLC-FLD method allows sensitive determination of 2-ACBs at a detection limit of 2 ng 2-ACBs per g of fat (30 pg/injection), which is significantly lower than that of existing analytical methods. After validation for trueness and precision, the method was applied to γ-irradiated chicken samples to determine their 2-ACB content. Comparative studies employing liquid chromatography-tandem mass spectrometric method revealed no systematic difference between the two methods, thereby demonstrating that the proposed UPLC-FLD method can be suitably used to determine 2-ACBs in irradiated foodstuffs. Graphical Abstract Determination of radiation-induced food-borne 2-dodecylcyclobutanone and 2-tetradecylcyclobutanone by combining 1-naphthalenyl hydrazine derivatization and ultra-performance liquid chromatography with fluorescence detection.
Collapse
Affiliation(s)
- Xiangpeng Meng
- Department of Chemistry, The Hong Kong University of Science and Technology, Academic Building, Clear Water Bay, Kowloon, Hong Kong
| | - Tong Tong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuchang District, Wuhan, Hubei, 430071, China
| | - Lianrong Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuchang District, Wuhan, Hubei, 430071, China
| | - Hanxia Liu
- Chinese Academy of Inspection and Quarantine, Gaobeidian North Road, Chaoyang District, Beijing, 100123, China
| | - Wan Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Academic Building, Clear Water Bay, Kowloon, Hong Kong.
| |
Collapse
|
13
|
Chemiluminescence of creatinine/H2O2/Co2+ and its application for selective creatinine detection. Biosens Bioelectron 2016; 75:347-51. [DOI: 10.1016/j.bios.2015.08.053] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/10/2015] [Accepted: 08/22/2015] [Indexed: 12/15/2022]
|
14
|
Debus B, Kirsanov D, Yaroshenko I, Sidorova A, Piven A, Legin A. Two low-cost digital camera-based platforms for quantitative creatinine analysis in urine. Anal Chim Acta 2015; 895:71-9. [PMID: 26454461 DOI: 10.1016/j.aca.2015.09.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/31/2015] [Accepted: 09/01/2015] [Indexed: 12/13/2022]
Abstract
In clinical analysis creatinine is a routine biomarker for the assessment of renal and muscular dysfunctions. Although several techniques have been proposed for a fast and accurate quantification of creatinine in human serum or urine, most of them require expensive or complex apparatus, advanced sample preparation or skilled operators. To circumvent these issues, we propose two home-made platforms based on a CD Spectroscope (CDS) and Computer Screen Photo-assisted Technique (CSPT) for the rapid assessment of creatinine level in human urine. Both systems display a linear range (r(2) = 0.9967 and 0.9972, respectively) from 160 μmol L(-1) to 1.6 mmol L(-1) for standard creatinine solutions (n = 15) with respective detection limits of 89 μmol L(-1) and 111 μmol L(-1). Good repeatability was observed for intra-day (1.7-2.9%) and inter-day (3.6-6.5%) measurements evaluated on three consecutive days. The performance of CDS and CSPT was also validated in real human urine samples (n = 26) using capillary electrophoresis data as reference. Corresponding Partial Least-Squares (PLS) regression models provided for mean relative errors below 10% in creatinine quantification.
Collapse
Affiliation(s)
- Bruno Debus
- Institute of Chemistry, St. Petersburg State University, St. Petersburg 199034, Russia.
| | - Dmitry Kirsanov
- Institute of Chemistry, St. Petersburg State University, St. Petersburg 199034, Russia; Laboratory of Artificial Sensory Systems, ITMO University, St. Petersburg 197101, Russia.
