1
|
Bernardi FR, Lucion MK, Dalle Mole R, Machado TD, Loreto BBL, Farias BL, Reis TM, Reis RS, Bigonha SM, Peluzio MDCG, Arcego DM, Dalmaz C, Silveira PP. Relationship between maternal biological features, environmental factors, and newborn neuromotor development associated with visual fixation abilities. Brain Cogn 2024; 180:106202. [PMID: 38991360 DOI: 10.1016/j.bandc.2024.106202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024]
Abstract
Newborn visual fixation abilities predict future cognitive, perceptive, and motor skills. However, little is known about the factors associated with the newborn visual fixation, which is an indicator of neurocognitive abilities. We analyzed maternal biological and environmental characteristics associated with fine motor skills (visual tracking) in 1 month old infants. Fifty-one infants were tested on visual tracking tasks (Infant Visuomotor Behavior Assessment Scale/ Guide for the Assessment of Visual Ability in Infants) and classified according to visual conducts scores. Differences between groups were compared considering motor development (Alberta Infant Motor Scale) maternal mental health (Edinburgh Postnatal Depression Scale and Hamilton Anxiety Scale); home environment (Affordances in the Home Environment for Development Scale); maternal care (Coding Interactive Behavior); breastmilk composition (total fatty acids, proteins, and cortisol); and maternal metabolic profile (serum hormones and interleukins). Mothers of infants with lower visual fixation scores had higher levels of protein in breastmilk at 3 months. Mothers of infants with better visual conduct scores had higher serum levels of T4 (at 1 month) and prolactin (at 3 months). There were no associations between visual ability and motor development, home environment, or maternal care. Early newborn neuromotor development, especially visual and fine motor skills, is associated with maternal biological characteristics (metabolic factors and breastmilk composition), highlighting the importance of early detection of maternal metabolic changes for the healthy neurodevelopment of newborns.
Collapse
Affiliation(s)
- Fernanda Rombaldi Bernardi
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Unidade de Terapia Intensiva Neonatal do Hospital Universitário Polydoro Ernani de São Thiago, Universidade Federal de Santa Catarina, EBSERH, Florianópolis, SC, Brazil
| | - Marta Knijnik Lucion
- Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Roberta Dalle Mole
- Department of Psychiatry, Faculty of Medicine, McGill University and Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Tania Diniz Machado
- Programa de Pós-Graduação em Saúde da Criança e do Adolescente, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Bruna Luciano Farias
- Faculdade de Fisioterapia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Tatiane Madeira Reis
- Faculdade de Biomedicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Roberta Sena Reis
- Faculdade de Nutrição, Universidade Federal de Goiás, Goiânia, Brazil
| | - Solange Mara Bigonha
- Programa de Pós-Graduação em Ciência da Nutrição, Departamento de Nutrição e Saúde, Universidade Federal de Viçosa, Brazil
| | - Maria do Carmo Gouveia Peluzio
- Programa de Pós-Graduação em Ciência da Nutrição, Departamento de Nutrição e Saúde, Universidade Federal de Viçosa, Brazil
| | - Danusa Mar Arcego
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Psychiatry, Faculty of Medicine, McGill University and Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Carla Dalmaz
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Patrícia Pelufo Silveira
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Psychiatry, Faculty of Medicine, McGill University and Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.
