1
|
Gutiérrez-Aguilar M, Klutho PJ, Aguayo-Ortiz R, Song L, Baines CP. Endogenous complement 1q binding protein (C1qbp) regulates mitochondrial permeability transition and post-myocardial infarction remodeling and dysfunction. J Mol Cell Cardiol 2024; 196:1-11. [PMID: 39209214 PMCID: PMC11534557 DOI: 10.1016/j.yjmcc.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
The mitochondrial permeability transition (MPT) pore regulates necrotic cell death following diverse cardiac insults. While the componentry of the pore itself remains controversial, Cyclophilin D (CypD) has been well-established as a positive regulator of pore opening. We have previously identified Complement 1q-binding protein (C1qbp) as a novel CypD-interacting molecule and a negative regulator of MPT-dependent cell death in vitro. However, its effects on the MPT pore and sensitivity to cell death in the heart remain untested. We therefore hypothesized that C1qbp would inhibit MPT in cardiac mitochondria and protect cardiac myocytes against cell death in vivo. To investigate the effects of C1qbp in the myocardium we generated gain- and loss-of-function mice. Transgenic C1qbp overexpression resulted in decreased complex protein expression and reduced mitochondrial respiration and ATP production but MPT was unaffected. In contrast, while C1qbp+/- mice did not exhibit any changes in mitochondrial protein expression, respiration, or ATP, the MPT pore was markedly sensitized to Ca2+ in these animals. Neither overexpression nor depletion of C1qbp significantly affected baseline heart morphology or function at 3 months of age. When subjected to myocardial infarction, C1qbp transgenic mice exhibited similar infarct sizes and cardiac remodeling to non-transgenic mice, consistent with the lack of an effect on MPT. In contrast, cardiac scar formation and dysfunction were significantly increased in the C1qbp+/- mice compared to C1qbp+/+ controls. Our results suggest that C1qbp is required for normal regulation of the MPT pore and mitochondrial function, and influences cardiac remodeling following MI, the latter more likely being independent of C1qbp effects on the MPT pore.
Collapse
Affiliation(s)
- Manuel Gutiérrez-Aguilar
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA; Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Paula J Klutho
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA
| | - Rodrigo Aguayo-Ortiz
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Lihui Song
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA
| | - Christopher P Baines
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA; Department of Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
2
|
Li Y, Liu X, Li Y, Wang J, Zhang M, Xue W, Zhang M. USP19 exerts a tumor-promoting role in diffuse large B cell lymphoma through stabilizing PARK7. FEBS J 2024; 291:4757-4774. [PMID: 39240655 DOI: 10.1111/febs.17259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/29/2024] [Accepted: 08/20/2024] [Indexed: 09/07/2024]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin lymphoma and is associated with a poor prognosis. Data from the Gene Expression Profiling Interactive Analysis (GEPIA) database revealed dysregulated expression of several ubiquitin-specific proteases (USPs) in DLBCL tissues (DLBCL vs. non-DLBCL = 47 vs. 337), including USP19 (log2fold change = 1.17, P < 0.05). USP19 is closely linked to tumorigenesis, but its role in DLBCL progression remains largely unknown. Here, we investigated the role of USP19 in DLBCL development. Genetic manipulation of USP19 using adenovirus-based vectors was performed in two DLBCL cell lines, SUDHL4 and DB cells. The results showed that USP19 knockdown suppressed the proliferation, anchorage-independent growth and xenograft tumor formation of DLBCL cells and arrested the cell cycle at the G1 stage. In parallel, DLBCL cells overexpressing USP19 acquired a more malignant phenotype. Next, to explore USP19 interactors, we performed co-immunoprecipitation/liquid chromatography-mass spectrometry and identified potential interacting proteins. Among them, Parkinson disease protein 7 (PARK7), a member of the peptidase C56 family known to be involved in carcinogenesis, was further validated to bind with and be stabilized by USP19. Additionally, we found that USP19 induced PARK7 deubiquitylation in both DLBCL cell lines, and PARK7 acted as a downstream effector of USP19 in regulating the growth of DLBCL cells. Collectively, USP19 exerts a tumor-promoting role in DLBCL through interacting with and stabilizing PARK7.
Collapse
Affiliation(s)
- Yaqing Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, China
| | - Xiyang Liu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, China
| | - Yulai Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, China
| | - Jieting Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, China
| | - Mengqian Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, China
| | - Weili Xue
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, China
| |
Collapse
|
3
|
Ren YL, Jiang Z, Wang JY, He Q, Li SX, Gu XJ, Qi YR, Zhang M, Yang WJ, Cao B, Li JY, Wang Y, Chen YP. Loss of CHCHD2 Stability Coordinates with C1QBP/CHCHD2/CHCHD10 Complex Impairment to Mediate PD-Linked Mitochondrial Dysfunction. Mol Neurobiol 2024; 61:7968-7988. [PMID: 38453793 DOI: 10.1007/s12035-024-04090-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
Novel CHCHD2 mutations causing C-terminal truncation and interrupted CHCHD2 protein stability in Parkinson's disease (PD) patients were previously found. However, there is limited understanding of the underlying mechanism and impact of subsequent CHCHD2 loss-of-function on PD pathogenesis. The current study further identified the crucial motif (aa125-133) responsible for diminished CHCHD2 expression and the molecular interplay within the C1QBP/CHCHD2/CHCHD10 complex to regulate mitochondrial functions. Specifically, CHCHD2 deficiency led to decreased neural cell viability and mitochondrial structural and functional impairments, paralleling the upregulation of autophagy under cellular stresses. Meanwhile, as a binding partner of CHCHD2, C1QBP was found to regulate the stability of CHCHD2 and CHCHD10 proteins to maintain the integrity of the C1QBP/CHCHD2/CHCHD10 complex. Moreover, C1QBP-silenced neural cells displayed severe cell death phenotype along with mitochondrial damage that initiated a significant mitophagy process. Taken together, the evidence obtained from our in vitro and in vivo studies emphasized the critical role of CHCHD2 in regulating mitochondria functions via coordination among CHCHD2, CHCHD10, and C1QBP, suggesting the potential mechanism by which CHCHD2 function loss takes part in the progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yan-Lin Ren
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zheng Jiang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Institute of Brain Science and Brain-Inspired Technology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jia-Yi Wang
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Qin He
- Department of Nuclear Medicine, West China Hospital of Sichuan University, No.37. Guoxue AlleySichuan Province, 610041, Chengdu, People's Republic of China
| | - Si-Xu Li
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiao-Jing Gu
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yang-Ran Qi
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Min Zhang
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wen-Jie Yang
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Bei Cao
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Institute of Brain Science and Brain-Inspired Technology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jing-Yu Li
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China.
