1
|
Zheng P, Shen M, Liu R, Cai X, Lin J, Wang L, Chen Y, Chen G, Cao S, Qin Y. Revealing Further Insights into Astringent Seeds of Chinese Fir by Integrated Metabolomic and Lipidomic Analyses. Int J Mol Sci 2023; 24:15103. [PMID: 37894783 PMCID: PMC10607028 DOI: 10.3390/ijms242015103] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) stands as one of the pivotal afforestation tree species and timber resources in southern China. Nevertheless, the occurrence of seed abortion and a notably high proportion of astringent seeds significantly curtail the yield and quality of elite seeds, resulting in substantial economic losses. The development of astringent seeds is accompanied by significant physiological and biochemical alterations. Here, the first combined lipidomic and metabolomic analysis was performed to gain a comprehensive understanding of astringent seed traits. A total of 744 metabolites and 616 lipids were detected, of which 489 differential metabolites and 101 differential lipids were identified. In astringent seeds, most flavonoids and tannins, as well as proline and γ-aminobutyric acid, were more accumulated, along with a notable decrease in lipid unsaturation, indicating oxidative stress in the cells of astringent seeds. Conversely, numerous elemental metabolites were less accumulated, including amino acids and their derivatives, saccharides and alcohols, organic acids and nucleotides and their derivatives. Meanwhile, most lipid subclasses, mainly associated with energy storage (triglyceride and diglyceride) and cell membrane composition (phosphatidic acid, phosphatidylcholine, phosphatidylethanolamine), also exhibited significant reductions. These results reflected a disruption in the cellular system or the occurrence of cell death, causing a reduction in viable cells within astringent seeds. Furthermore, only one lipid subclass, sphingosine phosphate (SoP), was more accumulated in astringent seeds. Additionally, lower accumulation of indole-3-acetic acid and more accumulation of salicylic acid (SA) were also identified in astringent seeds. Both SA and SoP were closely associated with the promotion of programmed cell death in astringent seeds. Collectively, our study revealed significant abnormal changes in phytohormones, lipids and various metabolites in astringent seeds, allowing us to propose a model for the development of astringent seeds in Chinese fir based on existing research and our findings. This work enriches our comprehension of astringent seeds and presents valuable bioindicators for the identification of astringent seeds.
Collapse
Affiliation(s)
- Ping Zheng
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (P.Z.); (M.S.); (X.C.); (J.L.); (G.C.)
- Pingtan Science and Technology Research Institute, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Mengqian Shen
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (P.Z.); (M.S.); (X.C.); (J.L.); (G.C.)
| | - Ruoyu Liu
- Pingtan Science and Technology Research Institute, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Xinkai Cai
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (P.Z.); (M.S.); (X.C.); (J.L.); (G.C.)
| | - Jinting Lin
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (P.Z.); (M.S.); (X.C.); (J.L.); (G.C.)
| | - Lulu Wang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (P.Z.); (M.S.); (X.C.); (J.L.); (G.C.)
| | - Yu Chen
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Guangwei Chen
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (P.Z.); (M.S.); (X.C.); (J.L.); (G.C.)
| | - Shijiang Cao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Yuan Qin
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (P.Z.); (M.S.); (X.C.); (J.L.); (G.C.)
- Pingtan Science and Technology Research Institute, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| |
Collapse
|
2
|
Cui HN, Gu HW, Li ZQ, Sun W, Ding B, Li Z, Chen Y, Long W, Yin XL, Fu H. Integration of lipidomics and metabolomics approaches for the discrimination of harvest time of green tea in spring season by using UPLC-Triple-TOF/MS coupled with chemometrics. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2023. [DOI: 10.3389/fsufs.2023.1119314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
The production season is one of the judgment standards of the green tea quality and spring tea is generally considered of higher quality. Moreover, early spring tea is usually more precious and sells for a higher price. Therefore, a multifaceted strategy that integrates lipidomics and metabolomics, based on UPLC-Triple-TOF/MS coupled with chemometrics, was developed to discriminate early spring green tea (ET) and late spring green tea (LT). Twenty-six lipids and forty-five metabolites were identified as characteristic components. As for characteristic lipids, most of glycerophospholipids and acylglycerolipids have higher contents in ET. By contrast, glycoglycerolipids, sphingolipids and hydroxypheophytin a were shown higher levels in LT samples. Most of the differential metabolites identified were more abundant in ET samples. LT samples have much higher catechin, procyanidin B2, and 3',8-dimethoxyapigenin 7-glucoside contents. Based on the integration of differential lipids and metabolites, the reconstructed orthogonal partial least squares discriminant analysis (OPLS-DA) model displayed 100% correct classification rates for harvest time discrimination of green tea samples. These results demonstrated that the integration of lipidomics and metabolomics approaches is a promising method for the discrimination of tea quality.