| |
Collapse
|
2
|
Cheng YH, Lee CH, Wang SY, Chou CY, Yang YJ, Kao CC, Wu HY, Dong Y, Hung WY, Su CY, Tseng ST, Tsai IL. Multiplexed Antibody Glycosylation Profiling Using Dual Enzyme Digestion and Liquid Chromatography-Triple Quadrupole Mass Spectrometry Method. Mol Cell Proteomics 2024; 23:100710. [PMID: 38154690 PMCID: PMC10844133 DOI: 10.1016/j.mcpro.2023.100710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/14/2023] [Accepted: 12/23/2023] [Indexed: 12/30/2023] Open
Abstract
Antibody glycosylation plays a crucial role in the humoral immune response by regulating effector functions and influencing the binding affinity to immune cell receptors. Previous studies have focused mainly on the immunoglobulin G (IgG) isotype owing to the analytical challenges associated with other isotypes. Thus, the development of a sensitive and accurate analytical platform is necessary to characterize antibody glycosylation across multiple isotypes. In this study, we have developed an analytical workflow using antibody-light-chain affinity beads to purify IgG, IgA, and IgM from 16 μL of human plasma. Dual enzymes, trypsin and Glu-C, were used during on-bead digestion to obtain enzymatic glycopeptides and protein-specific surrogate peptides. Ultra-high-performance liquid chromatography coupled with triple quadrupole mass spectrometry was used in order to determine the sensitivity and specificity. Our platform targets 95 glycopeptides across the IgG, IgA, and IgM isotypes, as well as eight surrogate peptides representing total IgG, four IgG classes, two IgA classes, and IgM. Four stable isotope-labeled internal standards were added after antibody purification to calibrate the preparation and instrumental bias during analysis. Calibration curves constructed using serially diluted plasma samples showed good curve fitting (R2 > 0.959). The intrabatch and interbatch precision for all the targets had relative standard deviation of less than 29.6%. This method was applied to 19 human plasma samples, and the glycosylation percentages were calculated, which were comparable to those reported in the literature. The developed method is sensitive and accurate for Ig glycosylation profiling. It can be used in clinical investigations, particularly for detailed humoral immune profiling.
Collapse
Affiliation(s)
- Yu-Hsuan Cheng
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Hsin Lee
- Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - San-Yuan Wang
- Master Program in Clinical Genomics and Proteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Chia-Yi Chou
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yun-Jung Yang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Chin Kao
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan; Taipei Medical University-Research Center of Urology and Kidney (TMU-RCUK), Taipei Medical University, Taipei, Taiwan
| | - Hsin-Yi Wu
- Instrumentation Center, National Taiwan University, Taipei, Taiwan
| | - Yushi Dong
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wen-Ying Hung
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ching-Yi Su
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shih-Ting Tseng
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - I-Lin Tsai
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Master Program in Clinical Genomics and Proteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
3
|
Shi F, Wang Y, Chang Y, Liu K, Xue C. Establishment of a targeted proteomics method for the quantification of collagen chain: Revealing the chain stoichiometry of heterotypic collagen fibrils in sea cucumber. Food Chem 2024; 433:137335. [PMID: 37678116 DOI: 10.1016/j.foodchem.2023.137335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/27/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023]
Abstract
Collagen is the most abundant and important structural biomacromolecule in sea cucumbers. The sea cucumber collagen fibrils were previously confirmed to be heterotypic, nevertheless, the stoichiometry of collagen α-chains governing the complexity of collagen fibrils is still poorly understood. Herein, four representative collagen α-chains in sea cucumber including two clade A fibrillar collagens, one clade B fibrillar collagen, and one fibril-associated collagen with interrupted triple helices were selected. After the screening of signature peptides and optimization of multiple reaction monitoring (MRM) acquisition parameters including fragmentation, collision energy, and ion transition, a feasible MRM-based method was established. Consequently, the stoichiometry of the four collagen chains was determined to be approximately 100:54:3:4 based on the method. The assembly forms of sea cucumber collagen fibrils were further hypothesized according to the chain stoichiometry. This study facilitated the quantification of collagen and understanding of the collagen constituents in sea cucumber.
Collapse
Affiliation(s)
- Feifei Shi
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Yanchao Wang
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China.
| | - Yaoguang Chang
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China; Qingdao Marine Science and Technology Center, 1 Wenhai Road, Qingdao 266237, China.
| | - Kaimeng Liu
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China; Qingdao Marine Science and Technology Center, 1 Wenhai Road, Qingdao 266237, China
| |
Collapse
|
4
|
Michaud SA, Pětrošová H, Sinclair NJ, Kinnear AL, Jackson AM, McGuire JC, Hardie DB, Bhowmick P, Ganguly M, Flenniken AM, Nutter LMJ, McKerlie C, Smith D, Mohammed Y, Schibli D, Sickmann A, Borchers CH. Multiple reaction monitoring assays for large-scale quantitation of proteins from 20 mouse organs and tissues. Commun Biol 2024; 7:6. [PMID: 38168632 PMCID: PMC10762018 DOI: 10.1038/s42003-023-05687-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
Mouse is the mammalian model of choice to study human health and disease due to its size, ease of breeding and the natural occurrence of conditions mimicking human pathology. Here we design and validate multiple reaction monitoring mass spectrometry (MRM-MS) assays for quantitation of 2118 unique proteins in 20 murine tissues and organs. We provide open access to technical aspects of these assays to enable their implementation in other laboratories, and demonstrate their suitability for proteomic profiling in mice by measuring normal protein abundances in tissues from three mouse strains: C57BL/6NCrl, NOD/SCID, and BALB/cAnNCrl. Sex- and strain-specific differences in protein abundances are identified and described, and the measured values are freely accessible via our MouseQuaPro database: http://mousequapro.proteincentre.com . Together, this large library of quantitative MRM-MS assays established in mice and the measured baseline protein abundances represent an important resource for research involving mouse models.