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Yi Wang
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Yong-Ping Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- Institute of Brain Science and Brain-Inspired Technology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
4
|
Kim S, Tan S, Ku J, Widowati TA, Ku D, Lee K, You K, Kim Y. RNA 5-methylcytosine marks mitochondrial double-stranded RNAs for degradation and cytosolic release. Mol Cell 2024; 84:2935-2948.e7. [PMID: 39019044 PMCID: PMC11316625 DOI: 10.1016/j.molcel.2024.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 05/20/2024] [Accepted: 06/21/2024] [Indexed: 07/19/2024]
Abstract
Mitochondria are essential regulators of innate immunity. They generate long mitochondrial double-stranded RNAs (mt-dsRNAs) and release them into the cytosol to trigger an immune response under pathological stress conditions. Yet the regulation of these self-immunogenic RNAs remains largely unknown. Here, we employ CRISPR screening on mitochondrial RNA (mtRNA)-binding proteins and identify NOP2/Sun RNA methyltransferase 4 (NSUN4) as a key regulator of mt-dsRNA expression in human cells. We find that NSUN4 induces 5-methylcytosine (m5C) modification on mtRNAs, especially on the termini of light-strand long noncoding RNAs. These m5C-modified RNAs are recognized by complement C1q-binding protein (C1QBP), which recruits polyribonucleotide nucleotidyltransferase to facilitate RNA turnover. Suppression of NSUN4 or C1QBP results in increased mt-dsRNA expression, while C1QBP deficiency also leads to increased cytosolic mt-dsRNAs and subsequent immune activation. Collectively, our study unveils the mechanism underlying the selective degradation of light-strand mtRNAs and establishes a molecular mark for mtRNA decay and cytosolic release.
Collapse
Affiliation(s)
- Sujin Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Stephanie Tan
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jayoung Ku
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Tria Asri Widowati
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Doyeong Ku
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Keonyong Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Kwontae You
- Xaira Therapeutics, Foster City, CA 94404, USA
| | - Yoosik Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Graduate School of Engineering Biology, KAIST, Daejeon 34141, Republic of Korea; KAIST Institute for BioCentury, KAIST, Daejeon 34141, Republic of Korea; KAIST Institute for Health Science and Technology (KIHST), KAIST, Daejeon 34141, Republic of Korea.
| |
Collapse
|
5
|
Lujan E, Zhang I, Garon AC, Liu F. The Interactions of the Complement System with Human Cytomegalovirus. Viruses 2024; 16:1171. [PMID: 39066333 PMCID: PMC11281448 DOI: 10.3390/v16071171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/02/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
The complement system is an evolutionarily ancient component of innate immunity that serves as an important first line of defense against pathogens, including viruses. In response to infection, the complement system can be activated by three distinct yet converging pathways (classical, lectin, and alternative) capable of engaging multiple antiviral host responses to confront acute, chronic, and recurrent viral infections. Complement can exert profound antiviral effects via multiple mechanisms including the induction of inflammation and chemotaxis to sites of infection, neutralization/opsonization of viruses and virally infected cells, and it can even shape adaptive immune responses. With millions of years of co-evolution and the ability to establish life-long infections, herpesviruses have evolved unique mechanisms to counter complement-mediated antiviral defenses, thus enabling their survival and replication within humans. This review aims to comprehensively summarize how human herpesviruses engage with the complement system and highlight our understanding of the role of complement in human cytomegalovirus (HCMV) infection, immunity, and viral replication. Herein we describe the novel and unorthodox roles of complement proteins beyond their roles in innate immunity and discuss gaps in knowledge and future directions of complement and HCMV research.
Collapse
Affiliation(s)
- Eduardo Lujan
- Program in Comparative Biochemistry, University of California, Berkeley, CA 94720, USA
| | - Isadora Zhang
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Andrea Canto Garon
- Program in Comparative Biochemistry, University of California, Berkeley, CA 94720, USA
| | - Fenyong Liu
- Program in Comparative Biochemistry, University of California, Berkeley, CA 94720, USA
- School of Public Health, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
6
|
Liu WQ, Lin WR, Yan L, Xu WH, Yang J. Copper homeostasis and cuproptosis in cancer immunity and therapy. Immunol Rev 2024; 321:211-227. [PMID: 37715546 DOI: 10.1111/imr.13276] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/17/2023]
Abstract
Copper is an essential nutrient for maintaining enzyme activity and transcription factor function. Excess copper results in the aggregation of lipoylated dihydrolipoamide S-acetyltransferase (DLAT), which correlates to the mitochondrial tricarboxylic acid (TCA) cycle, resulting in proteotoxic stress and eliciting a novel cell death modality: cuproptosis. Cuproptosis exerts an indispensable role in cancer progression, which is considered a promising strategy for cancer therapy. Cancer immunotherapy has gained extensive attention owing to breakthroughs in immune checkpoint blockade; furthermore, cuproptosis is strongly connected to the modulation of antitumor immunity. Thus, a thorough recognition concerning the mechanisms involved in the modulation of copper metabolism and cuproptosis may facilitate improvement in cancer management. This review outlines the cellular and molecular mechanisms and characteristics of cuproptosis and the links of the novel regulated cell death modality with human cancers. We also review the current knowledge on the complex effects of cuproptosis on antitumor immunity and immune response. Furthermore, potential agents that elicit cuproptosis pathways are summarized. Lastly, we discuss the influence of cuproptosis induction on the tumor microenvironment as well as the challenges of adding cuproptosis regulators to therapeutic strategies beyond traditional therapy.
