1
|
Jeung JH, Han H, Lee CY, Ahn JK. CRISPR/Cas12a Collateral Cleavage Activity for Sensitive 3'-5' Exonuclease Assay. BIOSENSORS 2023; 13:963. [PMID: 37998138 PMCID: PMC10669037 DOI: 10.3390/bios13110963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/20/2023] [Accepted: 10/27/2023] [Indexed: 11/25/2023]
Abstract
This study presents a technique for detecting 3'-5' exonuclease activity through the use of CRISPR/Cas12a. These enzymes, including 3'-5' exonuclease (Exo III), perform crucial roles in various cellular processes and are associated with life expectancy. However, imbalances in their expression can increase susceptibility to diseases such as cancer, particularly under prolonged stress. In this study, an activator sequence of CRISPR/Cas12a was constructed on the 5'-end of a hairpin probe (HP), forming a blunt end. When the 3'-end of the HP was hydrolyzed with Exo III activity, the activator sequence of Cas12a was exposed, which led to collateral cleavage of the DNA signal probe and generated a fluorescent signal, allowing sensitive and highly specific Exo III detection. This detection principle relied on the fact that Exo III exclusively cleaves the 3'-end mononucleotide of dsDNA and does not affect ssDNA. Based on this strategy, Exo III activity was successfully assayed at 0.0073 U/mL, demonstrating high sensitivity. In addition, this technique was used to screen candidate inhibitors of Exo III activity.
Collapse
Affiliation(s)
- Jae Hoon Jeung
- Material & Component Convergence R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Republic of Korea; (J.H.J.); (H.H.)
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyogu Han
- Material & Component Convergence R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Republic of Korea; (J.H.J.); (H.H.)
- Department of Chemistry, Gangneung–Wonju National University, Gangneung 25457, Republic of Korea
| | - Chang Yeol Lee
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak–ro, Yuseong–gu, Daejeon 34141, Republic of Korea
| | - Jun Ki Ahn
- Material & Component Convergence R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Republic of Korea; (J.H.J.); (H.H.)
| |
Collapse
|
2
|
Han H, Jeung JH, Jang SH, Lee CY, Ahn JK. Peroxidase-Mimicking Activity of Nanoceria for Label-Free Colorimetric Assay for Exonuclease III Activity. Int J Mol Sci 2023; 24:12330. [PMID: 37569706 PMCID: PMC10418927 DOI: 10.3390/ijms241512330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
We present a novel label-free colorimetric method for detecting exonuclease III (Exo III) activity using the peroxidase-mimicking activity of cerium oxide nanoparticles (nanoceria). Exo III, an enzyme that specifically catalyzes the stepwise removal of mononucleotides from the 3'-OH termini of double-stranded DNA, plays a significant role in various cellular and physiological processes, including DNA proofreading and repair. Malfunctions of Exo III have been associated with increased cancer risks. To assay the activity of Exo III, we applied the previous reports in that the peroxidase-mimicking activity of nanoceria is inhibited due to the aggregation induced by the electrostatic attraction between DNA and nanoceria. In the presence of Exo III, the substrate DNA (subDNA), which inhibits nanoceria's activity, is degraded, thereby restoring the peroxidase-mimicking activity of nanoceria. Consequently, the 3,3',5,5'-tetramethylbenzidine (TMB) substrate is oxidized, leading to a color change from colorless to blue, along with an increase in the absorbance intensity. This approach enabled us to reliably detect Exo III at a limit of detection (LOD) of 0.263 units/mL across a broad dynamic range from 3.1 to 400 units/mL, respectively, with an outstanding specificity. Since this approach does not require radiolabels, complex DNA design, or sophisticated experimental techniques, it provides a simpler and more feasible alternative to standard methods.
Collapse
Affiliation(s)
- Hyogu Han
- Material & Component Convergence R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Republic of Korea; (H.H.); (J.H.J.); (S.H.J.)
- Department of Chemistry, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Jae Hoon Jeung
- Material & Component Convergence R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Republic of Korea; (H.H.); (J.H.J.); (S.H.J.)
| | - Se Hee Jang
- Material & Component Convergence R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Republic of Korea; (H.H.); (J.H.J.); (S.H.J.)