Collapse
Affiliation(s)
- Sarah A Michaud
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada.
| | - Helena Pětrošová
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada
| | - Nicholas J Sinclair
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada
| | - Andrea L Kinnear
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada
| | - Angela M Jackson
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada
| | - Jamie C McGuire
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada
| | - Darryl B Hardie
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada
| | - Pallab Bhowmick
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada
| | - Milan Ganguly
- The Center for Phenogenomics, Toronto, ON, Canada
- The Hospital for Sick Children, Toronto, ON, Canada
| | - Ann M Flenniken
- The Center for Phenogenomics, Toronto, ON, Canada
- Sinai Health Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
| | - Lauryl M J Nutter
- The Center for Phenogenomics, Toronto, ON, Canada
- The Hospital for Sick Children, Toronto, ON, Canada
| | | | - Derek Smith
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada
| | - Yassene Mohammed
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V, Dortmund, 44139, Germany
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - David Schibli
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V, Dortmund, 44139, Germany
| | - Christoph H Borchers
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, Canada.
- Gerald Bronfman Department of Oncology, Jewish General Hospital, Montreal, QC, Canada.
- Department of Experimental Medicine, McGill University, Montreal, QC, Canada.
- Department of Pathology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
5
|
Yin H, Zhu J. Methods for quantification of glycopeptides by liquid separation and mass spectrometry. MASS SPECTROMETRY REVIEWS 2023; 42:887-917. [PMID: 35099083 PMCID: PMC9339036 DOI: 10.1002/mas.21771] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 11/14/2021] [Accepted: 01/13/2022] [Indexed: 05/05/2023]
Abstract
Recent advances in analytical techniques provide the opportunity to quantify even low-abundance glycopeptides derived from complex biological mixtures, allowing for the identification of glycosylation differences between healthy samples and those derived from disease states. Herein, we discuss the sample preparation procedures and the mass spectrometry (MS) strategies that have facilitated glycopeptide quantification, as well as the standards used for glycopeptide quantification. For sample preparation, various glycopeptide enrichment methods are summarized including the columns used for glycopeptide separation in liquid chromatography separation. For MS analysis strategies, MS1 level-based quantification and MS2 level-based quantification are described, either with or without labeling, where we have covered isotope labeling, TMT/iTRAQ labeling, data dependent acquisition, data independent acquisition, multiple reaction monitoring, and parallel reaction monitoring. The strengths and weaknesses of these methods are compared, particularly those associated with the figures of merit that are important for clinical biomarker studies and the pathological and functional studies of glycoproteins in various diseases. Possible future developments for glycopeptide quantification are discussed.
Collapse
Affiliation(s)
- Haidi Yin
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518132, China
- Correspondence to: Haidi Yin, Shenzhen Bay Laboratory, A1201, Shenzhen, Guangdong, 518132, China. Phone: 0755-26849276. , Jianhui Zhu, Department of Surgery, University of Michigan, 1150 West Medical Center Drive, Building MSRB1, Rm A500, Ann Arbor, MI 48109-0656, USA. Tel: 734-615-2567. Fax: 734-615-2088.
| | - Jianhui Zhu
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence to: Haidi Yin, Shenzhen Bay Laboratory, A1201, Shenzhen, Guangdong, 518132, China. Phone: 0755-26849276. , Jianhui Zhu, Department of Surgery, University of Michigan, 1150 West Medical Center Drive, Building MSRB1, Rm A500, Ann Arbor, MI 48109-0656, USA. Tel: 734-615-2567. Fax: 734-615-2088.
