1
|
Kontogianni VG, Gerothanassis IP. Analytical and Structural Tools of Lipid Hydroperoxides: Present State and Future Perspectives. Molecules 2022; 27:2139. [PMID: 35408537 PMCID: PMC9000705 DOI: 10.3390/molecules27072139] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 11/17/2022] Open
Abstract
Mono- and polyunsaturated lipids are particularly susceptible to peroxidation, which results in the formation of lipid hydroperoxides (LOOHs) as primary nonradical-reaction products. LOOHs may undergo degradation to various products that have been implicated in vital biological reactions, and thus in the pathogenesis of various diseases. The structure elucidation and qualitative and quantitative analysis of lipid hydroperoxides are therefore of great importance. The objectives of the present review are to provide a critical analysis of various methods that have been widely applied, and more specifically on volumetric methods, applications of UV-visible, infrared, Raman/surface-enhanced Raman, fluorescence and chemiluminescence spectroscopies, chromatographic methods, hyphenated MS techniques, NMR and chromatographic methods, NMR spectroscopy in mixture analysis, structural investigations based on quantum chemical calculations of NMR parameters, applications in living cells, and metabolomics. Emphasis will be given to analytical and structural methods that can contribute significantly to the molecular basis of the chemical process involved in the formation of lipid hydroperoxides without the need for the isolation of the individual components. Furthermore, future developments in the field will be discussed.
Collapse
Affiliation(s)
- Vassiliki G. Kontogianni
- Section of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, GR-45110 Ioannina, Greece
| | - Ioannis P. Gerothanassis
- Section of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, GR-45110 Ioannina, Greece
- International Center for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
2
|
Kakeshpour T, Metaferia B, Zare RN, Bax A. Quantitative detection of hydrogen peroxide in rain, air, exhaled breath, and biological fluids by NMR spectroscopy. Proc Natl Acad Sci U S A 2022; 119:e2121542119. [PMID: 35165177 PMCID: PMC8872725 DOI: 10.1073/pnas.2121542119] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/14/2022] [Indexed: 11/29/2022] Open
Abstract
Hydrogen peroxide (H2O2) plays a key role in environmental chemistry, biology, and medicine. H2O2 concentrations typically are 6 to 10 orders of magnitude lower than that of water, making its quantitative detection challenging. We demonstrate that optimized NMR spectroscopy allows direct, interference-free, quantitative measurements of H2O2 down to submicromolar levels in a wide range of fluids, ranging from exhaled breath and air condensate to rain, blood, urine, and saliva. NMR measurements confirm the previously reported spontaneous generation of H2O2 in microdroplets that form when condensing water vapor on a hydrophobic surface, which can interfere with atmospheric H2O2 measurements. Its antimicrobial activity and strong seasonal variation speculatively could be linked to the seasonality of respiratory viral diseases.
Collapse
Affiliation(s)
- Tayeb Kakeshpour
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892
| | - Belhu Metaferia
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892
| | - Richard N Zare
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Adriaan Bax
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892;
| |
Collapse
|
3
|
Kakeshpour T, Bax A. NMR characterization of H 2O 2 hydrogen exchange. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 333:107092. [PMID: 34700041 PMCID: PMC8639671 DOI: 10.1016/j.jmr.2021.107092] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
Quantification of H2O2 concentration in aqueous solutions is of interest in many fields. It usually is based on indirect methods that rely on oxidation reactions that turn on/off fluorescent probes. Such methods can suffer from reaction incompleteness and interfering chemical species. We describe optimization of NMR detection that enables direct quantification of H2O2 down to the nanomolar range. Taking advantage of fast hydrogen exchange (HX) between H2O2 and water permits the use of very short interscan delays, greatly increasing sensitivity. The specific acid-, base- and water-catalyzed HX rates at 2 °C were measured to be 2.1 × 107, 6.1 × 109, and 1.4 × 10-1 M-1s-1, respectively, which result in a minimum HX rate at pH 6.2. Furthermore, the exchange is accelerated by general acid/base catalysis. MES and phosphate buffers catalyze HX strongest in their unprotonated forms. For imidazole, only the unprotonated form catalyzes HX, which contrasts with acetic acid where only the protonated state catalyzes exchange. Inorganic salts such as sodium chloride and azide have negligible effect on HX. We present optimal conditions for accurate measurement of H2O2 concentrations as low as 40 nM in aqueous samples in a few hours.
