1
|
Singh A, Singh K, Sharma A, Kaur K, Chadha R, Singh Bedi PM. Past, present and future of xanthine oxidase inhibitors: design strategies, structural and pharmacological insights, patents and clinical trials. RSC Med Chem 2023; 14:2155-2191. [PMID: 37974965 PMCID: PMC10650961 DOI: 10.1039/d3md00316g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/06/2023] [Indexed: 11/19/2023] Open
Abstract
Xanthine oxidase, a molybdo-flavoenzyme, and an isoform of xanthine dehydrogenase both exist as xanthine oxidoreductase and are responsible for purine catabolism. Xanthine oxidase is more involved in pathological conditions when extensively modulated. Elevation of xanthine oxidase is not only the prime cause of gout but is also responsible for various hyperuricemia associated pathological conditions like diabetes, chronic wounds, cardiovascular disorders, Alzheimer's disease, etc. Currently available xanthine oxidase inhibitors in clinical practice (allopurinol, febuxostat and topiroxostat) suffer from fatal side effects that pose a serious problem to the healthcare system, raising global emergency to develop novel, potent and safer xanthine oxidase inhibitors. This review will provide key and systematic information about: a. design strategies (inspired from both marketed drugs in clinical practice and natural products), structural insights and pharmacological output (xanthine oxidase inhibition and associated activities) of various pre-clinical candidates reported by various research groups across the globe in the past two decades; b. patented xanthine oxidase inhibitors published in the last three decades and c. clinical trials and their outcomes on approved drug candidates. Information generated in this review has suggested fragment-based drug design (FBDD) and molecular hybridization techniques to be most suitable for development of desired xanthine oxidase inhibitors as one provides high selectivity toward the enzyme and the other imparts multifunctional properties to the structure and both may possess capabilities to surpass the limitations of currently available clinical drugs. All in combination will exclusively update researchers working on xanthine oxidase inhibitors and allied areas and potentially help in designing rational, novel, potent and safer xanthine oxidase inhibitors that can effectively tackle xanthine oxidase related disease conditions and disorders.
Collapse
Affiliation(s)
- Atamjit Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University Amritsar Punjab 143005 India
| | - Karanvir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University Amritsar Punjab 143005 India
| | - Aman Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University Amritsar Punjab 143005 India
| | - Kirandeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University Amritsar Punjab 143005 India
| | - Renu Chadha
- University Institute of Pharmaceutical Sciences, Panjab University Chandigarh 160014 India
| | - Preet Mohinder Singh Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University Amritsar Punjab 143005 India
- Drug and Pollution Testing Laboratory, Guru Nanak Dev University Amritsar Punjab 143005 India
| |
Collapse
|
2
|
Ten Years Milestones in Xanthine Oxidase Inhibitors Discovery: Febuxostat-Based Inhibitors Trends, Bifunctional Derivatives, and Automatized Screening Assays. ORGANICS 2022. [DOI: 10.3390/org3040026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Xanthine oxidase (XO) is an enzyme involved in the oxidative process of hypoxanthine and xanthine to uric acid (UA). This process also produces reactive oxygen species (ROS) as byproducts. Both UA and ROS are dangerous for human health, and some health conditions trigger upregulation of XO activity, which results in many diseases (cancer, atherosclerosis, hepatitis, gout, and others) given the worsened scenario of ROS and UA overproduction. So, XO became an attractive target to produce and discover novel selective drugs based on febuxostat, the most recent XO inhibitor out of only two approved by FDA. Under this context, high-performance liquid chromatography (HPLC) and capillary electrophoresis (CE) have been successfully applied to rapidly and easily screen for bioactive compounds, isolated or in complex natural matrixes, that act as enzyme inhibitors through the use of an immobilized enzyme reactor (IMER). This article’s goal is to present advances comprising febuxostat-based XO inhibitors as a new trend, bifunctional moieties capable of inhibiting XO and modulating ROS activity, and in-flow techniques employing an IMER in HPLC and CE to screen for synthetic and natural compounds that act as XO inhibitors.