| |
Collapse
|
6
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2017-2018. MASS SPECTROMETRY REVIEWS 2023; 42:227-431. [PMID: 34719822 DOI: 10.1002/mas.21721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2018. Also included are papers that describe methods appropriate to glycan and glycoprotein analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, new methods, matrices, derivatization, MALDI imaging, fragmentation and the use of arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Most of the applications are presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and highlights the impact that MALDI imaging is having across a range of diciplines. MALDI is still an ideal technique for carbohydrate analysis and advancements in the technique and the range of applications continue steady progress.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
Cho BG, Gutierrez Reyes CD, Goli M, Gautam S, Banazadeh A, Mechref Y. Targeted N-Glycan Analysis with Parallel Reaction Monitoring Using a Quadrupole-Orbitrap Hybrid Mass Spectrometer. Anal Chem 2022; 94:15215-15222. [DOI: 10.1021/acs.analchem.2c01975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Byeong Gwan Cho
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | | | - Mona Goli
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Sakshi Gautam
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Alireza Banazadeh
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| |
Collapse
|
8
|
Guan B, Zhang Z, Chai Y, Amantai X, Chen X, Cao X, Yue X. N-glycosylation of milk proteins: A review spanning 2010–2022. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.07.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
9
|
Hernández-Caravaca I, Cabañas A, López-Úbeda R, González-Brusi L, Guillén-Martínez A, Izquierdo-Rico MJ, Muñoz-Rodríguez MN, Avilés M, Ruiz García MJ. Analysis of Minor Proteins Present in Breast Milk by Using WGA Lectin. CHILDREN (BASEL, SWITZERLAND) 2022; 9:1084. [PMID: 35884068 PMCID: PMC9318462 DOI: 10.3390/children9071084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022]
Abstract
Breast milk is a complex and dynamic biological fluid and considered an essential source of nutrition in early life. In its composition, the proteins have a relevant biological activity and are related to the multiple benefits demonstrated when compared with artificial milks derived from cow's milk. Understanding human milk composition provides an important tool for health care providers toward the management of infant feeding and the establishment of breastfeeding. In this work, a new technique was developed to increase the knowledge of human milk, because many of the components remain unknown. To isolate minor proteins present in breast milk by using WGA lectin, breast milk was centrifuged to remove cells and separate the fat phase from the serum phase. The serum obtained was separated into two groups: control (n = 3; whole serum sample from mature milk) and WGA lectin (n = 3; sample processed with WGA lectin to isolate glycosylated proteins). The samples were analyzed by high-performance liquid chromatography coupled to mass spectrometry (HPLC/MS). A total of 84 different proteins were identified from all of the samples. In the WGA lectin group, 55 different proteins were isolated, 77% of which had biological functions related to the immune response. Of these proteins, there were eight WGA lectin group exclusives, and two had not previously been described in breast milk (polyubiquitin-B and POTE ankyrin domain family member F). Isolation by WGA lectin is a useful technique to detect minor proteins in breast milk and to identify proteins that could not be observed in whole serum.
Collapse
Affiliation(s)
- Iván Hernández-Caravaca
- Department of Community Nursing, Preventive Medicine and Public Health and History of Science, University of Alicante, Sant Vicent del Raspeig, 03690 Alicante, Spain
- IMIB-Arrixaca (Instituto Murciano de Investigación Biosanitaria), 30120 Murcia, Spain; (R.L.-Ú.); (L.G.-B.); (A.G.-M.); (M.J.I.-R.); (M.A.)
| | - Andrés Cabañas
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of Murcia, Campus Mare Nostrum, 30100 Murcia, Spain;
| | - Rebeca López-Úbeda
- IMIB-Arrixaca (Instituto Murciano de Investigación Biosanitaria), 30120 Murcia, Spain; (R.L.-Ú.); (L.G.-B.); (A.G.-M.); (M.J.I.-R.); (M.A.)
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of Murcia, Campus Mare Nostrum, 30100 Murcia, Spain;
| | - Leopoldo González-Brusi
- IMIB-Arrixaca (Instituto Murciano de Investigación Biosanitaria), 30120 Murcia, Spain; (R.L.-Ú.); (L.G.-B.); (A.G.-M.); (M.J.I.-R.); (M.A.)
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of Murcia, Campus Mare Nostrum, 30100 Murcia, Spain;
| | - Ascensión Guillén-Martínez
- IMIB-Arrixaca (Instituto Murciano de Investigación Biosanitaria), 30120 Murcia, Spain; (R.L.-Ú.); (L.G.-B.); (A.G.-M.); (M.J.I.-R.); (M.A.)