Collapse
|
3
|
Xue N, Zhan C, Song J, Li Y, Zhang J, Qi J, Wu J. The glutamate receptor-like 3.3 and 3.6 mediate systemic resistance to insect herbivores in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7611-7627. [PMID: 36214841 PMCID: PMC9730813 DOI: 10.1093/jxb/erac399] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Herbivory activates responses in local and systemic leaves, and the glutamate receptor-like genes GLR3.3 and GLR3.6 are critical in leaf-to-leaf systemic signalling. However, whether and how these genes mediate plant systemic resistance to insects remain largely unexplored. We show that a piercing-sucking insect Myzus persicae (green peach aphid, GPA) or chewing insect Spodoptera litura (cotton leafworm, CLW) feeding-induced systemic defences were attenuated in the glr3.3 glr3.6 mutants. In response to herbivory from either insect, glr3.3 glr3.6 mutants exhibited reduced accumulation of the hormone jasmonic acid (JA) and defensive metabolites glucosinolates (GSs) in systemic (but not local) leaves. Transcriptome analysis indicated that GLR3.3 and GLR3.6 play an important role in regulating the transcriptional responses to GPA and simulated CLW feeding in both local and systemic leaves, including JA- and GS-related genes. Metabolome analysis also revealed that in response to GPA or simulated CLW feeding, GLR3.3 and GLR3.6 are involved in the regulation of various metabolites locally and systemically, including amino acids, carbohydrates, and organic acids. Taken together, this study provides new insights into the function of GLR3.3 and GLR3.6 in mediating transcripts and metabolites in local and systemic leaves under insect attack, and highlights their role in regulating insect resistance in systemic leaves.
Collapse
Affiliation(s)
- Na Xue
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Che Zhan
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juan Song
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Li
- Yunnan Academy of Tobacco Agriculture Science, Kunming 650201, China
| | - Jingxiong Zhang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinfeng Qi
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | | |
Collapse
|
4
|
Wang S, Li W, Zhang X, Li G, Li XD, Chang H, Niu J, Wang Z. Metabolomics Study of Different Germplasm Resources for Three Polygonatum Species Using UPLC-Q-TOF-MS/MS. FRONTIERS IN PLANT SCIENCE 2022; 13:826902. [PMID: 35360317 PMCID: PMC8963481 DOI: 10.3389/fpls.2022.826902] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Rhizomes of the Polygonatum species are well-known in traditional Chinese medicine. The 2020 edition of Chinese Pharmacopoeia includes three different species that possess different pharmacological effects. Due to the lack of standardized discriminant compounds there has often been inadvertently incorrect prescriptions given for these medicines, resulting in serious consequences. Therefore, it is critical to accurately distinguish these herbal Polygonatum species. For this study, UPLC-Q-TOF-MS/MS based metabolomics was employed for the first time to discriminate between three Polygonatum species. Partial least squares discriminant analysis (PLS-DA) models were utilized to select the potential candidate discriminant compounds, after which MS/MS fragmentation patterns were used to identify them. Meanwhile, metabolic correlations were identified using the R language package corrplot, and the distribution of various metabolites was analyzed by box plot and the Z-score graph. As a result, we found that adenosine, sucrose, and pyroglutamic acid were suitable for the identification of different Polygonatum species. In conclusion, this study articulates how various herbal Polygonatum species might be more accurately and efficiently distinguished.
Collapse
Affiliation(s)
- Shiqiang Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Wenna Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Xinfei Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Gang Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Xiao dong Li
- Lueyang Chinese Herbal Medicine Industry Development Service Center, Hanzhong, China
| | - Hui Chang
- Shaanxi Buchang Pharmaceuticals Limited Company, Xi’an, China
| | - Junfeng Niu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Zhezhi Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| |
Collapse
|
5
|
Hu A, Wei F, Huang F, Xie Y, Wu B, Lv X, Chen H. Comprehensive and High-Coverage Lipidomic Analysis of Oilseeds Based on Ultrahigh-Performance Liquid Chromatography Coupled with Electrospray Ionization Quadrupole Time-of-Flight Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8964-8980. [PMID: 33529031 DOI: 10.1021/acs.jafc.0c07343] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Oilseeds are an important source of dietary lipids, and a comprehensive analysis of oilseed lipids is of great significance to human health, while information about the global lipidomes in oilseeds was limited. Herein, an ultrahigh-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry method for comprehensive lipidomic profiling of oilseeds was established and applied. First, the lipid extraction efficiency and lipid coverage of four different lipid extraction methods were compared. The optimized methyl tert-butyl ether extraction method was superior to isopropanol, Bligh-Dyer, and Folch extraction methods, in terms of the operation simplicity, lipid coverage, and number of identified lipids. Then, global lipidomic analysis of soybean, sesame, peanut, and rapeseed was conducted. A total of 764 lipid molecules, including 260 triacylglycerols, 54 diacylglycerols, 313 glycerophospholipids, 36 saccharolipids, 35 ceramides, 30 free fatty acids, 21 fatty esters, and 15 sphingomyelins were identified and quantified. The compositions and contents of lipids significantly varied among different oilseeds. Our results provided a theoretical basis for the selection and breeding of varieties of oilseed as well as deep processing of oilseed for the edible oil industry.