Collapse
|
3
|
Ramatapa T, Msobo A, Maphari PW, Ncube EN, Nogemane N, Mhlongo MI. Identification of Plant-Derived Bioactive Compounds Using Affinity Mass Spectrometry and Molecular Networking. Metabolites 2022; 12:863. [PMID: 36144267 PMCID: PMC9504387 DOI: 10.3390/metabo12090863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 12/01/2022] Open
Abstract
Affinity selection-mass spectrometry (AS-MS) is a label-free binding assay system that uses UHPLC-MS size-based separation methods to separate target-compound complexes from unbound compounds, identify bound compounds, classify compound binding sites, quantify the dissociation rate constant of compounds, and characterize affinity-extracted ligands. This label-free binding assay, in contrast to conventional biochemical (i.e., high-throughput screening (HTS)) approaches, is applicable to any drug target, and is also concise, accurate, and adaptable. Although AS-MS is an innovative approach for identifying lead compounds, the possibilities of finding bioactive compounds are limited by competitive binding, which occurs during the equilibration of extracts with the target protein(s). Here, we discuss the potential for metabolite profiling complemented with molecular networking to be used alongside AS-MS to improve the identification of bioactive compounds in plant extracts. AS-MS has gained significant prominence in HTS labs and shows potential to emerge as the driving force behind novel drug development in the future.
Collapse
Affiliation(s)
- Thabo Ramatapa
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa
| | - Anathi Msobo
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa
| | - Pfano W. Maphari
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa
| | - Efficient N. Ncube
- Department of Agriculture and Animal Health, Florida Campus, University of South Africa, Florida 1710, South Africa
| | - Noluyolo Nogemane
- Department of Agriculture and Animal Health, Florida Campus, University of South Africa, Florida 1710, South Africa
| | - Msizi I. Mhlongo
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa
| |
Collapse
|
4
|
Rapid screening of natural-origin tyrosinase regulators from Vernonia anthelmintica (L.) Willd. by offline two-dimensional liquid chromatography coupled with mass spectrometry. J Pharm Biomed Anal 2022; 219:114978. [DOI: 10.1016/j.jpba.2022.114978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 11/18/2022]
|
5
|
Xu Q, Deng H, Li X, Quan ZS. Application of Amino Acids in the Structural Modification of Natural Products: A Review. Front Chem 2021; 9:650569. [PMID: 33996749 PMCID: PMC8118163 DOI: 10.3389/fchem.2021.650569] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/02/2021] [Indexed: 01/11/2023] Open
Abstract
Natural products and their derivatives are important sources for drug discovery; however, they usually have poor solubility and low activity and require structural modification. Amino acids are highly soluble in water and have a wide range of activities. The introduction of amino acids into natural products is expected to improve the performance of these products and minimize their adverse effects. Therefore, this review summarizes the application of amino acids in the structural modification of natural products and provides a theoretical basis for the structural modification of natural products in the future. The articles were divided into six types based on the backbone structures of the natural products, and the related applications of amino acids in the structural modification of natural products were discussed in detail.
Collapse
Affiliation(s)
- Qian Xu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| | - Hao Deng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| | - Xiaoting Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
- Department of Pharmaceutical Analysis, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Zhe-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| |
Collapse
|
6
|
Martorell M, Lucas X, Alarcón-Zapata P, Capó X, Quetglas-Llabrés MM, Tejada S, Sureda A. Targeting Xanthine Oxidase by Natural Products as a Therapeutic Approach for Mental Disorders. Curr Pharm Des 2021; 27:367-382. [PMID: 32564744 DOI: 10.2174/1381612826666200621165839] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/08/2020] [Indexed: 11/22/2022]
Abstract
Mental disorders comprise diverse human pathologies, including depression, bipolar affective disorder, schizophrenia, and dementia that affect millions of people around the world. The causes of mental disorders are unclear, but growing evidence suggests that oxidative stress and the purine/adenosine system play a key role in their development and progression. Xanthine oxidase (XO) is a flavoprotein enzyme essential for the catalysis of the oxidative hydroxylation of purines -hypoxanthine and xanthine- to generate uric acid. As a consequence of the oxidative reaction of XO, reactive oxygen species (ROS) such as superoxide and hydrogen peroxide are produced and, further, contribute to the pathogenesis of mental disorders. Altered XO activity has been associated with free radical-mediated neurotoxicity inducing cell damage and inflammation. Diverse studies reported a direct association between an increased activity of XO and diverse mental diseases including depression or schizophrenia. Small-molecule inhibitors, such as the well-known allopurinol, and dietary flavonoids, can modulate the XO activity and subsequent ROS production. In the present work, we review the available literature on XO inhibition by small molecules and their potential therapeutic application in mental disorders. In addition, we discuss the chemistry and molecular mechanism of XO inhibitors, as well as the use of structure-based and computational methods to design specific inhibitors with the capability of modulating XO activity.