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of Murcia, Campus Mare Nostrum, 30100 Murcia, Spain;
| | - Mª José Izquierdo-Rico
- IMIB-Arrixaca (Instituto Murciano de Investigación Biosanitaria), 30120 Murcia, Spain; (R.L.-Ú.); (L.G.-B.); (A.G.-M.); (M.J.I.-R.); (M.A.)
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of Murcia, Campus Mare Nostrum, 30100 Murcia, Spain;
| | - Mª Nieves Muñoz-Rodríguez
- Coordinación Sociosanitaria Dirección General de Planificación, Investigación, Farmacia y Atención al Ciudadano (CARM), 30071 Murcia, Spain;
| | - Manuel Avilés
- IMIB-Arrixaca (Instituto Murciano de Investigación Biosanitaria), 30120 Murcia, Spain; (R.L.-Ú.); (L.G.-B.); (A.G.-M.); (M.J.I.-R.); (M.A.)
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of Murcia, Campus Mare Nostrum, 30100 Murcia, Spain;
| | - Mª Jesús Ruiz García
- Department of Nursing, Faculty of Nursing, University of Murcia, Campus Mare Nostrum, 30100 Murcia, Spain;
| |
Collapse
|
10
|
Holm M, Saraswat M, Joenväärä S, Seppo A, Looney RJ, Tohmola T, Renkonen J, Renkonen R, Järvinen KM. Quantitative glycoproteomics of human milk and association with atopic disease. PLoS One 2022; 17:e0267967. [PMID: 35559953 PMCID: PMC9106177 DOI: 10.1371/journal.pone.0267967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 04/19/2022] [Indexed: 11/20/2022] Open
Abstract
The prevalence of allergic diseases and asthma is increasing rapidly worldwide, with environmental and lifestyle behaviors implicated as a reason. Epidemiological studies have shown that children who grow up on farms are at lower risk of developing childhood atopic disease, indicating the presence of a protective "farm effect". The Old Order Mennonite (OOM) community in Upstate New York have traditional, agrarian lifestyles, a low rate of atopic disease, and long periods of exclusive breastfeeding. Human milk proteins are heavily glycosylated, although there is a paucity of studies investigating the milk glycoproteome. In this study, we have used quantitative glycoproteomics to compare the N-glycoprotein profiles of 54 milk samples from Rochester urban/suburban and OOM mothers, two populations with different lifestyles, exposures, and risk of atopic disease. We also compared N-glycoprotein profiles according to the presence or absence of atopic disease in the mothers and, separately, the children. We identified 79 N-glycopeptides from 15 different proteins and found that proteins including immunoglobulin A1, polymeric immunoglobulin receptor, and lactotransferrin displayed significant glycan heterogeneity. We found that the abundances of 38 glycopeptides differed significantly between Rochester and OOM mothers and also identified four glycopeptides with significantly different abundances between all comparisons. These four glycopeptides may be associated with the development of atopic disease. The findings of this study suggest that the differential glycosylation of milk proteins could be linked to atopic disease.
Collapse
Affiliation(s)
- Matilda Holm
- Transplantation Laboratory, Haartman Institute, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mayank Saraswat
- Transplantation Laboratory, Haartman Institute, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Sakari Joenväärä
- Transplantation Laboratory, Haartman Institute, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Antti Seppo
- Department of Pediatrics, Division of Allergy, Immunology, and Rheumatology, Center for Food Allergy, University of Rochester School of Medicine and Dentistry, Golisano Children’s Hospital, Rochester, New York, United States of America
| | - R. John Looney
- Department of Medicine, Division of Allergy, Immunology, and Rheumatology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Tiialotta Tohmola
- Transplantation Laboratory, Haartman Institute, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jutta Renkonen
- Transplantation Laboratory, Haartman Institute, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Risto Renkonen
- Transplantation Laboratory, Haartman Institute, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kirsi M. Järvinen
- Department of Pediatrics, Division of Allergy, Immunology, and Rheumatology, Center for Food Allergy, University of Rochester School of Medicine and Dentistry, Golisano Children’s Hospital, Rochester, New York, United States of America
| |
Collapse
|
11
|
Goetze S, Schüffler P, Athanasiou A, Koetemann A, Poyet C, Fankhauser CD, Wild PJ, Schiess R, Wollscheid B. Use of MS-GUIDE for identification of protein biomarkers for risk stratification of patients with prostate cancer. Clin Proteomics 2022; 19:9. [PMID: 35477343 PMCID: PMC9044739 DOI: 10.1186/s12014-022-09349-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 04/05/2022] [Indexed: 11/25/2022] Open
Abstract