- Department of Medical Device Engineering and Management, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - Chang Yeol Lee
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Jun Ki Ahn
- Material & Component Convergence R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Republic of Korea; (H.H.); (J.H.J.); (S.H.J.)
| |
Collapse
|
3
|
Reusable and sensitive exonuclease III activity detection on DNB nanoarrays based on cPAS sequencing technology. Enzyme Microb Technol 2021; 150:109878. [PMID: 34489031 DOI: 10.1016/j.enzmictec.2021.109878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/16/2022]
Abstract
In this article we describe a sensitive exonuclease III detection method using a DNB nanoarray from a BGISEQ-500 sequencing kit and demonstrate a detection limit as low as 0.001 U/mL. The flow cell of the sequencing kit was loaded with billions of DNA nanoballs (DNBs) to form the DNB nanoarray and initially used for massively parallel sequencing. The 3'-end recessed dsDNA structure formed by sequencing was shown to be a perfect substrate for exonuclease III, but not for other nucleases such as exonuclease I, RecJf and nuclease P1. We developed an exonuclease III assay using the DNB nanoarray, together with other reagents within the BGISEQ-500 sequencing kit, which only required one additional cycle of sequencing. The DNB nanoarray can be reused for the exonuclease III assay at least five times. This method demonstrated superior sensitivity, selectivity, and reusability compared with other assay methods and is accompanied by low cost and simple setup.
Collapse
|
4
|
Liu NN, Ji L, Guo Q, Dai YX, Wu WQ, Guo HL, Lu KY, Li XM, Xi XG. Quantitative and real-time measurement of helicase-mediated intra-stranded G4 unfolding in bulk fluorescence stopped-flow assays. Anal Bioanal Chem 2020; 412:7395-7404. [PMID: 32851458 DOI: 10.1007/s00216-020-02875-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/03/2020] [Accepted: 08/10/2020] [Indexed: 01/26/2023]
Abstract
G-Quadruplexes (G4s) are thermodynamically stable, compact, and poorly hydrated structures that pose a potent obstacle for chromosome replication and gene expression, and requiring resolution by helicases in a cell. Bulk stopped-flow fluorescence assays have provided many mechanistic insights into helicase-mediated duplex DNA unwinding. However, to date, detailed studies on intramolecular G-quadruplexes similar or comparable with those used for studying duplex DNA are still lacking. Here, we describe a method for the direct and quantitative measurement of helicase-mediated intramolecular G-quadruplex unfolding in real time. We designed a series of site-specific fluorescently double-labeled intramolecular G4s and screened appropriate substrates to characterize the helicase-mediated G4 unfolding. With the developed method, we determined, for the first time to our best knowledge, the unfolding and refolding constant of G4 (≈ 5 s-1), and other relative parameters under single-turnover experimental conditions in the presence of G4 traps. Our approach not only provides a new paradigm for characterizing helicase-mediated intramolecular G4 unfolding using stopped-flow assays but also offers a way to screen for inhibitors of G4 unfolding helicases as therapeutic drug targets. Graphical abstract.
Collapse
Affiliation(s)
- Na-Nv Liu
- College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Lei Ji
- College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qian Guo
- College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yang-Xue Dai
- College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wen-Qiang Wu
- College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hai-Lei Guo
- College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ke-Yu Lu
- College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiao-Mei Li
- College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xu-Guang Xi
- College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China. .,Laboratoire de Biologie et Pharmacologie Appliquée, Ecole Normale Supérieure de Cachan, Centre National de la Recherche Scientifique, Université Paris-Saclay, 61 Avenue du Président Wilson, 94235, Cachan, France.
| |
Collapse
|
5
|
Liu X, Wu Y, Wu X, Zhao JX. A graphene oxide-based fluorescence assay for the sensitive detection of DNA exonuclease enzymatic activity. Analyst 2020; 144:6231-6239. [PMID: 31552930 DOI: 10.1039/c9an01283d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The 3'-5' exonuclease enzyme plays a dominant role in multiple pivotal physiological activities, such as DNA replication and repair processes. In this study, we designed a sensitive graphene oxide (GO)-based probe for the detection of exonuclease enzymatic activity. In the absence of Exo III, the strong π-π interaction between the fluorophore-tagged DNA and GO causes the efficient fluorescence quenching via a fluorescence resonance energy transfer (FRET). In contrast, in the presence of Exo III, the fluorophore-tagged 3'-hydroxyl termini of the DNA probe was digested by Exo III to set the fluorophore free from adsorption when GO was introduced, causing an inefficient fluorescence quenching. As a result, the fluorescence intensity of the sensor was found to be proportional to the concentration of Exo III; towards the detection of Exo III, this simple GO-based probe demonstrated a highly sensitive and selective linear response in the low detection range from 0.01 U mL-1 to 0.5 U mL-1 and with the limit of detection (LOD) of 0.001 U mL-1. Compared with other fluorescent probes, this assay exhibited superior sensitivity and selectivity in both buffer and fetal bovine serum samples, in addition to being cost effective and having a simple setup.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Chemistry, University of North Dakota, Grand Forks, ND 58202, USA.