Collapse
Affiliation(s)
- Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepcion, 4070386 Concepcion, Chile
| | - Xavier Lucas
- Roche Pharma Research and Early Development, Roche Innovation Center, Basel CH-4070, Switzerland
| | - Pedro Alarcón-Zapata
- Clinical Biochemistry and Immunology Department, Faculty of Pharmacy, University of Concepcion, 4070386 Concepcion, Chile
| | - Xavier Capó
- Research Group in Community Nutrition and Oxidative Stress, University of Balearic Islands & Health Research Institute of the Balearic Islands (IdISBa), E-07122, Palma, Balearic Islands, Spain
| | - Maria Magdalena Quetglas-Llabrés
- Laboratory of Neurophysiology, Department of Biology, University of Balearic Islands & Health Research Institute of the Balearic Islands (IdISBa), E-07122, Palma, Balearic Islands, Spain
| | - Silvia Tejada
- Laboratory of Neurophysiology, Department of Biology, University of Balearic Islands & Health Research Institute of the Balearic Islands (IdISBa), E-07122, Palma, Balearic Islands, Spain
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress, University of Balearic Islands & Health Research Institute of the Balearic Islands (IdISBa), E-07122, Palma, Balearic Islands, Spain
| |
Collapse
|
7
|
Exploring new targets and chemical space with affinity selection-mass spectrometry. Nat Rev Chem 2020; 5:62-71. [PMID: 37118102 DOI: 10.1038/s41570-020-00229-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2020] [Indexed: 12/15/2022]
Abstract
Affinity selection-mass spectrometry (AS-MS) is a high-throughput screening (HTS) technique for drug discovery that enables rapid screening of large collections of compounds to identify ligands for a specific biomolecular target. AS-MS is a binding assay that is insensitive to the functional effects a ligand might have, which is important because it lets us identify novel ligands irrespective of their binding site. This approach is gaining popularity, notably due to its role in the emergence of useful agents for targeted protein degradation. This Perspective highlights the use of AS-MS techniques to explore broad chemical space and identify small-molecule ligands for biological targets that have proven challenging to address with other screening paradigms. We present chemical structures of reported AS-MS hits to illustrate the potential of this screening approach to deliver high-quality hits for further optimization. AS-MS has, thus, evolved from being an infrequent alternative to traditional HTS or DNA-encoded library strategies to now firmly establishing itself as a HTS approach for drug discovery.
Collapse
|
8
|
From Xanthine Oxidase Inhibition to In Vivo Hypouricemic Effect: An Integrated Overview of In Vitro and In Vivo Studies with Focus on Natural Molecules and Analogues. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:9531725. [PMID: 32184901 PMCID: PMC7060854 DOI: 10.1155/2020/9531725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/10/2019] [Accepted: 12/24/2019] [Indexed: 01/05/2023]
Abstract
Hyperuricemia is characterized by elevated uric acid (UA) levels on blood, which can lead to gout, a common pathology. These high UA levels are associated with increased purine ingestion and metabolization and/or its decreased excretion. In this field, xanthine oxidase (XO), by converting hypoxanthine and xanthine to UA, plays an important role in hyperuricemia control. Based on limitations and adverse effects associated with the use of allopurinol and febuxostat, the most known approved drugs with XO inhibitory effect, the search for new molecules with XO activity is growing. However, despite the high number of studies, it was found that the majority of tested products with relevant XO inhibition were left out, and no further pharmacological evaluation was performed. Thus, in the present review, available information published in the past six years concerning isolated molecules with in vitro XO inhibition complemented with cytotoxicity evaluation as well as other relevant studies, including in vivo hypouricemic effect, and pharmacokinetic/pharmacodynamic profile was compiled. Interestingly, the analysis of data collected demonstrated that molecules from natural sources or their mimetics and semisynthetic derivatives constitute the majority of compounds being explored at the moment by means of in vitro and in vivo animal studies. Therefore, several of these molecules can be useful as lead compounds and some of them can even have the potential to be considered in the future clinical candidates for the treatment of hyperuricemia.