| | - Irina Yaroshenko
- Institute of Chemistry, St. Petersburg State University, St. Petersburg 199034, Russia; Laboratory of Artificial Sensory Systems, ITMO University, St. Petersburg 197101, Russia; Bioanalytical Laboratory CSU "Analytical Spectrometry", St. Petersburg State Polytechnical University, St. Petersburg 198220, Russia
| | - Alla Sidorova
- Bioanalytical Laboratory CSU "Analytical Spectrometry", St. Petersburg State Polytechnical University, St. Petersburg 198220, Russia
| | - Alena Piven
- Bioanalytical Laboratory CSU "Analytical Spectrometry", St. Petersburg State Polytechnical University, St. Petersburg 198220, Russia
| | - Andrey Legin
- Institute of Chemistry, St. Petersburg State University, St. Petersburg 199034, Russia; Laboratory of Artificial Sensory Systems, ITMO University, St. Petersburg 197101, Russia
| |
Collapse
|
15
|
Deng K, Wong TY, Wang Y, Leung EMK, Chan W. Combination of precolumn nitro-reduction and ultraperformance liquid chromatography with fluorescence detection for the sensitive quantification of 1-nitronaphthalene, 2-nitrofluorene, and 1-nitropyrene in meat products. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:3161-3167. [PMID: 25763600 DOI: 10.1021/acs.jafc.5b00523] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Carcinogenic nitropolycyclic aromatic hydrocarbons (nitro-PAHs) are ubiquitous in the ambient environment. They are emitted predominantly from internal combustion engines and by reacting polycyclic aromatic hydrocarbons with nitrogen oxide. The emerging evidence that nitro-PAHs are taken up by plants and bioaccumulatd in the food chain has aroused worldwide concerns for the potential of chronic poisoning through dietary intake. Therefore, analytical methods of high sensitivity are extremely important for assessing the risk of human exposure to nitro-PAHs. This paper describes the development of a simple and robust ultraperformance liquid chromatography coupled fluorescence detector (UPLC-FLD) method for the sensitive determination of nitro-PAHs in meat products. The method entails precolumn reduction of the otherwise nonfluorescent nitro-PAHs to amino-PAHs which strongly fluoresce for their determination by UPLC-FLD analysis. The developed method was validated for extraction efficiency, accuracy, precision, and detection limit and has been successfully applied in quantifying 1-nitronaphthalene (1-NN), 2-nitrofluorene (2-NF), and 1-nitropyrene (1-NP) in fresh and cured meat products. The results showed that the combination of Fe/H(+)-induced nitro-reduction and UPLC-FLD analysis allows sensitive quantification of 1-NN, 2-NF, and 1-NP at detection limits of 0.59, 0.51, and 0.31 μg/kg, respectively, which is at least 10 times lower than those of the existing analytical methods.
Collapse
Affiliation(s)
- Kailin Deng
- †Environmental Science Programs and ‡Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, People's Republic of China
| | - Tin-Yan Wong
- †Environmental Science Programs and ‡Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, People's Republic of China
| | - Yinan Wang
- †Environmental Science Programs and ‡Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, People's Republic of China
| | - Elvis M K Leung
- †Environmental Science Programs and ‡Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, People's Republic of China
| | - Wan Chan
- †Environmental Science Programs and ‡Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, People's Republic of China
| |
Collapse
|
16
|
Liu J, Chan W. Quantification of Thiazolidine-4-carboxylic Acid in Toxicant-Exposed Cells by Isotope-Dilution Liquid Chromatography–Mass Spectrometry Reveals an Intrinsic Antagonistic Response to Oxidative Stress-Induced Toxicity. Chem Res Toxicol 2014; 28:394-400. [DOI: 10.1021/tx500342w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jingjing Liu
- Environmental Science Programs and ‡Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Wan Chan
- Environmental Science Programs and ‡Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
17
|
Wang Y, Chan W. Determination of aristolochic acids by high-performance liquid chromatography with fluorescence detection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:5859-5864. [PMID: 24920127 DOI: 10.1021/jf501609j] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Nephrotoxic and carcinogenic aristolochic acids (AAs) are naturally occurring nitrophenanthrene carboxylic acids in the herbal genus Aristolochia. The misuse of AA-containing herbs in preparing slimming drugs has caused hundred of cases of kidney disease in Belgium women in a slimming regime in the early 1990s. Accumulating evidence also suggested that prolong dietary intake of AA-contaminated food is one of the major causes to the Balkan endemic nephropathy that was first observed in the late 1950s. Therefore, analytical methods of high sensitivity are extremely important for safeguarding human exposure to AA-containing herbal medicines, herbal remedies, and food composites. In this paper, we describe the development of a new high-performance liquid chromatography coupled fluorescence detector (HPLC-FLD) method for the sensitive determination of AAs. The method makes use of a novel cysteine-induced denitration reaction that "turns on" the fluorescence of AAs for fluorometric detections. Our results showed that the combination of cysteine-induced denitration and HPLC-FLD analysis allows for sensitive quantification of AA-I and AA-II at detection limits of 27.1 and 25.4 ng/g, respectively. The method was validated and has been successfully applied in quantifying AAs in Chinese herbal medicines.
Collapse
Affiliation(s)
- Yinan Wang
- Department of Chemistry, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong
| | | |
Collapse
|