Collapse
Affiliation(s)
- Wei-Qing Liu
- Department of Internal Medicine-Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wan-Rong Lin
- Department of Surgical Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Li Yan
- Department of Internal Medicine-Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wen-Hao Xu
- Department of Internal Medicine-Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jun Yang
- Department of Surgical Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
7
|
Kienzle L, Bettinazzi S, Choquette T, Brunet M, Khorami HH, Jacques JF, Moreau M, Roucou X, Landry CR, Angers A, Breton S. A small protein coded within the mitochondrial canonical gene nd4 regulates mitochondrial bioenergetics. BMC Biol 2023; 21:111. [PMID: 37198654 DOI: 10.1186/s12915-023-01609-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 05/03/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND Mitochondria have a central role in cellular functions, aging, and in certain diseases. They possess their own genome, a vestige of their bacterial ancestor. Over the course of evolution, most of the genes of the ancestor have been lost or transferred to the nucleus. In humans, the mtDNA is a very small circular molecule with a functional repertoire limited to only 37 genes. Its extremely compact nature with genes arranged one after the other and separated by short non-coding regions suggests that there is little room for evolutionary novelties. This is radically different from bacterial genomes, which are also circular but much larger, and in which we can find genes inside other genes. These sequences, different from the reference coding sequences, are called alternatives open reading frames or altORFs, and they are involved in key biological functions. However, whether altORFs exist in mitochondrial protein-coding genes or elsewhere in the human mitogenome has not been fully addressed. RESULTS We found a downstream alternative ATG initiation codon in the + 3 reading frame of the human mitochondrial nd4 gene. This newly characterized altORF encodes a 99-amino-acid-long polypeptide, MTALTND4, which is conserved in primates. Our custom antibody, but not the pre-immune serum, was able to immunoprecipitate MTALTND4 from HeLa cell lysates, confirming the existence of an endogenous MTALTND4 peptide. The protein is localized in mitochondria and cytoplasm and is also found in the plasma, and it impacts cell and mitochondrial physiology. CONCLUSIONS Many human mitochondrial translated ORFs might have so far gone unnoticed. By ignoring mtaltORFs, we have underestimated the coding potential of the mitogenome. Alternative mitochondrial peptides such as MTALTND4 may offer a new framework for the investigation of mitochondrial functions and diseases.
Collapse
Affiliation(s)
- Laura Kienzle
- Département de sciences biologiques, Université de Montréal, Montréal, Canada
| | - Stefano Bettinazzi
- Département de sciences biologiques, Université de Montréal, Montréal, Canada
| | - Thierry Choquette
- Département de sciences biologiques, Université de Montréal, Montréal, Canada
| | - Marie Brunet
- Service de génétique médicale, Département de pédiatrie, Université de Sherbrooke, Sherbrooke, Canada
- Centre de recherche du Centre hospitalier universitaire de Sherbrooke (CRCHUS), Sherbrooke, Canada
| | | | - Jean-François Jacques
- Département de biochimie et génomique fonctionnelle, Université de Sherbrooke, Sherbrooke, Canada
| | - Mathilde Moreau
- Département de biochimie et génomique fonctionnelle, Université de Sherbrooke, Sherbrooke, Canada
| | - Xavier Roucou
- Centre de recherche du Centre hospitalier universitaire de Sherbrooke (CRCHUS), Sherbrooke, Canada
- Département de biochimie et génomique fonctionnelle, Université de Sherbrooke, Sherbrooke, Canada
| | - Christian R Landry
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec, Canada
- Institut de biologie intégrative et des systèmes, Université Laval, Québec, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Université Laval, Québec, Canada
- Centre de recherche sur les données massives, Université Laval, Québec, Canada
- Département de biologie, Faculté des sciences et de génie, Université Laval, Québec, Canada
| | - Annie Angers
- Département de sciences biologiques, Université de Montréal, Montréal, Canada
| | - Sophie Breton
- Département de sciences biologiques, Université de Montréal, Montréal, Canada.
| |
Collapse
|
8
|
Li D, Gao Z, Li Q, Liu X, Liu H. Cuproptosis-a potential target for the treatment of osteoporosis. Front Endocrinol (Lausanne) 2023; 14:1135181. [PMID: 37214253 PMCID: PMC10196240 DOI: 10.3389/fendo.2023.1135181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/10/2023] [Indexed: 05/24/2023] Open
Abstract
Osteoporosis is an age-related disease of bone metabolism marked by reduced bone mineral density and impaired bone strength. The disease causes the bones to weaken and break more easily. Osteoclasts participate in bone resorption more than osteoblasts participate in bone formation, disrupting bone homeostasis and leading to osteoporosis. Currently, drug therapy for osteoporosis includes calcium supplements, vitamin D, parathyroid hormone, estrogen, calcitonin, bisphosphates, and other medications. These medications are effective in treating osteoporosis but have side effects. Copper is a necessary trace element in the human body, and studies have shown that it links to the development of osteoporosis. Cuproptosis is a recently proposed new type of cell death. Copper-induced cell death regulates by lipoylated components mediated via mitochondrial ferredoxin 1; that is, copper binds directly to the lipoylated components of the tricarboxylic acid cycle, resulting in lipoylated protein accumulation and subsequent loss of iron-sulfur cluster proteins, leading to proteotoxic stress and eventually cell death. Therapeutic options for tumor disorders include targeting the intracellular toxicity of copper and cuproptosis. The hypoxic environment in bone and the metabolic pathway of glycolysis to provide energy in cells can inhibit cuproptosis, which may promote the survival and proliferation of various cells, including osteoblasts, osteoclasts, effector T cells, and macrophages, thereby mediating the osteoporosis process. As a result, our group tried to explain the relationship between the role of cuproptosis and its essential regulatory genes, as well as the pathological mechanism of osteoporosis and its effects on various cells. This study intends to investigate a new treatment approach for the clinical treatment of osteoporosis that is beneficial to the treatment of osteoporosis.
Collapse
Affiliation(s)
- Dinglin Li
- Department of Integrated Traditional Chinese and Western Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhonghua Gao
- Department of Geriatrics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Li
- Department of Integrated Traditional Chinese and Western Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangjie Liu
- Department of Geriatrics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Liu
- Department of Integrated Traditional Chinese and Western Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
ERN1 dependent impact of glutamine and glucose deprivations on the pyruvate dehydrogenase genes expression in glioma cells. Endocr Regul 2022; 56:254-264. [DOI: 10.2478/enr-2022-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Abstract
Objective. The aim of the present study was to investigate the expression of pyruvate dehydrogenase genes such as PDHA1, PDHB, DLAT, DLD, and PDHX in U87 glioma cells in response to glutamine and glucose deprivations in control glioma cells and endoplasmic reticulum to nucleus signaling 1 (ERN1) knockdown cells, the major endoplasmic reticulum (ER) stress signaling pathway, to find out whether there exists a possible dependence of these important regulatory genes expression on both glutamine and glucose supply as well as ERN1 signaling.