Collapse
|
9
|
Bioaffinity Fishing Procedure Using Secretory Phospholipase A2 for Screening for Bioactive Components: Modulation of Pharmacological Effect Induced by sPLA2 from Crotalus durissus terrificus by Hispidulin from Moquiniastrum floribundum. Molecules 2020; 25:molecules25020282. [PMID: 31936688 PMCID: PMC7024236 DOI: 10.3390/molecules25020282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/02/2020] [Accepted: 01/06/2020] [Indexed: 12/23/2022] Open
Abstract
Bioaffinity capturing of molecules allows the discovery of bioactive compounds and decreases the need for various stages in the natural compound isolation process. Despite the high selectivity of this technique, the screening and identification methodology depends on the presence of a protein to capture potential ligands. However, some proteins, such as snake secretory phospholipase A2 (sPLA2), have never been investigated using this approach. The purpose of this study was to evaluate the use of a new method for screening natural compounds using a bioaffinity-guided ultrafiltration method on Crotalus durissus terrificus sPLA2 followed by HPLC-MS to identify the compounds, and this method could be used to discover new anti-inflammatory compounds from the various organisms originating from biodiversity. Different extracts were selected to evaluate their ability to inhibit sPLA2 activity. The extracts were incubated with sPLA2 and the resulting mixture was ultrafiltrated to elute unbound components. The resulting compounds were identified by HPLC-MS. We identified hispidulin as one of the components present in the Moquiniastrum floribundum leaf and evaluated the ability of this isolated compound to neutralize the inflammatory activity of sPLA2 from Crotalus durissus terrificus.
Collapse
|
10
|
de Moraes MC, Cardoso CL, Cass QB. Solid-Supported Proteins in the Liquid Chromatography Domain to Probe Ligand-Target Interactions. Front Chem 2019; 7:752. [PMID: 31803714 PMCID: PMC6873629 DOI: 10.3389/fchem.2019.00752] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 10/21/2019] [Indexed: 12/11/2022] Open
Abstract
Ligand-target interactions play a central role in drug discovery processes because these interactions are crucial in biological systems. Small molecules-proteins interactions can regulate and modulate protein function and activity through conformational changes. Therefore, bioanalytical tools to screen new ligands have focused mainly on probing ligand-target interactions. These interactions have been evaluated by using solid-supported proteins, which provide advantages like increased protein stability and easier protein extraction from the reaction medium, which enables protein reuse. In some specific approaches, precisely in the ligand fishing assay, the bioanalytical method allows the ligands to be directly isolated from complex mixtures, including combinatorial libraries and natural products extracts without prior purification or fractionation steps. Most of these screening assays are based on liquid chromatography separation, and the binding events can be monitored through on-line or off-line methods. In the on-line approaches, solid supports containing the immobilized biological target are used as chromatographic columns most of the time. Several terms have been used to refer to such approaches, such as weak affinity chromatography, high-performance affinity chromatography, on-flow activity assays, and high-performance liquid affinity chromatography. On the other hand, in the off-line approaches, the binding event occurs outside the liquid chromatography system and may encompass affinity and activity-based assays in which the biological target is immobilized on magnetic particles or monolithic silica, among others. After the incubation step, the supernatant or the eluate from the binding assay is analyzed by liquid chromatography coupled to various detectors. Regardless of the selected bioanalytical approach, the use of solid supported proteins has significantly contributed to the development of automated and reliable screening methods that enable ligands to be isolated and characterized in complex matrixes without purification, thereby reducing costs and avoiding time-laborious steps. This review provides a critical overview of recently developed assays.