Collapse
Affiliation(s)
- Aipeng Hu
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture, and Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| | - Fang Wei
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture, and Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| | - Fenghong Huang
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture, and Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| | - Ya Xie
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture, and Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| | - Bangfu Wu
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture, and Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| | - Xin Lv
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture, and Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| | - Hong Chen
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture, and Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| |
Collapse
|
6
|
Chernova AI, Gubaev RF, Singh A, Sherbina K, Goryunova SV, Martynova EU, Goryunov DV, Boldyrev SV, Vanyushkina AA, Anikanov NA, Stekolshchikova EA, Yushina EA, Demurin YN, Mukhina ZM, Gavrilova VA, Anisimova IN, Karabitsina YI, Alpatieva NV, Chang PL, Khaitovich P, Mazin PV, Nuzhdin SV. Genotyping and lipid profiling of 601 cultivated sunflower lines reveals novel genetic determinants of oil fatty acid content. BMC Genomics 2021; 22:505. [PMID: 34225652 PMCID: PMC8256595 DOI: 10.1186/s12864-021-07768-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 06/03/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sunflower is an important oilseed crop domesticated in North America approximately 4000 years ago. During the last century, oil content in sunflower was under strong selection. Further improvement of oil properties achieved by modulating its fatty acid composition is one of the main directions in modern oilseed crop breeding. RESULTS We searched for the genetic basis of fatty acid content variation by genotyping 601 inbred sunflower lines and assessing their lipid and fatty acid composition. Our genome-wide association analysis based on the genotypes for 15,483 SNPs and the concentrations of 23 fatty acids, including minor fatty acids, revealed significant genetic associations for eleven of them. Identified genomic regions included the loci involved in rare fatty acids variation on chromosomes 3 and 14, explaining up to 34.5% of the total variation of docosanoic acid (22:0) in sunflower oil. CONCLUSIONS This is the first large scale implementation of high-throughput lipidomic profiling to sunflower germplasm characterization. This study contributes to the genetic characterization of Russian sunflower collections, which made a substantial contribution to the development of sunflower as the oilseed crop worldwide, and provides new insights into the genetic control of oil composition that can be implemented in future studies.
Collapse
Affiliation(s)
- Alina I Chernova
- Skolkovo Institute of Science and Technology (Skoltech), Bolshoy Boulevard 30, bld. 1, Moscow, 121205, Russia. .,LLC "OIL GENE", Skolkovo Innovation Center, Moscow, Russia.
| | - Rim F Gubaev
- Skolkovo Institute of Science and Technology (Skoltech), Bolshoy Boulevard 30, bld. 1, Moscow, 121205, Russia.,LLC "OIL GENE", Skolkovo Innovation Center, Moscow, Russia
| | - Anupam Singh
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Katrina Sherbina
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Svetlana V Goryunova
- Skolkovo Institute of Science and Technology (Skoltech), Bolshoy Boulevard 30, bld. 1, Moscow, 121205, Russia.,Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkin st. 3, Moscow, 119991, Russia.,FSBSI Lorch Potato Research Institute, Lorkha Str. 23, Kraskovo, 140051, Russia
| | - Elena U Martynova
- Skolkovo Institute of Science and Technology (Skoltech), Bolshoy Boulevard 30, bld. 1, Moscow, 121205, Russia
| | - Denis V Goryunov
- Skolkovo Institute of Science and Technology (Skoltech), Bolshoy Boulevard 30, bld. 1, Moscow, 121205, Russia.,MSU A.N. Belozersky Institute of Physico-Chemical Biology, Leninsky Gori 1, Building 40, Moscow, 119992, Russia
| | - Stepan V Boldyrev
- Skolkovo Institute of Science and Technology (Skoltech), Bolshoy Boulevard 30, bld. 1, Moscow, 121205, Russia.,LLC "OIL GENE", Skolkovo Innovation Center, Moscow, Russia
| | - Anna A Vanyushkina
- Skolkovo Institute of Science and Technology (Skoltech), Bolshoy Boulevard 30, bld. 1, Moscow, 121205, Russia
| | - Nikolay A Anikanov
- Skolkovo Institute of Science and Technology (Skoltech), Bolshoy Boulevard 30, bld. 1, Moscow, 121205, Russia
| | - Elena A Stekolshchikova
- Skolkovo Institute of Science and Technology (Skoltech), Bolshoy Boulevard 30, bld. 1, Moscow, 121205, Russia
| | - Ekaterina A Yushina
- Skolkovo Institute of Science and Technology (Skoltech), Bolshoy Boulevard 30, bld. 1, Moscow, 121205, Russia.,FSBSI N P Bochkov Research Center of Medical Genetics, Moskvorechye St.1, Moscow, 115522, Russia
| | - Yakov N Demurin
- Pustovoit All-Russia Research Institute of Oilseed Crops, Filatova St. 17, Krasnodar, 350038, Russia
| | | | - Vera A Gavrilova
- N. I. Vavilov Research Institute of Plant Genetic Resources (VIR), 42 B. Morskaja, St. Petersburg, 190000, Russia
| | - Irina N Anisimova
- N. I. Vavilov Research Institute of Plant Genetic Resources (VIR), 42 B. Morskaja, St. Petersburg, 190000, Russia
| | - Yulia I Karabitsina