Methods. The expression level of PDHA1, PDHB, DLAT, DLD, and PDHX genes was studied by real-time quantitative polymerase chain reaction in control U87 glioma cells (transfected by empty vector) and cells with inhibition of ERN1(transfected by dnERN1) after cells exposure to glucose and glutamine deprivations.
Results. The data showed that the expression level of PDHA1, PDHB, DLAT, and DLD genes was down-regulated (more profound in PDHB gene) in control glioma cells treated with glutamine deprivation. At the same time, ERN1 knockdown modified the impact of glutamine deprivation on the expression level of all these genes in glioma cells: suppressed the sensitivity of PDHB and DLD genes expression and removed the impact of glutamine deprivation on the expression of PDHA1 and DLAT genes. Glucose deprivation did not significantly change the expression level of all studied genes in control glioma cells, but ERN1 knockdown is suppressed the impact of glucose deprivation on PDHX and DLD genes expression and significantly enhanced the expression of PDHA1 and PDHB genes. No significant changes were observed in the sensitivity of PDHX gene expression to glutamine deprivation neither in control nor ERN1 knock-down glioma cells. The knock-down of ERN1 removed the sensitivity of DLAT gene expression to glucose deprivation.
Conclusion. The results of this investigation demonstrate that the exposure of control U87 glioma cells under glutamine deprivation significantly affected the expression of PDHA1, PDHB, DLAT, and DLD genes in a gene specific manner and that impact of glutamine deprivation was modified by inhibition of the ER stress signaling mediated by ERN1. At the same time, glucose deprivation affected the expression of PDHA1, PDHB, PDHX, and DLD genes in ERN1 knockdown glioma cells only. Thus, the expression of pyruvate dehydrogenase genes under glutamine and glucose deprivation conditions appears to be controlled by the ER stress signaling through ERN1.
Collapse
|
10
|
Zhao J, Guo S, Schrodi SJ, He D. Cuproptosis and cuproptosis-related genes in rheumatoid arthritis: Implication, prospects, and perspectives. Front Immunol 2022; 13:930278. [PMID: 35990673 PMCID: PMC9386151 DOI: 10.3389/fimmu.2022.930278] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/18/2022] [Indexed: 11/14/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that severely affects patients' physical and mental health, leading to chronic synovitis and destruction of bone joints. Although various available clinical treatment options exist, patients respond with varying efficacies due to multiple factors, and there is an urgent need to discover new treatment options to improve clinical outcomes. Cuproptosis is a newly characterized form of cell death. Copper causes cuproptosis by binding to lipid-acylated components of the tricarboxylic acid cycle, leading to protein aggregation, loss of iron-sulfur cluster proteins, and eventually proteotoxic stress. Targeting copper cytotoxicity and cuproptosis are considered potential options for treating oncological diseases. The synovial hypoxic environment and the presence of excessive glycolysis in multiple cells appear to act as inhibitors of cuproptosis, which can lead to excessive survival and proliferation of multiple immune cells, such as fibroblast-like synoviocytes, effector T cells, and macrophages, further mediating inflammation and bone destruction in RA. Therefore, in this study, we attempted to elaborate and summarize the linkage of cuproptosis and key genes regulating cuproptosis to the pathological mechanisms of RA and their effects on a variety of immune cells. This study aimed to provide a theoretical basis and support for translating preclinical and experimental results of RA to clinical protocols.
Collapse
Affiliation(s)
- Jianan Zhao
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Shicheng Guo
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI, United States,Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States,*Correspondence: Shicheng Guo, ; Steven J. Schrodi, ; Dongyi He,
| | - Steven J. Schrodi
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI, United States,Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States,*Correspondence: Shicheng Guo, ; Steven J. Schrodi, ; Dongyi He,
| | - Dongyi He
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China,Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China,*Correspondence: Shicheng Guo, ; Steven J. Schrodi, ; Dongyi He,
| |
Collapse
|
11
|
Ebanks B, Katyal G, Lucassen M, Papetti C, Chakrabarti L. Proteomic analysis of the ATP synthase interactome in notothenioids highlights a pathway that inhibits ceruloplasmin production. Am J Physiol Regul Integr Comp Physiol 2022; 323:R181-R192. [PMID: 35639858 PMCID: PMC9291420 DOI: 10.1152/ajpregu.00069.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Antarctic notothenioids have unique adaptations that allow them to thrive in sub-zero Antarctic waters. Within the suborder Notothenioidei, species of the family Channichthyidae (icefish) lack haemoglobin and in some instances myoglobin too. In studies of mitochondrial function of notothenioids, few have focussed specifically on ATP synthase. In this study, we find that the icefish Champsocephalus gunnari has a significantly higher level of ATP synthase subunit α expression than in red-blooded Notothenia rossii, but a much smaller interactome than the other species. We characterise the interactome of ATP synthase subunit a in two red-blooded species Trematomus bernacchii, N. rossii, and in the icefish Chionodraco rastrospinosus, and C. gunnari and find that in comparison with the other species, reactome enrichment for C. gunnari lacks chaperonin-mediated protein folding, and fewer oxidative-stress-associated proteins are present in the identified interactome of C. gunnari. Reactome enrichment analysis also identifies a transcript-specific translational silencing pathway for the iron oxidase protein ceruloplasmin, which has previously been reported in studies of icefish as distinct from other red-blooded fish and vertebrates in its activity and RNA transcript expression. Ceruloplasmin protein expression is detected by Western blot in the liver of T. bernacchii, but not in N. rossii, C. rastrospinosus, and C. gunnari. We suggest that the translation of ceruloplasmin transcripts is silenced by the identified pathway in icefish notothenioids, which is indicative of altered iron metabolism and Fe(II) detoxification.