Collapse
Affiliation(s)
- Marcela Cristina de Moraes
- Laboratório SINCROMA, Instituto de Química, Departamento de Química Orgânica, Universidade Federal Fluminense, Niterói, Brazil
| | - Carmen Lucia Cardoso
- Grupo de Cromatografia de Bioafinidade e Produtos Naturais, Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Quezia Bezerra Cass
- Separare, Departamento de Química, Universidade Federal de São Carlos, São Carlos, Brazil
| |
Collapse
|
11
|
Fu Y, Yang J, Chen S, Sun X, Zhao P, Xie Z. Screening, and identification of the binding position, of xanthine oxidase inhibitors in the roots of Lindera reflexa Hemsl using ultrafiltration LC-MS combined with enzyme blocking. Biomed Chromatogr 2019; 33:e4577. [PMID: 31069821 DOI: 10.1002/bmc.4577] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/09/2019] [Accepted: 05/03/2019] [Indexed: 02/06/2023]
Abstract
A method based on enzyme blocking combined with ultrafiltration liquid chromatography-mass spectrometry (LC-MS) has been developed to identify xanthine oxidase (XOD) inhibitors in the roots of Lindera reflexa Hemsl (LR) and determine their binding positions. Allopurinol and febuxostat, known XOD inhibitors, which occupy different binding positions in XOD, were used as blockers and pre-incubated with XOD. Then the LR extract was incubated without XOD, and with XOD, allopurinol-blocked XOD and febuxostat-blocked XOD before ultrafiltration LC-MS was performed. By comparing the chromatographic profiles of the incubation samples, not only the ligands, but also the binding position of these ligands with XOD could be determined. Finally, three compounds, pinosylvin, pinocembrin and methoxy-5-hydroxy-trans-stilbene, were identified as potential XOD inhibitors and the binding modes of these three compounds were shown to be similar to those of febuxostat. To verify the XOD inhibitory activity of the screened compounds, the microplate method and molecular docking in silico were used to evaluate the enzyme inhibitory activities and the binding positions with XOD. The results showed that the developed method could screen for XOD ligands in LR extracts and also determine the binding positions of the ligands. To our knowledge, this is the first report of the XOD inhibitory activity of these three compounds.
Collapse
Affiliation(s)
- Yu Fu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, China.,Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Jingfan Yang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, China.,Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Suiqing Chen
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, China.,Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xiaoya Sun
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Peng Zhao
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, Henan, China.,Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Zhishen Xie
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
12
|
Tang H, Zhao D. Investigation of the interaction between salvianolic acid C and xanthine oxidase: Insights from experimental studies merging with molecular docking methods. Bioorg Chem 2019; 88:102981. [PMID: 31085372 DOI: 10.1016/j.bioorg.2019.102981] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 12/26/2022]
Abstract
Xanthine oxidase (XO) has emerged as an important target for gout. In our previous study, salvianolic acid C (SAC) was found to show potent XO inhibitory activity, whereas the interaction mechanism was still not clear. Herein, an integrated approach consisting of enzyme kinetics, multi-spectroscopic methods and molecular docking was employed to investigate the interaction between SAC and XO. Consequently, SAC exhibited a rapid and mixed-type inhibition of XO with IC50 of 5.84 ± 0.18 μM. The fluorescence data confirmed that SAC presented a strong fluorescence quenching effect through a static quenching procedure. The values of enthalpy change, entropy change and Gibbs free energy change indicated that their binding was spontaneous and driven mainly by hydrophobic interactions. Analysis of synchronous fluorescence, circular dichroism and fourier transform infrared spectra demonstrated that SAC induced conformational changes of the enzyme. Besides, further molecular docking revealed that SAC occupied the catalytic center resulting in the inhibition of XO activity. This study provides a comprehensive understanding on the interaction mechanism of SAC on XO.
Collapse
Affiliation(s)
- Hongjin Tang
- College of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu 241000, PR China.