| | | | | | | |
Collapse
|
6
|
Fan K, Zheng C, Zhao Y, Fu H, Qu B, Lu L. Label-free ultrasensitive determination of EcoRI activity based on terminal deoxynucleotidyl transferase generated G-quadruplexes. Microchem J 2018. [DOI: 10.1016/j.microc.2018.08.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
7
|
Label-free detection of exonuclease III activity and its inhibition based on DNA hairpin probe. Anal Biochem 2018; 555:55-58. [DOI: 10.1016/j.ab.2018.06.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 06/13/2018] [Indexed: 11/21/2022]
|
8
|
Luminescence determination of microRNAs based on the use of terbium(III) sensitized with an enzyme-activated guanine-rich nucleotide. Mikrochim Acta 2018; 185:280. [PMID: 29725866 DOI: 10.1007/s00604-018-2819-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/24/2018] [Indexed: 02/05/2023]
Abstract
A method is reported for the fluorometric quantitation of microRNA. It is making use of a luminescent probe deribed from terbium(III) ion whose fluorescence is sensitized with a guanine-rich (G-rich) nucleotide. The probe has a large Stokes' shift and strong and sharp emission bands. The assay relies on the wide substrate specificity of terminal deoxynucleotidyl transferase (TdTase), which catalyzes the formation of long G-rich nucleotides when using microRNA primer as a trigger to start the polymerization. The addition of Tb(III) induces the formation of a G-quadruplex from the G-rich nucleotide, and this strongly enhances the green fluorescence of Tb(III) (peaking at 545 nm upon photoexcitation at 290 nm). Specifically, microRNA-21 was chosen as the analyte. The fluorescence intensity of Tb(III) increases linearly in the 1 pM to 1 nM microRNA concentration range, and the detection limit is as low as 0.11 pM. The method can distinguish between family members of microRNA and performs excellently even when applied to extracts of cancer cells. Graphical abstract A fluorometric technique is reported for the determination of microRNA. It is based on signal enhancement based on the sensitization of terbium(III) via a guanine-rich nucleotide sequence. Klenow Fragment exo- (KFexo-) generates DNA sequence at the 3'-OH of microRNA, and terminal deoxynucleotidyl transferase (TdTase) catalyzes the formation of long G-rich nucleotides.
Collapse
|
9
|
Hu W, Zhao H, Jing J, Zhang X. A label-free ratiometric fluorescence strategy for 3′–5′ exonuclease detection. NEW J CHEM 2018. [DOI: 10.1039/c8nj03242d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A label-free ratiometric fluorescent biosensor for detection of exonuclease was proposed through utilizing two individual DNA conformation-specific dyes (DAPI and NMM).
Collapse
Affiliation(s)
- Wei Hu
- Key Laboratory of Cluster Science of Ministry of Education
- Beijing Key Laboratory of Photo-electronic/Electro-photonic Conversion Materials
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
| | - Hengzhi Zhao
- Key Laboratory of Cluster Science of Ministry of Education
- Beijing Key Laboratory of Photo-electronic/Electro-photonic Conversion Materials
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
| | - Jing Jing
- Key Laboratory of Cluster Science of Ministry of Education
- Beijing Key Laboratory of Photo-electronic/Electro-photonic Conversion Materials
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
| | - Xiaoling Zhang
- Key Laboratory of Cluster Science of Ministry of Education
- Beijing Key Laboratory of Photo-electronic/Electro-photonic Conversion Materials
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
| |
Collapse
|
10
|
Ge J, Dong ZZ, Bai DM, Zhang L, Hu YL, Ji DY, Li ZH. A novel label-free fluorescent molecular beacon for the detection of 3′–5′ exonuclease enzymatic activity using DNA-templated copper nanoclusters. NEW J CHEM 2017. [DOI: 10.1039/c7nj01761h] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A label-free biosensor was developed for highly sensitive and selective determination of Exo III based on poly(T) molecular beacon-templated CuNPs.