Collapse
Affiliation(s)
- Brad Ebanks
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - Gunjan Katyal
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | | | | | - Lisa Chakrabarti
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom.,MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, United Kingdom
| |
Collapse
|
12
|
Wang J, Huang CLH, Zhang Y. Complement C1q Binding Protein (C1QBP): Physiological Functions, Mutation-Associated Mitochondrial Cardiomyopathy and Current Disease Models. Front Cardiovasc Med 2022; 9:843853. [PMID: 35310974 PMCID: PMC8924301 DOI: 10.3389/fcvm.2022.843853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/25/2022] [Indexed: 12/03/2022] Open
Abstract
Complement C1q binding protein (C1QBP, p32) is primarily localized in mitochondrial matrix and associated with mitochondrial oxidative phosphorylative function. C1QBP deficiency presents as a mitochondrial disorder involving multiple organ systems. Recently, disease associated C1QBP mutations have been identified in patients with a combined oxidative phosphorylation deficiency taking an autosomal recessive inherited pattern. The clinical spectrum ranges from intrauterine growth restriction to childhood (cardio) myopathy and late-onset progressive external ophthalmoplegia. This review summarizes the physiological functions of C1QBP, its mutation-associated mitochondrial cardiomyopathy shown in the reported available patients and current experimental disease platforms modeling these conditions.
Collapse
Affiliation(s)
- Jie Wang
- National Regional Children's Medical Center (Northwest), Xi'an, China
- Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Xi'an, China
- Shaanxi Institute for Pediatric Diseases, Xi'an, China
- Xi'an Key Laboratory of Children's Health and Diseases, Xi'an, China
| | | | - Yanmin Zhang
- National Regional Children's Medical Center (Northwest), Xi'an, China
- Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Xi'an, China
- Shaanxi Institute for Pediatric Diseases, Xi'an, China
- Xi'an Key Laboratory of Children's Health and Diseases, Xi'an, China
- Department of Cardiology of Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, China
- *Correspondence: Yanmin Zhang
| |
Collapse
|
13
|
Davoli R, Vegni J, Cesarani A, Dimauro C, Zappaterra M, Zambonelli P. Identification of differentially expressed genes in early-postmortem Semimembranosus muscle of Italian Large White heavy pigs divergent for glycolytic potential. Meat Sci 2022; 187:108754. [DOI: 10.1016/j.meatsci.2022.108754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/18/2022] [Accepted: 02/01/2022] [Indexed: 10/19/2022]
|
14
|
Huang M, Xiao J, Yan C, Wang T, Ling R. USP41 promotes breast cancer via regulating RACK1. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1566. [PMID: 34790772 PMCID: PMC8576695 DOI: 10.21037/atm-21-4921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/19/2021] [Indexed: 11/10/2022]
Abstract
Background Breast cancer (BC) is the most common cancer diagnosed among women and is the second leading cause of cancer death. It is of great significance to explore potential candidate targets for BC. Methods The expression of ubiquitin-specific protease 41 (USP41) and its prognosis prediction function was firstly evaluated by TCGA database analysis. Using BC cell lines and specimens from 10 patients with primary BC, the upregulation of USP41 in BC was ensured. By USP41 overexpression or knockdown, its function was studied by cell function assays, small interfering RNA (siRNA), western blot, mass spectrometry, and flow cytometry. The potential mechanism of USP41 was explored via Co-Immunoprecipitation mass spectrometry, and western blot. Results TCGA database analysis revealed that in metastatic BC, USP41 expression was upregulated and negatively correlated with BC prognosis. In BC cancer cells and cancer specimens, USP41 was also upregulated. Overexpression of USP41 greatly enhanced BC colony-forming ability, proliferation, and migration. In contrast, USP41 knockdown significantly inhibited BC colony-forming ability, proliferation, and migration. Moreover, Co-Immunoprecipitation mass spectrometry results indicated that USP41 could interact with RACK1. USP41 promoted the protein expression of RACK1. The expression of RACK1 in BC tissues was upregulated. Knockdown of RACK1 inhibited cell growth and migration, and reversed the oncogenic function of USP41 in BC cells. Conclusions USP41 can be a potential therapeutic target against BC via RACK1.
Collapse
Affiliation(s)
- Meiling Huang
- Department of Thyroid, Breast, and Vascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jingjing Xiao
- Department of Thyroid, Breast, and Vascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Changjiao Yan
- Department of Thyroid, Breast, and Vascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Ting Wang
- Department of Thyroid, Breast, and Vascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Rui Ling
- Department of Thyroid, Breast, and Vascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
15
|
The Cysteine-Rich Peptide Snakin-2 Negatively Regulates Tubers Sprouting through Modulating Lignin Biosynthesis and H 2O 2 Accumulation in Potato. Int J Mol Sci 2021; 22:ijms22052287. [PMID: 33669030 PMCID: PMC7956376 DOI: 10.3390/ijms22052287] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 01/10/2023] Open
Abstract
Potato tuber dormancy is critical for the post-harvest quality. Snakin/Gibberellic Acid Stimulated in Arabidopsis (GASA) family genes are involved in the plants’ defense against pathogens and in growth and development, but the effect of Snakin-2 (SN2) on tuber dormancy and sprouting is largely unknown. In this study, a transgenic approach was applied to manipulate the expression level of SN2 in tubers, and it demonstrated that StSN2 significantly controlled tuber sprouting, and silencing StSN2 resulted in a release of dormancy and overexpressing tubers showed a longer dormant period than that of the control. Further analyses revealed that the decrease expression level accelerated skin cracking and water loss. Metabolite analyses revealed that StSN2 significantly down-regulated the accumulation of lignin precursors in the periderm, and the change of lignin content was documented, a finding which was consistent with the precursors’ level. Subsequently, proteomics found that cinnamyl alcohol dehydrogenase (CAD), caffeic acid O-methyltransferase (COMT) and peroxidase (Prx), the key proteins for lignin synthesis, were significantly up-regulated in silencing lines, and gene expression and enzyme activity analyses also supported this effect. Interestingly, we found that StSN2 physically interacts with three peroxidases catalyzing the oxidation and polymerization of lignin. In addition, SN2 altered the hydrogen peroxide (H2O2) content and the activities of superoxide dismutase (SOD) and catalase (CAT). These results suggest that StSN2 negatively regulates lignin biosynthesis and H2O2 accumulation, and ultimately inhibits the sprouting of potato tubers.