| | - Dongsheng Zhao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| |
Collapse
|
13
|
Guo J, Lin H, Wang J, Lin Y, Zhang T, Jiang Z. Recent advances in bio-affinity chromatography for screening bioactive compounds from natural products. J Pharm Biomed Anal 2019; 165:182-197. [DOI: 10.1016/j.jpba.2018.12.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 12/01/2018] [Accepted: 12/07/2018] [Indexed: 01/02/2023]
|
14
|
Zhu MZ, Chen GL, Wu JL, Li N, Liu ZH, Guo MQ. Recent development in mass spectrometry and its hyphenated techniques for the analysis of medicinal plants. PHYTOCHEMICAL ANALYSIS : PCA 2018; 29:365-374. [PMID: 29687660 DOI: 10.1002/pca.2763] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/10/2018] [Accepted: 02/12/2018] [Indexed: 05/24/2023]
Abstract
INTRODUCTION Medicinal plants are gaining increasing attention worldwide due to their empirical therapeutic efficacy and being a huge natural compound pool for new drug discovery and development. The efficacy, safety and quality of medicinal plants are the main concerns, which are highly dependent on the comprehensive analysis of chemical components in the medicinal plants. With the advances in mass spectrometry (MS) techniques, comprehensive analysis and fast identification of complex phytochemical components have become feasible, and may meet the needs, for the analysis of medicinal plants. OBJECTIVE Our aim is to provide an overview on the latest developments in MS and its hyphenated technique and their applications for the comprehensive analysis of medicinal plants. METHODOLOGY Application of various MS and its hyphenated techniques for the analysis of medicinal plants, including but not limited to one-dimensional chromatography, multiple-dimensional chromatography coupled to MS, ambient ionisation MS, and mass spectral database, have been reviewed and compared in this work. RESULTS Recent advancs in MS and its hyphenated techniques have made MS one of the most powerful tools for the analysis of complex extracts from medicinal plants due to its excellent separation and identification ability, high sensitivity and resolution, and wide detection dynamic range. CONCLUSION To achieve high-throughput or multi-dimensional analysis of medicinal plants, the state-of-the-art MS and its hyphenated techniques have played, and will continue to play a great role in being the major platform for their further research in order to obtain insight into both their empirical therapeutic efficacy and quality control.
Collapse
Affiliation(s)
- Ming-Zhi Zhu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, P. R. China
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, P. R. China
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
| | - Gui-Lin Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, P. R. China
- The Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Jian-Lin Wu
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
| | - Na Li
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
| | - Zhong-Hua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, P. R. China
| | - Ming-Quan Guo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, P. R. China
- The Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan, P. R. China
| |
Collapse
|
15
|
|
16
|
Chen L, Wang X, Liu Y, Di X. Dual-target screening of bioactive components from traditional Chinese medicines by hollow fiber-based ligand fishing combined with liquid chromatography–mass spectrometry. J Pharm Biomed Anal 2017. [DOI: 10.1016/j.jpba.2017.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
17
|
Zhuo R, Liu H, Liu N, Wang Y. Ligand Fishing: A Remarkable Strategy for Discovering Bioactive Compounds from Complex Mixture of Natural Products. Molecules 2016; 21:molecules21111516. [PMID: 27845727 PMCID: PMC6274472 DOI: 10.3390/molecules21111516] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/01/2016] [Accepted: 11/06/2016] [Indexed: 12/16/2022] Open
Abstract
Identification of active compounds from natural products is a critical and challenging task in drug discovery pipelines. Besides commonly used bio-guided screening approaches, affinity selection strategy coupled with liquid chromatography or mass spectrometry, known as ligand fishing, has been gaining increasing interest from researchers. In this review, we summarized this emerging strategy and categorized those methods as off-line or on-line mode according to their features. The separation principles of ligand fishing were introduced based on distinct analytical techniques, including biochromatography, capillary electrophoresis, ultrafiltration, equilibrium dialysis, microdialysis, and magnetic beads. The applications of ligand fishing approaches in the discovery of lead compounds were reviewed. Most of ligand fishing methods display specificity, high efficiency, and require less sample pretreatment, which makes them especially suitable for screening active compounds from complex mixtures of natural products. We also summarized the applications of ligand fishing in the modernization of Traditional Chinese Medicine (TCM), and propose some perspectives of this remarkable technique.
Collapse
Affiliation(s)
- Rongjie Zhuo
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Hao Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Ningning Liu
- TCM Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| | - Yi Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
18
|
Tang HJ, Zhang XW, Yang L, Li W, Li JH, Wang JX, Chen J. Synthesis and evaluation of xanthine oxidase inhibitory and antioxidant activities of 2-arylbenzo[ b ]furan derivatives based on salvianolic acid C. Eur J Med Chem 2016; 124:637-648. [DOI: 10.1016/j.ejmech.2016.08.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 01/04/2023]
|
19
|
Přichystal J, Schug KA, Lemr K, Novák J, Havlíček V. Structural Analysis of Natural Products. Anal Chem 2016; 88:10338-10346. [PMID: 27661090 DOI: 10.1021/acs.analchem.6b02386] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Current mass spectrometry, nuclear magnetic resonance spectroscopy, and X-ray diffraction are presented as structure elucidation tools for analytical chemistry of natural products. Discovering new molecular entities combined with dereplication of known organic compounds represent prerequisites for biological assays and for respective applications as pharmaceuticals or molecular markers. Liquid chromatography is briefly addressed with respect to its use in mass spectrometry- and nuclear magnetic resonance-based metabolomics studies.