Collapse
Affiliation(s)
- Jia Ge
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Zhen-Zhen Dong
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Dong-Mei Bai
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Lin Zhang
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Ya-Lei Hu
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Dan-Yang Ji
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Zhao-Hui Li
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| |
Collapse
|
11
|
Kricka LJ, Fortina P, Park JY. Nanostructured luminescently labeled nucleic acids. LUMINESCENCE 2016; 32:132-141. [DOI: 10.1002/bio.3170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 05/06/2016] [Accepted: 05/09/2016] [Indexed: 01/16/2023]
Affiliation(s)
- Larry J. Kricka
- Department of Pathology and Laboratory Medicine; University of Pennsylvania Medical Center; 3400 Spruce Street Philadelphia Pennsylvania 19104 USA
| | - Paolo Fortina
- Department of Cancer Biology, Cancer Genomics Laboratory, Sidney Kimmel Cancer Center; Thomas Jefferson University Jefferson Medical College; Philadelphia PA USA
- Department of Molecular Medicine; Universita’ La Sapienza; Rome Italy
| | - Jason Y. Park
- Department of Pathology and the Eugene McDermott Center for Human Growth and Development; University of Texas Southwestern Medical Center; Dallas Texas 75229 USA
| |
Collapse
|
12
|
Li H, Li W, Nie Z, Yao S. A label-free and time-resolved luminescence strategy for the detection of proteins based on DNA-Tb(3+) luminescence quenched by graphene oxide. Analyst 2016; 140:6386-91. [PMID: 26247065 DOI: 10.1039/c5an01343g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A sensitive, label-free and time-resolved luminescent aptasensor to detect proteins was developed based on the DNA-enhanced time-resolved luminescence of Tb(3+) and graphene oxide (GO). We found that the DNA no matter with a G-quadruplex structure or not could greatly enhance the long-lived emission of Tb(3+), and the luminescence of DNA-Tb(3+) could be effectively quenched by GO after the DNA-Tb(3+) was adsorbed onto GO. The target protein combined with an aptamer to form a protein/DNA complex restrained the quenching of DNA-Tb(3+) emission by GO. Thrombin and a 29-mer anti-thrombin aptamer were employed as a model analyte and a recognition element. There is a good linear relationship between the aptamer-Tb(3+) complex luminescence with the thrombin concentrations of 1 to 100 nM with a low detection limit of 0.8 nM. Since the time-resolved luminescence can eliminate the unspecific background fluorescence, the proposed aptasensor has been successfully applied in complicated biological samples for thrombin detection. This novel strategy presents a potential universal method for detection of other molecules.
Collapse
Affiliation(s)
- Hao Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China.
| | | | | | | |
Collapse
|
13
|
Xu M, Li B. Label-free fluorescence strategy for sensitive detection of exonuclease activity using SYBR Green I as probe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 151:22-26. [PMID: 26117197 DOI: 10.1016/j.saa.2015.06.052] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 06/08/2015] [Accepted: 06/17/2015] [Indexed: 06/04/2023]
Abstract
A label-free and sensitive fluorescence assay for exonuclease activity is developed using commercially available SYBR Green I (SG) dye as signal probe. A proof-of-concept of this assay has been demonstrated by using exonuclease III (Exo III) as a model enzyme. In this assay, double-stranded DNA (dsDNA) can bind SG, resulting in a strong fluorescence signal of SG. Upon the addition of Exo III, dsDNA would be digested, and SG emits very weak fluorescence. Thus, Exo III activity can be facilely measured with a simple fluorescence reader. This method has a linear detection range from 1 U/mL to 200 U/mL with a detection limit of 0.7 U/mL. This label-free approach is selective, simple, convenient and cost-efficient without any complex DNA sequence design or fluorescence dye label. The method not only provides a platform for monitoring activity and inhibition of exonuclease but also shows great potential in biological process researches, drug discovery, and clinic diagnostics.
Collapse
Affiliation(s)
- Min Xu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Baoxin Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|