- N. I. Vavilov Research Institute of Plant Genetic Resources (VIR), 42 B. Morskaja, St. Petersburg, 190000, Russia
| | - Natalia V Alpatieva
- N. I. Vavilov Research Institute of Plant Genetic Resources (VIR), 42 B. Morskaja, St. Petersburg, 190000, Russia
| | - Peter L Chang
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Philipp Khaitovich
- Skolkovo Institute of Science and Technology (Skoltech), Bolshoy Boulevard 30, bld. 1, Moscow, 121205, Russia
| | - Pavel V Mazin
- Skolkovo Institute of Science and Technology (Skoltech), Bolshoy Boulevard 30, bld. 1, Moscow, 121205, Russia
| | - Sergey V Nuzhdin
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| |
Collapse
|
7
|
Wang Y, Liao X, Zhou C, Hu L, Wei G, Huang Y, Lei Z, Ren Z, Liu Z, Liu Z. Identification of C-glycosyl flavones and quality assessment in Dendrobium nobile. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9012. [PMID: 33238063 DOI: 10.1002/rcm.9012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/13/2020] [Accepted: 11/22/2020] [Indexed: 06/11/2023]
Abstract
RATIONALE Flavones are significant indicators of quality in traditional Chinese medicines (TCMs) and thus play a significant role in the quality control of TCMs in the pharmaceutical industry. Most flavones in Dendrobium nobile Lindl, a TCM with a long cultivation history and rich sources, have not been identified. This study was aimed at identifying the flavones in D. nobile from various habitats. METHODS High-performance liquid chromatography (HPLC) coupled with diode-array detection and HPLC multiple-stage tandem mass spectrometry was used to identify the chemical constituents of D. nobile from various habitats, and a method was established to determine the content of vicenin II, violanthin and isoviolanthin. Hierarchical cluster analysis, principal component analysis and orthogonal partial least-squares discriminant analysis were used to analyze the variations among 26 batches from different habitats. RESULTS A total of 33 flavones were tentatively identified. Twenty-five flavones, previously undescribed in D. nobile, were acylated by p-coumaroyl, feruloyl, sinapoyl or 3-hydroxy-3-methylglutaryl. The D. nobile habitats were distinguished by significant differences in their flavone content. The C-glycosyl flavones were demonstrated to be characteristic compounds for evaluating D. nobile from various habitats. In particular, flavones acylated with 3-hydroxy-3-methylglutaryl were specific compounds that were only detected in samples from Yunnan. CONCLUSIONS The results of this study could be used to improve the quality control of D. nobile and could provide references for the identification of acylated C-glycosyl flavones in other natural products.
Collapse
Affiliation(s)
- Yawen Wang
- College of the First Clinical Medical, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China
| | - Xian Liao
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China
| | - Chujuan Zhou
- Guangzhou Medical University Second Affiliated Hospital, Guangzhou, Guangdong, 510260, China
| | - Li Hu
- College of the First Clinical Medical, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China
| | - Gang Wei
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Yuechun Huang
- College of the First Clinical Medical, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China
| | - Zhouxi Lei
- Guangzhou Baiyunshan Chenliji Pharmaceutical Co. Ltd, Guangzhou, Guangdong, 510220, China
| | - Zhiyao Ren
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Zhixia Liu
- Chishui Zhilv Dendrobium Ecological Park Development Co. Ltd, Zunyi, Guizhou, 564700, China
| | - Zhihua Liu
- Chishui Zhilv Dendrobium Ecological Park Development Co. Ltd, Zunyi, Guizhou, 564700, China
| |
Collapse
|
8
|
Chromatographic Profiling with Machine Learning Discriminates the Maturity Grades of Nicotiana tabacum L. Leaves. SEPARATIONS 2021. [DOI: 10.3390/separations8010009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nicotiana tabacum L. (NTL) is an important agricultural and economical crop. Its maturity is one of the key factors affecting its quality. Traditionally, maturity is discriminated visually by humans, which is subjective and empirical. In this study, we concentrated on detecting as many compounds as possible in NTL leaves from different maturity grades using ultra-performance liquid chromatography ion trap time-of-flight mass spectrometry (UPLC-IT-TOF/MS). Then, the low-dimensional embedding of LC-MS dataset by t-distributed stochastic neighbor embedding (t-SNE) clearly showed the separation of the leaves from different maturity grades. The discriminant models between different maturity grades were established using orthogonal partial least squares discriminant analysis (OPLS-DA). The quality metrics of the models are R2Y = 0.939 and Q2 = 0.742 (unripe and ripe), R2Y = 0.900 and Q2 = 0.847 (overripe and ripe), and R2Y = 0.972 and Q2 = 0.930 (overripe and unripe). The differential metabolites were screened by their variable importance in projection (VIP) and p-Values. The existing tandem mass spectrometry library of plant metabolites, the user-defined library of structures, and MS-FINDER were combined to identify these metabolites. A total of 49 compounds were identified, including 12 amines, 14 lipids, 10 phenols, and 13 others. The results can be used to discriminate the maturity grades of the leaves and ensure their quality.