Collapse
Affiliation(s)
- Jakub Přichystal
- Institute of Microbiology, Academy of Sciences of the Czech Republic , Videnska 1083, Prague 4, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Palacky University , 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - Kevin A Schug
- The University of Texas at Arlington , Department of Chemistry and Biochemistry, Arlington, Texas 76019-0065, United States
| | - Karel Lemr
- Institute of Microbiology, Academy of Sciences of the Czech Republic , Videnska 1083, Prague 4, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Palacky University , 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - Jiří Novák
- Institute of Microbiology, Academy of Sciences of the Czech Republic , Videnska 1083, Prague 4, Czech Republic
| | - Vladimír Havlíček
- Institute of Microbiology, Academy of Sciences of the Czech Republic , Videnska 1083, Prague 4, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Palacky University , 17. listopadu 12, 77146 Olomouc, Czech Republic
| |
Collapse
|
20
|
De-qiang L, Zhao J, Wu D, Shao-ping L. Discovery of active components in herbs using chromatographic separation coupled with online bioassay. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1021:81-90. [DOI: 10.1016/j.jchromb.2016.02.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 01/19/2016] [Accepted: 02/03/2016] [Indexed: 11/30/2022]
|
21
|
Song J, Zhang W, Sun J, Zhang X, Xu X, Zhang L, Feng Z, Du G. Determination of salvianolic acid C in rat plasma using liquid chromatography-mass spectrometry and its application to pharmacokinetic study. Biomed Chromatogr 2015; 30:376-83. [DOI: 10.1002/bmc.3558] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 06/16/2015] [Accepted: 07/06/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Junke Song
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of Drug Target Identification and Drug Screening; Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing 100050 China
| | - Wen Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of Drug Target Identification and Drug Screening; Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing 100050 China
| | - Jialin Sun
- Pharmacy Department of the Affiliated Hospital of Qingdao University; Qingdao 266003 China
| | - Xue Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of Drug Target Identification and Drug Screening; Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing 100050 China
| | - Xiaona Xu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of Drug Target Identification and Drug Screening; Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing 100050 China
| | - Li Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of Drug Target Identification and Drug Screening; Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing 100050 China
| | - Zhangying Feng
- The Fourth Hospital of Hebei Medical University; Shijiazhuang 050011 China
| | - Guanhua Du
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of Drug Target Identification and Drug Screening; Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing 100050 China
| |
Collapse
|
22
|
Rodrigues MVN, Corrêa RS, Vanzolini KL, Santos DS, Batista AA, Cass QB. Characterization and screening of tight binding inhibitors of xanthine oxidase: an on-flow assay. RSC Adv 2015. [DOI: 10.1039/c5ra01741f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
On-flow characterization of tight binders of xanthine oxidase.
Collapse
Affiliation(s)
- M. V. N. Rodrigues
- Centro Pluridisciplinar de Pesquisas Químicas
- Biológicas e Agrícolas
- Universidade Estadual de Campinas
- Paulínia 13140-000
- Brazil
| | - R. S. Corrêa
- Departamento de Química
- Universidade Federal de São Carlos
- São Carlos
- Brazil
| | - K. L. Vanzolini
- Departamento de Química
- Universidade Federal de São Carlos
- São Carlos
- Brazil
| | - D. S. Santos
- Instituto Nacional de Ciência e Tecnologia em Tuberculose
- Centro de Pesquisas em Biologia Molecular e Funcional
- Pontifícia Universidade Católica do Rio Grande do Sul
- Porto Alegre
- Brazil
| | - A. A. Batista
- Departamento de Química
- Universidade Federal de São Carlos
- São Carlos
- Brazil
| | - Q. B. Cass
- Departamento de Química
- Universidade Federal de São Carlos
- São Carlos
- Brazil
| |
Collapse
|
23
|
Preparation of a novel weak cation exchange/hydrophobic interaction chromatography dual-function polymer-based stationary phase for protein separation using “thiol–ene click chemistry”. Anal Bioanal Chem 2014; 407:1721-34. [DOI: 10.1007/s00216-014-8400-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 12/03/2014] [Accepted: 12/09/2014] [Indexed: 01/03/2023]
|