Collapse
|
16
|
Curcumin induces chemosensitization to doxorubicin in Duke's type B coloadenocarcinoma cell line. Mol Biol Rep 2020; 47:7883-7892. [PMID: 33025506 DOI: 10.1007/s11033-020-05866-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 09/25/2020] [Indexed: 12/14/2022]
Abstract
Cancer cells require higher levels of ATP for their sustained growth, proliferation, and chemoresistance. Mitochondrial matrix protein, C1qbp is upregulated in colon cancer cell lines. It protects the mitochondria from oxidative stress, by inhibiting the Membrane Permeability Transition (MPT) pore and providing uninterrupted synthesis of ATP. This intracellular interaction of C1qbp could be involved in chemoresistance development. Natural chemosensitizing agent, curcumin has been used in the treatment of multiple cancers. In this current study, we elucidate the role of C1qbp during curcumin induced chemosensitization to doxorubicin resistant colon cancer cells. The possible interaction between C1qbp and curcumin was determined using bioinformatics tools-AutoDock, SYBYL, and PyMol. Intracellular doxorubicin accumulation by fluorimetry and dead cell count was carried out to determine development of chemoresistance. Effect of curcumin treatment and cytotoxicity was measured by MTT and lactate dehydrogenase release. Morphological analysis by phase contrast microscopy and colony forming ability by colonogenic assay were also performed. In addition, Cox-2 could mediate P-glycoprotein upregulation via phosphorylation of c-Jun. Thus, the gene level expression of P-glycoprotein and Cox-2 was also investigated using PCR. Through molecular docking we identified possible interaction between curcumin and C1qbp. We observed development of chemoresistance upon 6th day treatment. Concentration dependent alleviation of chemoresistance development by curcumin was confirmed and was found to reduce gene level expression of P-glycoprotein and Cox-2. Hence, curcumin could interact directly with C1qbp protein and this interaction could contribute to the chemosensiting effect to doxorubicin in colon cancer cells.
Collapse
|
17
|
Characterization of HMGB1/2 Interactome in Prostate Cancer by Yeast Two Hybrid Approach: Potential Pathobiological Implications. Cancers (Basel) 2019; 11:cancers11111729. [PMID: 31694235 PMCID: PMC6895793 DOI: 10.3390/cancers11111729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 11/02/2019] [Indexed: 02/06/2023] Open
Abstract
High mobility group box B (HMGB) proteins are pivotal in the development of cancer. Although the proteomics of prostate cancer (PCa) cells has been reported, the involvement of HMGB proteins and their interactome in PCa is an unexplored field of considerable interest. We describe herein the results of the first HMGB1/HMGB2 interactome approach to PCa. Libraries constructed from the PCa cell line, PC-3, and from patients’ PCa primary tumor have been screened by the yeast 2-hybrid approach (Y2H) using HMGB1 and HMGB2 baits. Functional significance of this PCa HMGB interactome has been validated through expression and prognosis data available on public databases. Copy number alterations (CNA) affecting these newly described HMGB interactome components are more frequent in the most aggressive forms of PCa: those of neuroendocrine origin or castration-resistant PCa. Concordantly, adenocarcinoma PCa samples showing CNA in these genes are also associated with the worse prognosis. These findings open the way to their potential use as discriminatory biomarkers between high and low risk patients. Gene expression of a selected set of these interactome components has been analyzed by qPCR after HMGB1 and HMGB2 silencing. The data show that HMGB1 and HMGB2 control the expression of several of their interactome partners, which might contribute to the orchestrated action of these proteins in PCa
Collapse
|
18
|
Barna J, Dimén D, Puska G, Kovács D, Csikós V, Oláh S, Udvari EB, Pál G, Dobolyi Á. Complement component 1q subcomponent binding protein in the brain of the rat. Sci Rep 2019; 9:4597. [PMID: 30872665 PMCID: PMC6418184 DOI: 10.1038/s41598-019-40788-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 02/19/2019] [Indexed: 12/17/2022] Open
Abstract
Complement component 1q subcomponent binding protein (C1qbp) is a multifunctional protein involved in immune response, energy homeostasis of cells as a plasma membrane receptor, and a nuclear, cytoplasmic or mitochondrial protein. Recent reports suggested its neuronal function, too, possibly in axon maintenance, synaptic function, and neuroplasticity. Therefore, we addressed to identify C1qbp in the rat brain using in situ hybridization histochemistry and immunolabelling at light and electron microscopic level. C1qbp has a topographical distribution in the brain established by the same pattern of C1qbp mRNA-expressing and protein-containing neurons with the highest abundance in the cerebral cortex, anterodorsal thalamic nucleus, hypothalamic paraventricular (PVN) and arcuate nuclei, spinal trigeminal nucleus. Double labelling of C1qbp with the neuronal marker NeuN, with the astrocyte marker S100, and the microglia marker Iba1 demonstrated the presence of C1qbp in neurons but not in glial cells in the normal brain, while C1qbp appeared in microglia following their activation induced by focal ischemic lesion. Only restricted neurons expressed C1qbp, for example, in the PVN, magnocellular neurons selectively contained C1qbp. Further double labelling by using the mitochondria marker Idh3a antibody suggested the mitochondrial localization of C1qbp in the brain, confirmed by correlated light and electron microscopy at 3 different brain regions. Post-embedding immunoelectron microscopy also suggested uneven C1qbp content of mitochondria in different brain areas but also heterogeneity within single neurons. These data suggest a specific function of C1qbp in the brain related to mitochondria, such as the regulation of local energy supply in neuronal cells.
Collapse
Affiliation(s)
- János Barna
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Diána Dimén
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary
| | - Gina Puska
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary
| | - Dávid Kovács
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary
| | - Vivien Csikós
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary
| | - Szilvia Oláh
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary
| | - Edina B Udvari
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary
| | - Gabriella Pál
- Hungarian Defence Forces Military Hospital, Budapest, Hungary
| | - Árpád Dobolyi
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary.