Collapse
Affiliation(s)
- Tayeb Kakeshpour
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Ad Bax
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Ahmed R, Siddiqui H, Choudhary MI, Gerothanassis IP. 1 H- 13 C HMBC NMR experiments as a structural and analytical tool for the characterization of elusive trans/cis hydroperoxide isomers from oxidized unsaturated fatty acids in solution. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2019; 57:S69-S74. [PMID: 30702165 DOI: 10.1002/mrc.4844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/23/2019] [Accepted: 01/23/2019] [Indexed: 06/09/2023]
Abstract
The radical-dependent oxidation of unsaturated fatty acids is a fundamental reaction in lipid chemistry, biochemistry, and technology. We report herein the first successful application of 1 H-13 C HMBC NMR experiment for the identification and quantification of complex and minor (3.9% to 0.85%) components of cis and trans primary hydroperoxide isomers of oxidized oleate and linoleate methyl esters in solution, without the need of laborious isolation of the individual components.
Collapse
Affiliation(s)
- Raheel Ahmed
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Hina Siddiqui
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Muhammad Iqbal Choudhary
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- Department of Biochemistry, Faculty of Science, King Abdul-Aziz University, Jeddah, Saudi Arabia
| | - Ioannis P Gerothanassis
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- Section of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, Ioannina, Greece
| |
Collapse
|
5
|
Alexandri E, Ahmed R, Siddiqui H, Choudhary MI, Tsiafoulis CG, Gerothanassis IP. High Resolution NMR Spectroscopy as a Structural and Analytical Tool for Unsaturated Lipids in Solution. Molecules 2017; 22:E1663. [PMID: 28981459 PMCID: PMC6151582 DOI: 10.3390/molecules22101663] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 09/28/2017] [Accepted: 10/01/2017] [Indexed: 12/13/2022] Open
Abstract
Mono- and polyunsaturated lipids are widely distributed in Nature, and are structurally and functionally a diverse class of molecules with a variety of physicochemical, biological, medicinal and nutritional properties. High resolution NMR spectroscopic techniques including 1H-, 13C- and 31P-NMR have been successfully employed as a structural and analytical tool for unsaturated lipids. The objective of this review article is to provide: (i) an overview of the critical 1H-, 13C- and 31P-NMR parameters for structural and analytical investigations; (ii) an overview of various 1D and 2D NMR techniques that have been used for resonance assignments; (iii) selected analytical and structural studies with emphasis in the identification of major and minor unsaturated fatty acids in complex lipid extracts without the need for the isolation of the individual components; (iv) selected investigations of oxidation products of lipids; (v) applications in the emerging field of lipidomics; (vi) studies of protein-lipid interactions at a molecular level; (vii) practical considerations and (viii) an overview of future developments in the field.
Collapse
Affiliation(s)
- Eleni Alexandri
- Section of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, GR-45110 Ioannina, Greece.
| | - Raheel Ahmed
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Hina Siddiqui
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Muhammad I Choudhary
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 214412, Saudi Arabia.
| | | | - Ioannis P Gerothanassis
- Section of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, GR-45110 Ioannina, Greece.