Collapse
|
9
|
Metabolomics analysis of sea cucumber (Apostichopus japonicus) in different geographical origins using UPLC–Q-TOF/MS. Food Chem 2020; 333:127453. [DOI: 10.1016/j.foodchem.2020.127453] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 12/23/2022]
|
10
|
Sun B, Zheng AH, Zhang F, Wei KS, Chen Q, Luo Y, Zhang Y, Wang XR, Lin FC, Yang J, Tang HR. Metabolic profiles of Cuibi-1 and Zhongyan-100 flue-cured tobacco leaves in different growing regions by gas chromatography/mass spectrometry. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180261. [PMID: 29892458 PMCID: PMC5990828 DOI: 10.1098/rsos.180261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 04/18/2018] [Indexed: 06/08/2023]
Abstract
The metabolic profiles of tobacco leaves of two differential Chinese cultivars from different growing regions were analysed using gas chromatography-mass spectrometry (GC-MS). The results of principal component analysis, partial least-squares discriminant analysis and hierarchical cluster analysis showed significant differences in metabolome among three groups, identified 24 differential metabolites, and analysed the metabolic pathway in which the metabolites were involved. Among them, 13 metabolites were associated with geographical regions, including seven organic and fatty acids, four carbohydrates and two secondary metabolites. Four amino acids and two monosaccharides were associated with cultivars and the remaining five metabolites were associated with both. The relationships among the differential metabolites and the distinct characteristics of environment and cultivar were further discussed. In addition, correlation analysis indicated that most of the differential carbohydrates were negatively correlated with the differential amino acids and organic acids. Taken together, this study demonstrates the metabolite differences between two cultivars in different regions, and highlights the effect of environment and cultivar on tobacco leaf metabolism.
Collapse
Affiliation(s)
- Bo Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
- Zhengzhou Tobacco Research Institute, Zhengzhou 450001, People's Republic of China
| | - Ai-Hong Zheng
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - Fen Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
- Zhengzhou Tobacco Research Institute, Zhengzhou 450001, People's Republic of China
| | - Ke-Su Wei
- Guizhou Academy of Tobacco Science, Guiyang 550081, People's Republic of China
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - Xiao-Rong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - Fu-Cheng Lin
- Zhengzhou Tobacco Research Institute, Zhengzhou 450001, People's Republic of China
| | - Jun Yang
- Zhengzhou Tobacco Research Institute, Zhengzhou 450001, People's Republic of China
| | - Hao-Ru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| |
Collapse
|
11
|
Shi X, Yang W, Qiu S, Hou J, Wu W, Guo D. Systematic profiling and comparison of the lipidomes from Panax ginseng, P. quinquefolius, and P. notoginseng by ultrahigh performance supercritical fluid chromatography/high-resolution mass spectrometry and ion mobility-derived collision cross section measurement. J Chromatogr A 2018; 1548:64-75. [PMID: 29588100 DOI: 10.1016/j.chroma.2018.03.025] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/01/2018] [Accepted: 03/13/2018] [Indexed: 12/21/2022]
Abstract
Lipidomics currently is still confronted with challenges from chromatographic separation and lipids identification. Here we report a lipidomics platform by integrating ultrahigh performance supercritical fluid chromatography/quadrupole time-of-flight mass spectrometry (UHPSFC/QTOF-MS) and collision cross section (CCS) measurement using ion mobility spectroscopy/time-of-flight mass spectrometry (IMS/QTOF-MS), aiming to enhance the profiling performance and identification reliability of lipids. The lipidomes extracted from three congeneric Panax species (P. ginseng, P. quinquefolius, and P. notoginseng) by methyl tert-butyl ether are comprehensively profiled and compared by use of this platform. A potent UHPSFC/QTOF-MS approach was developed on a 1.7-μm particles packed Torus 2-PIC column using CH3OH (in CO2) as a modifier and CH3OH/0.2 mM ammonium acetate as the makeup liquid, enabling well resolution of six lipid subclasses by both positive and negative MSE modes. In contrast to the reversed-phase chromatography, "normal-phase" like elution order and better resolution of polar lipids and some lipid isomers were achieved by UHPSFC separation. Pattern recognition chemometric analysis of 60 batches of Ginseng samples ultimately unveiled 24 lipid markers, of which triacylglycerols were the most important. Aside from the automated MS database searching against HMDB and LIPID MAPS, the application of CCS retrieval or CCS prediction improved lipid identification by reducing the possible hits. In conclusion, this integral platform can significantly improve the chromatographic separation and the reliability of lipids identification in lipidomics studies. It is the first report that systematically compares the lipidomic difference of three reputable Panax species, providing useful information for their quality control in addition to ginsenoside analysis.
Collapse
Affiliation(s)
- Xiaojian Shi
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road 501, Shanghai 201203, China
| | - Wenzhi Yang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road 501, Shanghai 201203, China
| | - Shi Qiu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road 501, Shanghai 201203, China
| | - Jinjun Hou
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road 501, Shanghai 201203, China
| | - Wanying Wu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road 501, Shanghai 201203, China.
| | - Dean Guo
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road 501, Shanghai 201203, China.