Background Non-invasive liquid biopsies could complement current pathological nomograms for risk stratification of prostate cancer patients. Development and testing of potential liquid biopsy markers is time, resource, and cost-intensive. For most protein targets, no antibodies or ELISAs for efficient clinical cohort pre-evaluation are currently available. We reasoned that mass spectrometry-based prescreening would enable the cost-effective and rational preselection of candidates for subsequent clinical-grade ELISA development. Methods Using Mass Spectrometry-GUided Immunoassay DEvelopment (MS-GUIDE), we screened 48 literature-derived biomarker candidates for their potential utility in risk stratification scoring of prostate cancer patients. Parallel reaction monitoring was used to evaluate these 48 potential protein markers in a highly multiplexed fashion in a medium-sized patient cohort of 78 patients with ground-truth prostatectomy and clinical follow-up information. Clinical-grade ELISAs were then developed for two of these candidate proteins and used for significance testing in a larger, independent patient cohort of 263 patients. Results Machine learning-based analysis of the parallel reaction monitoring data of the liquid biopsies prequalified fibronectin and vitronectin as candidate biomarkers. We evaluated their predictive value for prostate cancer biochemical recurrence scoring in an independent validation cohort of 263 prostate cancer patients using clinical-grade ELISAs. The results of our prostate cancer risk stratification test were statistically significantly 10% better than results of the current gold standards PSA alone, PSA plus prostatectomy biopsy Gleason score, or the National Comprehensive Cancer Network score in prediction of recurrence. Conclusion Using MS-GUIDE we identified fibronectin and vitronectin as candidate biomarkers for prostate cancer risk stratification. Supplementary Information The online version contains supplementary material available at 10.1186/s12014-022-09349-x.
Collapse
Affiliation(s)
- Sandra Goetze
- Department of Health Sciences and Technology, Institute of Translational Medicine, Swiss Federal Institute of Technology, ETH Zurich, 8093, Zurich, Switzerland.,Swiss Institute of Bioinformatics (SIB), 1015, Lausanne, Switzerland.,ETH PHRT Swiss Multi-Omics Center (SMOC), 8093, Zurich, Switzerland
| | - Peter Schüffler
- Institute of General and Surgical Pathology, Technical University of Munich, 81675, Munich, Germany
| | | | - Anika Koetemann
- Department of Health Sciences and Technology, Institute of Translational Medicine, Swiss Federal Institute of Technology, ETH Zurich, 8093, Zurich, Switzerland
| | - Cedric Poyet
- Clinic of Urology, University Hospital Zurich, University of Zurich, 8091, Zurich, Switzerland
| | | | - Peter J Wild
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, 8091, Zurich, Switzerland. .,Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, 60590, Frankfurt, Germany. .,Frankfurt Institute for Advanced Studies (FIAS), 60438, Frankfurt, Germany. .,WILDLAB, University Hospital Frankfurt MVZ GmbH, 60590, Frankfurt, Germany.
| | | | - Bernd Wollscheid
- Department of Health Sciences and Technology, Institute of Translational Medicine, Swiss Federal Institute of Technology, ETH Zurich, 8093, Zurich, Switzerland. .,Swiss Institute of Bioinformatics (SIB), 1015, Lausanne, Switzerland. .,ETH PHRT Swiss Multi-Omics Center (SMOC), 8093, Zurich, Switzerland.
| |
Collapse
|
12
|
Dai W, White R, Liu J, Liu H. Organelles coordinate milk production and secretion during lactation: Insights into mammary pathologies. Prog Lipid Res 2022; 86:101159. [PMID: 35276245 DOI: 10.1016/j.plipres.2022.101159] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/21/2022] [Accepted: 03/03/2022] [Indexed: 12/15/2022]
Abstract
The mammary gland undergoes a spectacular series of changes during its development and maintains a remarkable capacity to remodel and regenerate during progression through the lactation cycle. This flexibility of the mammary gland requires coordination of multiple processes including cell proliferation, differentiation, regeneration, stress response, immune activity, and metabolic changes under the control of diverse cellular and hormonal signaling pathways. The lactating mammary epithelium orchestrates synthesis and apical secretion of macromolecules including milk lipids, milk proteins, and lactose as well as other minor nutrients that constitute milk. Knowledge about the subcellular compartmentalization of these metabolic and signaling events, as they relate to milk production and secretion during lactation, is expanding. Here we review how major organelles (endoplasmic reticulum, Golgi apparatus, mitochondrion, lysosome, and exosome) within mammary epithelial cells collaborate to initiate, mediate, and maintain lactation, and how study of these organelles provides insight into options to maintain mammary/breast health.