| |
Collapse
|
19
|
Wei F, Zhang T, Deng SC, Wei JC, Yang P, Wang Q, Chen ZP, Li WL, Chen HC, Hu H, Cao J. PD-L1 promotes colorectal cancer stem cell expansion by activating HMGA1-dependent signaling pathways. Cancer Lett 2019; 450:1-13. [PMID: 30776481 DOI: 10.1016/j.canlet.2019.02.022] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/05/2019] [Accepted: 02/11/2019] [Indexed: 01/23/2023]
Abstract
PD-L1 is critical for tumor cell escape from immune surveillance by inhibiting T cell function via the PD-1 receptor. Accumulating evidence demonstrates that anti-PD-L1 monoclonal antibodies might potently enhance antitumor effects in various tumors, but the effect of PD-L1 on colorectal cancer stem cells (CSCs) remains unclear. We observed high PD-L1 expression in CD133+CD44+ colorectal CSCs and CSC-enriched tumorspheres. Altering PD-L1 expression promoted colorectal CSC self-renewal by increasing the expression of stemness genes, the CD133+CD44+ cell population sizes and the ability to form tumorspheres. Additionally, PD-L1 expression was markedly increased in chemoresistant colorectal cancer (CRC) cells in vitro and in vivo. More importantly, PD-L1 enhanced CRC cell tumorigenicity in nude mice; the inoculation of 1 × 104 cells resulted in high tumor formation efficiency. Mechanistically, PD-L1 directly interacted with HMGA1, and HMGA1 upregulation by PD-L1 activated HMGA1-dependent pathways, including the PI3K/Akt and MEK/ERK pathways, and promoted CSC expansion. HMGA1 downregulation rescued the PD-L1-induced phenotypes, highlighting the role of HMGA1 in PD-L1-mediated colorectal CSC self-renewal. Moreover, PD-L1 expression was correlated with the expression of CSC markers and HMGA1 in clinical CRC specimens. Thus, PD-L1 could crucially contribute to the maintenance of CSC self-renewal by activating HMGA1-dependent signaling pathways.
Collapse
Affiliation(s)
- Fang Wei
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China; Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | - Tong Zhang
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China; Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | - Shu-Chou Deng
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | - Jian-Chang Wei
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China; Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | - Ping Yang
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China; Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | - Qiang Wang
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China; Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | - Zhuan-Peng Chen
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China; Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | - Wang-Lin Li
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China; Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | - Hua-Cui Chen
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | - He Hu
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China; Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | - Jie Cao
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China; Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China.
| |
Collapse
|
20
|
Gotoh K, Morisaki T, Setoyama D, Sasaki K, Yagi M, Igami K, Mizuguchi S, Uchiumi T, Fukui Y, Kang D. Mitochondrial p32/C1qbp Is a Critical Regulator of Dendritic Cell Metabolism and Maturation. Cell Rep 2018; 25:1800-1815.e4. [DOI: 10.1016/j.celrep.2018.10.057] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/18/2018] [Accepted: 10/15/2018] [Indexed: 12/12/2022] Open
|
21
|
Sasaki K, Gotoh K, Miake S, Setoyama D, Yagi M, Igami K, Uchiumi T, Kang D. p32 is Required for Appropriate Interleukin-6 Production Upon LPS Stimulation and Protects Mice from Endotoxin Shock. EBioMedicine 2017; 20:161-172. [PMID: 28549777 PMCID: PMC5478242 DOI: 10.1016/j.ebiom.2017.05.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/10/2017] [Accepted: 05/10/2017] [Indexed: 12/30/2022] Open
Abstract
Sepsis is a major cause of morbidity and mortality in seriously ill patients and mitochondrial dysfunction is associated with poor outcomes in septic patients. Although interleukin-6 (IL-6) is a good prognostic marker for sepsis, the relationship between mitochondrial dysfunction and IL-6 remains poorly understood. We identified p32/C1QBP/HABP1 as a regulator of IL-6 production in response to lipopolysaccharide (LPS). LPS induced IL-6 overproduction in p32 deficient mouse embryonic fibroblasts (MEFs) through NF-κB independent but activating transcription factor (ATF) 4 dependent pathways. Short hairpin RNA-based knockdown of ATF4 in p32 deficient MEFs markedly inhibited LPS-induced IL-6 production. Furthermore, MEFs treated with chloramphenicol, an inhibitor of mitochondrial translation, produced excessive IL-6 via ATF4 pathways. Using a LPS-induced endotoxin shock model, mice with p32 ablation in myeloid cells showed increased lethality and overproduction of IL-6. Thus, this study provides a molecular link how mitochondrial dysfunction leads to IL-6 overproduction and poor prognosis of sepsis.
Collapse
Affiliation(s)
- Katsuhiko Sasaki
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Medical Solution Promotion Department, Business Management Center, Medical Solution Segment, LSI Medience Corporation, 4-1, Kyudaishimmachi, Nishi-ku, Fukuoka 819-0388, Japan
| | - Kazuhito Gotoh
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Sho Miake
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Mikako Yagi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ko Igami
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Medical Solution Promotion Department, Business Management Center, Medical Solution Segment, LSI Medience Corporation, 4-1, Kyudaishimmachi, Nishi-ku, Fukuoka 819-0388, Japan
| | - Takeshi Uchiumi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
22
|
Xiao M, Yang J, Feng Y, Zhu Y, Chai X, Wang Y. Metaproteomic strategies and applications for gut microbial research. Appl Microbiol Biotechnol 2017; 101:3077-3088. [PMID: 28293710 DOI: 10.1007/s00253-017-8215-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 02/28/2017] [Accepted: 03/04/2017] [Indexed: 01/16/2023]
Abstract
The human intestine hosts various complex microbial communities that are closely associated with multiple health and disease processes. Determining the composition and function of these microbial communities is critical to unveil disease mechanisms and promote human health. Recently, meta-omic strategies have been developed that use high-throughput techniques to provide a wealth of information, thus accelerating the study of gut microbes. Metaproteomics is a newly emerged analytical approach that aims to identify proteins on a large scale in complex environmental microbial communities (e.g., the gut microbiota). This review introduces the recent analytical strategies and applications of metaproteomics, with a focus on advances in gut microbiota research, including a discussion of the limitations and challenges of these approaches.
Collapse
Affiliation(s)
- Mingming Xiao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.,Research and Development Center of Traditional Chinese Medicine, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, 300457, China
| | - Junjun Yang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.,Research and Development Center of Traditional Chinese Medicine, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, 300457, China
| | - Yuxin Feng
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.,Research and Development Center of Traditional Chinese Medicine, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, 300457, China
| | - Yan Zhu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.,Research and Development Center of Traditional Chinese Medicine, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, 300457, China
| | - Xin Chai
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.,Research and Development Center of Traditional Chinese Medicine, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, 300457, China
| | - Yuefei Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China. .,Research and Development Center of Traditional Chinese Medicine, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, 300457, China.