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
6
|
Ryoo D, Xu X, Li Y, Tang JA, Zhang J, van Zijl PCM, Liu G. Detection and Quantification of Hydrogen Peroxide in Aqueous Solutions Using Chemical Exchange Saturation Transfer. Anal Chem 2017; 89:7758-7764. [PMID: 28627877 PMCID: PMC5779864 DOI: 10.1021/acs.analchem.7b01763] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The development of new analytical methods to accurately quantify hydrogen peroxide is of great interest. In the current study, we developed a new magnetic resonance (MR) method for noninvasively quantifying hydrogen peroxide (H2O2) in aqueous solutions based on chemical exchange saturation transfer (CEST), an emerging MRI contrast mechanism. Our method can detect H2O2 by its specific CEST signal at ∼6.2 ppm downfield from water resonance, with more than 1000 times signal amplification compared to the direct NMR detection. To improve the accuracy of quantification, we comprehensively investigated the effects of sample properties on CEST detection, including pH, temperature, and relaxation times. To accelerate the NMR measurement, we implemented an ultrafast Z-spectroscopic (UFZ) CEST method to boost the acquisition speed to 2 s per CEST spectrum. To accurately quantify H2O2 in unknown samples, we also implemented a standard addition method, which eliminated the need for predetermined calibration curves. Our results clearly demonstrate that the presented CEST-based technique is a simple, noninvasive, quick, and accurate method for quantifying H2O2 in aqueous solutions.
Collapse
Affiliation(s)
- David Ryoo
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland 21205, United States
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Xiang Xu
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Yuguo Li
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Joel A. Tang
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Jia Zhang
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Peter C. M. van Zijl
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Guanshu Liu
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland 21205, United States
| |
Collapse
|
7
|
Charisiadis P, Kontogianni VG, Tsiafoulis CG, Tzakos AG, Siskos M, Gerothanassis IP. 1H-NMR as a structural and analytical tool of intra- and intermolecular hydrogen bonds of phenol-containing natural products and model compounds. Molecules 2014; 19:13643-82. [PMID: 25185070 PMCID: PMC6271058 DOI: 10.3390/molecules190913643] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/20/2014] [Accepted: 08/21/2014] [Indexed: 11/23/2022] Open
Abstract
Experimental parameters that influence the resolution of 1H-NMR phenol OH signals are critically evaluated with emphasis on the effects of pH, temperature and nature of the solvents. Extremely sharp peaks (Δν1/2≤2 Hz) can be obtained under optimized experimental conditions which allow the application of 1H-13C HMBC-NMR experiments to reveal long range coupling constants of hydroxyl protons and, thus, to provide unequivocal assignment of the OH signals even in cases of complex polyphenol natural products. Intramolecular and intermolecular hydrogen bonds have a very significant effect on 1H OH chemical shifts which cover a region from 4.5 up to 19 ppm. Solvent effects on -OH proton chemical shifts, temperature coefficients (Δδ/ΔT), OH diffusion coefficients, and nJ(13C, O1H) coupling constants are evaluated as indicators of hydrogen bonding and solvation state of phenol -OH groups. Accurate 1H chemical shifts of the OH groups can be calculated using a combination of DFT and discrete solute-solvent hydrogen bond interaction at relatively inexpensive levels of theory, namely, DFT/B3LYP/6-311++G (2d,p). Excellent correlations between experimental 1H chemical shifts and those calculated at the ab initio level can provide a method of primary interest in order to obtain structural and conformational description of solute-solvent interactions at a molecular level. The use of the high resolution phenol hydroxyl group 1H-NMR spectral region provides a general method for the analysis of complex plant extracts without the need for the isolation of the individual components.
Collapse
Affiliation(s)
- Pantelis Charisiadis
- Section of Organic Chemistry & Biochemistry, Department of Chemistry, University of Ioannina, Ioannina GR-45110, Greece.
| | - Vassiliki G Kontogianni
- Section of Organic Chemistry & Biochemistry, Department of Chemistry, University of Ioannina, Ioannina GR-45110, Greece.
| | | | - Andreas G Tzakos
- Section of Organic Chemistry & Biochemistry, Department of Chemistry, University of Ioannina, Ioannina GR-45110, Greece.
| | - Michael Siskos
- Section of Organic Chemistry & Biochemistry, Department of Chemistry, University of Ioannina, Ioannina GR-45110, Greece.
| | - Ioannis P Gerothanassis
- Section of Organic Chemistry & Biochemistry, Department of Chemistry, University of Ioannina, Ioannina GR-45110, Greece.
| |
Collapse
|