| |
Collapse
|
12
|
Le Pogam P, Doué M, Le Page Y, Habauzit D, Zhadobov M, Sauleau R, Le Dréan Y, Rondeau D. Untargeted Metabolomics Reveal Lipid Alterations upon 2-Deoxyglucose Treatment in Human HaCaT Keratinocytes. J Proteome Res 2018; 17:1146-1157. [PMID: 29430917 DOI: 10.1021/acs.jproteome.7b00805] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The glucose analogue 2-deoxyglucose (2-DG) impedes cancer progression in animal models and is currently being assessed as an anticancer therapy, yet the mode of action of this drug of high clinical significance has not been fully delineated. In an attempt to better characterize its pharmacodynamics, an integrative UPLC-Q-Exactive-based joint metabolomic and lipidomic approach was undertaken to evaluate the metabolic perturbations induced by this drug in human HaCaT keratinocyte cells. R-XCMS data processing and subsequent multivariate pattern recognition, metabolites identification, and pathway analyses identified eight metabolites that were most significantly changed upon a 3 h 2-DG exposure. Most of these dysregulated features were emphasized in the course of lipidomic profiling and could be identified as ceramide and glucosylceramide derivatives, consistently with their involvement in cell death programming. Even though metabolomic analyses did not generally afford such clear-cut dysregulations, some alterations in phosphatidylcholine and phosphatidylethanolamine derivatives could be highlighted as well. Overall, these results support the adequacy of the proposed analytical workflow and might contribute to a better understanding of the mechanisms underlying the promising effects of 2-DG.
Collapse
Affiliation(s)
- Pierre Le Pogam
- Institute of Electronics and Telecommunications of Rennes (IETR), UMR CNRS 6164, University of Rennes , Campus de Beaulieu, 263 avenue du Général Leclerc, 35042 Rennes Cedex, France
| | - Mickael Doué
- Institute of Electronics and Telecommunications of Rennes (IETR), UMR CNRS 6164, University of Rennes , Campus de Beaulieu, 263 avenue du Général Leclerc, 35042 Rennes Cedex, France
| | - Yann Le Page
- Transcription, Environment and Cancer Group, Institute for Research on Environmental and Occupational Health (IRSET), Inserm UMR1085, University of Rennes 1 , 9 avenue du Prof. Léon Bernard, 35043 Rennes Cedex, France
| | - Denis Habauzit
- Transcription, Environment and Cancer Group, Institute for Research on Environmental and Occupational Health (IRSET), Inserm UMR1085, University of Rennes 1 , 9 avenue du Prof. Léon Bernard, 35043 Rennes Cedex, France
| | - Maxim Zhadobov
- Institute of Electronics and Telecommunications of Rennes (IETR), UMR CNRS 6164, University of Rennes , Campus de Beaulieu, 263 avenue du Général Leclerc, 35042 Rennes Cedex, France
| | - Ronan Sauleau
- Institute of Electronics and Telecommunications of Rennes (IETR), UMR CNRS 6164, University of Rennes , Campus de Beaulieu, 263 avenue du Général Leclerc, 35042 Rennes Cedex, France
| | - Yves Le Dréan
- Transcription, Environment and Cancer Group, Institute for Research on Environmental and Occupational Health (IRSET), Inserm UMR1085, University of Rennes 1 , 9 avenue du Prof. Léon Bernard, 35043 Rennes Cedex, France
| | - David Rondeau
- Institute of Electronics and Telecommunications of Rennes (IETR), UMR CNRS 6164, University of Rennes , Campus de Beaulieu, 263 avenue du Général Leclerc, 35042 Rennes Cedex, France.,Département de Chimie, Université de Bretagne Occidentale , 6 avenue Victor Le Gorgeu, 29238 Brest Cedex, France
| |
Collapse
|
13
|
Zhao J, Li L, Zhao Y, Zhao C, Chen X, Liu P, Zhou H, Zhang J, Hu C, Chen A, Liu G, Peng X, Lu X, Xu G. Metabolic changes in primary, secondary, and lipid metabolism in tobacco leaf in response to topping. Anal Bioanal Chem 2018; 410:839-851. [PMID: 28929184 DOI: 10.1007/s00216-017-0596-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 07/25/2017] [Accepted: 08/18/2017] [Indexed: 12/19/2022]
Abstract
As an important cultivation practice used for flue-cured tobacco, topping affects diverse biological processes in the later stages of development and growth. Some studies have focused on using tobacco genes to reflect the physiological changes caused by topping. However, the complex metabolic shifts in the leaf resulting from topping have not yet been investigated in detail. In this study, a comprehensive metabolic profile of primary, secondary, and lipid metabolism in flue-cured tobacco leaf was generated with use of a multiple platform consisting of gas chromatography-mass spectrometry, capillary electrophoresis-mass spectrometry, and liquid chromatography-mass spectrometry/ultraviolet spectroscopy. A total of 367 metabolites were identified and determined. Both principal component analysis and the number of significantly different metabolites indicated that topping had the greatest influence on the upper leaves. During the early stage of topping, great lipid level variations in the upper leaves were observed, and antioxidant defense metabolites were accumulated. This indicated that the topping activated lipid turnover and the antioxidant defense system. At the mature stage, lower levels of senescence-related metabolites and higher levels of secondary metabolites were found in the topped mature leaves. This implied that topping delayed leaf senescence and promoted secondary metabolite accumulation. This study provides a global view of the metabolic perturbation in response to topping. Graphical abstract Metabolic alterations in tobacco leaf in response to topping using a multiplatform metabolomics.