| |
Collapse
|
23
|
Udvari EB, Völgyi K, Gulyássy P, Dimén D, Kis V, Barna J, Szabó ÉR, Lubec G, Juhász G, Kékesi KA, Dobolyi Á. Synaptic proteome changes in the hypothalamus of mother rats. J Proteomics 2017; 159:54-66. [PMID: 28286321 DOI: 10.1016/j.jprot.2017.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/01/2017] [Accepted: 03/07/2017] [Indexed: 12/16/2022]
Abstract
To establish synaptic proteome changes associated with motherhood, we isolated synaptosome fractions from the hypothalamus of mother rats and non-maternal control females at the 11th postpartum day. Proteomic analysis by two-dimensional differential gel electrophoresis combined with mass spectrometric protein identification established 26 significant proteins, 7 increasing and 19 decreasing protein levels in the dams. The altered proteins are mainly involved in energy homeostasis, protein folding, and metabolic processes suggesting the involvement of these cellular processes in maternal adaptations. The decrease in a significantly altered protein, complement component 1q subcomponent-binding protein (C1qbp) was validated with Western blotting. Furthermore, immunohistochemistry showed its presence in hypothalamic fibers and terminals in agreement with its presence in synaptosomes. We also found the expression of C1qbp in different hypothalamic nuclei including the preoptic area and the paraventricular hypothalamic nucleus at the protein and at the mRNA level using immunohistochemistry and in situ hybridization histochemistry, respectively. Bioinformatical network analysis revealed that cytokines, growth factors, and protein kinases are common regulators, which indicates a complex regulation of the proteome change in mothers. The results suggest that maternal responsiveness is associated with synaptic proteins level changes in the hypothalamus, and that growth factors and cytokines may govern these alterations. BIOLOGICAL SIGNIFICANCE The period of motherhood is accompanied with several behavioral, neuroendocrine, emotional and metabolic adaptations in the brain. Although it is established that various hypothalamic networks participate in the maternal adaptations of the rodent brain, our knowledge on the molecular background of these alterations remains seriously limited. In the present study, we first determined that the functional alterations of the maternal brain can be detected at the level of the synaptic proteome in the hypothalamus. Independent confirmation of synaptic localization, and also the established decrease in the level of C1qbp protein suggest the validity of the data. Common regulators of altered proteins belonging to the growth factor and cytokine family suggest that the synaptic adaptation is governed by these extracellular signals and future studies should focus on their specific roles. Our study was also the first to describe the expression pattern of C1qbp in the hypothalamus, a protein potentially involved in mitochondrial and neuroimmunological regulations of synaptic plasticity. Its presence in the preoptic area responsible for maternal behaviors and also in the paraventricular hypothalamic and arcuate nuclei regulating hormonal levels suggests that the same proteins may be involved in different aspects of maternal adaptations. The conclusions of the present work contribute to establishing the molecular alterations that determine different maternal adaptations in the brain. Since maternal changes are models of neuronal plasticity in all social interactions, the reported results can affect a wide field of molecular and behavioral neuroscience.
Collapse
Affiliation(s)
- Edina Brigitta Udvari
- MTA-ELTE NAP B Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest H-1117, Hungary; Laboratory of Proteomics, Institute of Biology, Eötvös Loránd University, Budapest H-1117, Hungary
| | - Katalin Völgyi
- MTA-ELTE NAP B Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest H-1117, Hungary
| | - Péter Gulyássy
- Laboratory of Proteomics, Institute of Biology, Eötvös Loránd University, Budapest H-1117, Hungary; Department of Pharmaceutical Chemistry, University of Vienna, Vienna A-1090, Austria; MTA-TTK NAP MS Neuroproteomics Research Group, Hungarian Academy of Sciences, Budapest H-1117, Hungary
| | - Diána Dimén
- MTA-ELTE NAP B Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest H-1117, Hungary; Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest H-1117, Hungary
| | - Viktor Kis
- MTA-ELTE NAP B Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest H-1117, Hungary; Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest H-1117, Hungary
| | - János Barna
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest H-1094, Hungary
| | - Éva Rebeka Szabó
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest H-1094, Hungary
| | - Gert Lubec
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna A-1090, Austria
| | - Gábor Juhász
- Laboratory of Proteomics, Institute of Biology, Eötvös Loránd University, Budapest H-1117, Hungary; MTA-TTK NAP MS Neuroproteomics Research Group, Hungarian Academy of Sciences, Budapest H-1117, Hungary
| | - Katalin Adrienna Kékesi
- Laboratory of Proteomics, Institute of Biology, Eötvös Loránd University, Budapest H-1117, Hungary; Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest H-1117, Hungary
| | - Árpád Dobolyi
- MTA-ELTE NAP B Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest H-1117, Hungary; MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest H-1117, Hungary.
| |
Collapse
|
24
|
F-Box Protein FBXO22 Mediates Polyubiquitination and Degradation of CD147 to Reverse Cisplatin Resistance of Tumor Cells. Int J Mol Sci 2017; 18:ijms18010212. [PMID: 28117675 PMCID: PMC5297841 DOI: 10.3390/ijms18010212] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 01/01/2017] [Accepted: 01/16/2017] [Indexed: 12/16/2022] Open
Abstract
Drug resistance remains a major clinical obstacle to successful treatment of cancer. As posttranslational modification is becoming widely recognized to affect the function of oncoproteins, targeting specific posttranslational protein modification provides an attractive strategy for anticancer drug development. CD147 is a transmembrane glycoprotein contributing to chemo-resistance of cancer cells in a variety of human malignancies. Ubiquitination is an important posttranslational modification mediating protein degradation. Degradation of oncoproteins, CD147 included, emerges as an attractive alternative for tumor inhibition. However, the ubiquitination of CD147 remains elusive. Here in this study, we found that deletion of the CD147 intracellular domain (CD147-ICD) prolonged the half-life of CD147 in HEK293T cells, and we identified that CD147-ICD interacts with FBXO22 using mass spectrometry and Western blot. Then, we demonstrated that FBXO22 mediates the polyubiquitination and degradation of CD147 by recognizing CD147-ICD. While knocking down of FBXO22 prolonged the half-life of CD147 in HEK293T cells, we found that FBXO22 regulates CD147 protein turnover in SMMC-7721, Huh-7 and A549 cells. Moreover, we found that the low level of FBXO22 contributes to the accumulation of CD147 and thereafter the cisplatin resistance of A549/DDP cells. To conclude, our study demonstrated that FBXO22 mediated the polyubiquitination and degradation of CD147 by interacting with CD147-ICD, and CD147 polyubiquitination by FBXO22 reversed cisplatin resistance of tumor cells.
Collapse
|