Collapse
Affiliation(s)
- Jieyu Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning, 116023, China
| | - Lili Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, China
| | - Yanni Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, China
| | - Chunxia Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, China
| | - Xia Chen
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan, 450001, China
| | - Pingping Liu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan, 450001, China
| | - Huina Zhou
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan, 450001, China
| | - Junjie Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, China
| | - Chunxiu Hu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, China
| | - Aiguo Chen
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, 266101, China
| | - Guanshan Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, 266101, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning, 116023, China
| | - Xin Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, China.
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, China.
| |
Collapse
|
14
|
Li J, Hua J, Zhou Q, Dong C, Wang J, Deng Y, Yuan H, Jiang Y. Comprehensive Lipidome-Wide Profiling Reveals Dynamic Changes of Tea Lipids during Manufacturing Process of Black Tea. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:10131-10140. [PMID: 29058896 DOI: 10.1021/acs.jafc.7b03875] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
As important biomolecules in Camellia sinensis L., lipids undergo substantial changes during black tea manufacture, which is considered to contribute to tea sensory quality. However, limited by analytical capacity, detailed lipid composition and its dynamic changes during black tea manufacture remain unclear. Herein, we performed tea lipidome profiling using high resolution liquid chromatography coupled to mass spectrometry (LC-MS), which allows simultaneous and robust analysis of 192 individual lipid species in black tea, covering 17 (sub)classes. Furthermore, dynamic changes of tea lipids during black tea manufacture were investigated. Significant alterations of lipid pattern were revealed, involved with chlorophyll degradation, metabolic pathways of glycoglycerolipids, and other extraplastidial membrane lipids. To our knowledge, this report presented most comprehensive coverage of lipid species in black tea. This study provides a global and in-depth metabolic map of tea lipidome during black tea manufacture.
Collapse
Affiliation(s)
- Jia Li
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences , Hangzhou 310008, China
| | - Jinjie Hua
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences , Hangzhou 310008, China
| | - Qinghua Zhou
- College of Environment, Zhejiang University of Technology , Hangzhou 310014, China
| | - Chunwang Dong
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences , Hangzhou 310008, China
| | - Jinjin Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences , Hangzhou 310008, China
| | - Yuliang Deng
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences , Hangzhou 310008, China
| | - Haibo Yuan
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences , Hangzhou 310008, China
| | - Yongwen Jiang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences , Hangzhou 310008, China
| |
Collapse
|
15
|
Tomčala A, Kyselová V, Schneedorferová I, Opekarová I, Moos M, Urajová P, Kručinská J, Oborník M. Separation and identification of lipids in the photosynthetic cousins of Apicomplexa Chromera velia and Vitrella brassicaformis. J Sep Sci 2017; 40:3402-3413. [PMID: 28675643 DOI: 10.1002/jssc.201700171] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/31/2017] [Accepted: 06/23/2017] [Indexed: 02/04/2023]
Abstract
The alveolate algae Chromera velia and Vitrella brassicaformis (chromerids) are the closest known phototrophic relatives to apicomplexan parasites. Apicomplexans are responsible for fatal diseases of humans and animals and severe economic losses. Availability of the genome sequences of chromerids together with easy and rapid culturing of C. velia makes this alga a suitable model for investigating elementary biochemical principals potentially important for the apicomplexan pathogenicity. Such knowledge allows us to better understand processes during the evolutionary transition from a phototrophy to the parasitism in Apicomplexa. We explored lipidomes of both algae using high-performance liquid chromatography with mass spectrometry or gas chromatography with flame ionization detection. A single high-performance liquid chromatography with mass spectrometry analysis in both ionization modes was sufficient for the separation and semi-quantification of lipids in chromerid algae. We detected more than 250 analytes belonging to five structural lipid classes, two lipid classes of precursors and intermediates, and triacylglycerols as storage lipids. Identification of suggested structures was confirmed by high-resolution mass spectrometry with an Orbitrap mass analyzer. An outstandingly high accumulation of storage triacylglycerols was found in both species. All the investigated aspects make C. velia a prospective organism for further applications in biotechnology.
Collapse
Affiliation(s)
- Aleš Tomčala
- Biology Centre CAS, v.v.i., Institute of Parasitology, Laboratory of Evolutionary Protistology, České Budějovice, Czech Republic
| | - Veronika Kyselová
- Biology Centre CAS, v.v.i., Institute of Parasitology, Laboratory of Evolutionary Protistology, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Ivana Schneedorferová
- Biology Centre CAS, v.v.i., Institute of Parasitology, Laboratory of Evolutionary Protistology, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Iva Opekarová
- Biology Centre CAS, v.v.i., Institute of Entomology, Laboratory of Analytical Biochemistry, České Budějovice, Czech Republic.,University of Chemistry and Technology, Faculty of Food and Biochemical Technology, Department of Chemistry of Natural Compounds, Prague, Czech Republic
| | - Martin Moos
- Biology Centre CAS, v.v.i., Institute of Entomology, Laboratory of Analytical Biochemistry, České Budějovice, Czech Republic
| | - Petra Urajová
- Institute of Microbiology CAS, Laboratory of Algal Biotechnology, Třeboň, Czech Republic
| | - Jitka Kručinská
- Biology Centre CAS, v.v.i., Institute of Parasitology, Laboratory of Evolutionary Protistology, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Miroslav Oborník
- Biology Centre CAS, v.v.i., Institute of Parasitology, Laboratory of Evolutionary Protistology, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.,Institute of Microbiology CAS, Laboratory of Algal Biotechnology, Třeboň, Czech Republic
| |
Collapse
|
16
|
An alignment algorithm for LC-MS-based metabolomics dataset assisted by MS/MS information. Anal Chim Acta 2017; 990:96-102. [PMID: 29029747 DOI: 10.1016/j.aca.2017.07.058] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/18/2017] [Accepted: 07/28/2017] [Indexed: 11/22/2022]
Abstract
Liquid chromatography-mass spectrometry (LC-MS) is an important analytical platform for metabolomics study. Peak alignment of metabolomics dataset is one of the keys for a successful metabolomics study. In this work, a MS/MS-based peak alignment method for LC-MS metabolomics data was developed. A rigorous strategy for screening endogenous reference variables was proposed. Firstly, candidate endogenous reference variables were selected based on MS, MS/MS and retention time in all samples. Multiple robust endogenous reference variables were obtained through further evaluation and confirmation. Then retention time of each metabolite feature was corrected by local linear regression using the four nearest neighbor robust reference variables. Finally, peak alignment was carried out based on corrected retention time, MS and MS/MS. Comparing with the other two peak alignment methods, the developed method showed a good performance and was suitable for metabolomics data with larger retention time drift. Our approach provides a simple and robust alignment method which is reliable to align LC-MS metabolomics dataset.
Collapse
|
17
|
Klockmann S, Reiner E, Cain N, Fischer M. Food Targeting: Geographical Origin Determination of Hazelnuts (Corylus avellana) by LC-QqQ-MS/MS-Based Targeted Metabolomics Application. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:1456-1465. [PMID: 28068089 DOI: 10.1021/acs.jafc.6b05007] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A targeted metabolomics LC-ESI-QqQ-MS application for geographical origin discrimination based on 20 nonpolar key metabolites was developed, validated according to accepted guidelines and used for quantitation via stable isotope labeled internal standards in 202 raw authentic hazelnut samples from six countries (Turkey, Italy, Georgia, Spain, France, and Germany) of harvest years 2014 and 2015. Multivariate statistics were used for detection of significant variations in metabolite levels between countries and, moreover, a prediction model using support vector machine classification (SVM) was calculated yielding 100% training accuracy and 97% cross-validation accuracy, which was subsequently applied to 55 hazelnut samples for the confectionary industry gaining up to 80% correct classifications compared to declared origin. The present method demonstrates the great suitability for targeted metabolomics applications in the geographical origin determination of hazelnuts and their applicability in routine analytics.
Collapse
Affiliation(s)
- Sven Klockmann
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg , Grindelallee 117, 20146 Hamburg, Germany
| | - Eva Reiner
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg , Grindelallee 117, 20146 Hamburg, Germany
| | - Nicolas Cain
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg , Grindelallee 117, 20146 Hamburg, Germany
| | - Markus Fischer
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg , Grindelallee 117, 20146 Hamburg, Germany
| |
Collapse
|
18
|
Li L, Zhao J, Zhao Y, Lu X, Zhou Z, Zhao C, Xu G. Comprehensive investigation of tobacco leaves during natural early senescence via multi-platform metabolomics analyses. Sci Rep 2016; 6:37976. [PMID: 27897248 PMCID: PMC5126694 DOI: 10.1038/srep37976] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/03/2016] [Indexed: 01/20/2023] Open
Abstract
Senescence is the final stage of leaf growth and development. Many different physiological activities occur during this process. A comprehensive metabolomics analysis of tobacco middle leaves at 5 different developmental stages was implemented through multi-platform methods based on liquid chromatography, capillary electrophoresis and gas chromatography coupled with mass spectrometry. In total, 412 metabolites were identified, including pigments, sterols, lipids, amino acids, polyamines, sugars and secondary metabolites. Dramatic metabolic changes were observed. Firstly, membrane degradation and chlorophyll down-regulation occurred after the 50% flower bud stage. Levels of major membrane lipids decreased, including those of the glycolipids in chloroplast thylakoids and phospholipids in membrane envelopes. Clear decreases in free sterols and acylated sterol glucosides were detected along with the accumulation of sterol esters. The accumulation of alkaloids was found. The amino acid levels were significantly decreased, particularly those of N-rich amino acids (glutamine and asparagine), thus reflecting N translocation. Subsequently, the antioxidant system was activated. Sugar alcohols and polyphenols accumulated when the lower leaves turned yellow. These results comprehensively revealed the metabolic changes that occur during tobacco leaf development and senescence under natural conditions.
Collapse
Affiliation(s)
- Lili Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jieyu Zhao
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanni Zhao
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Lu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhihui Zhou
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunxia Zhao
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guowang Xu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
19
|
Misra BB. The Black-Box of Plant Apoplast Lipidomes. FRONTIERS IN PLANT SCIENCE 2016; 7:323. [PMID: 27047507 PMCID: PMC4796017 DOI: 10.3389/fpls.2016.00323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 03/03/2016] [Indexed: 05/06/2023]
|