Collapse
Affiliation(s)
- Wenting Dai
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Robin White
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24060, USA
| | - Jianxin Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Hongyun Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
13
|
Ahmed MA, Erdőssy J, Horvath V. Temperature-Responsive Magnetic Nanoparticles for Bioanalysis of Lysozyme in Urine Samples. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3015. [PMID: 34835779 PMCID: PMC8618479 DOI: 10.3390/nano11113015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 12/26/2022]
Abstract
Highly selective multifunctional magnetic nanoparticles containing a thermoresponsive polymer shell were developed and used in the sample pretreatment of urine for the assessment of lysozymuria in leukemia patients. Crosslinked poly(N-isopropylacrylamide-co-acrylic acid-co-N-tert-butylacrylamide) was grown onto silica-coated magnetic nanoparticles by reversible addition fragmentation chain transfer (RAFT) polymerization. The lysozyme binding property of the nanoparticles was investigated as a function of time, protein concentration, pH, ionic strength and temperature and their selectivity was assessed against other proteins. High-abundant proteins, like human serum albumin and γ-globulins did not interfere with the binding of lysozyme even at elevated concentrations characteristic of proteinuria. A sample cleanup procedure for urine samples has been developed utilizing the thermocontrollable protein binding ability of the nanoparticles. Method validation was carried out according to current bioanalytical method validation guidelines. The method was highly selective, and the calibration was linear in the 25 to 1000 µg/mL concentration range, relevant in the diagnosis of monocytic and myelomonocytic leukemia. Intra- and inter-day precision values ranged from 2.24 to 8.20% and 1.08 to 5.04%, respectively. Intra-day accuracies were between 89.9 and 117.6%, while inter-day accuracies were in the 88.8 to 111.0% range. The average recovery was 94.1 ± 8.1%. Analysis of unknown urine samples in comparison with a well-established reference method revealed very good correlation between the results, indicating that the new nanoparticle-based method has high potential in the diagnosis of lysozymuria.
Collapse
Affiliation(s)
- Marwa A. Ahmed
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary; (M.A.A.); (J.E.)
- Department of Chemistry, Faculty of Science, Arish University, El-Arish 45511, Egypt
| | - Júlia Erdőssy
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary; (M.A.A.); (J.E.)
| | - Viola Horvath
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary; (M.A.A.); (J.E.)
- MTA-BME Computation Driven Chemistry Research Group, H-1111 Budapest, Hungary
| |
Collapse
|
14
|
Allen LH, Hampel D, Shahab-Ferdows S, Andersson M, Barros E, Doel AM, Eriksen KG, Christensen SH, Islam M, Kac G, Keya FK, Michaelsen KF, de Barros Mucci D, Njie F, Peerson JM, Moore SE. The Mothers, Infants, and Lactation Quality (MILQ) Study: A Multi-Center Collaboration. Curr Dev Nutr 2021; 5:nzab116. [PMID: 34712893 PMCID: PMC8546155 DOI: 10.1093/cdn/nzab116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/02/2021] [Accepted: 09/08/2021] [Indexed: 12/19/2022] Open
Abstract
Little valid information is available on human milk nutrient concentrations, especially for micronutrients (MNs), and there are no valid reference values (RVs) across lactation. In this multi-center collaborative study, RVs will be established for human milk nutrients across the first 8.5 mo postpartum. Well-nourished, unsupplemented women in Bangladesh, Brazil, Denmark, and The Gambia (n = 250/site) were recruited during the third trimester of pregnancy. Milk, blood, saliva, urine, and stool samples from mothers and their infants are collected identically at 3 visits (1-3.49, 3.5-5.99, 6.0-8.49 mo postpartum). Milk analyses include macronutrients, selected vitamins, trace elements and minerals, iodine, metabolomics, amino acids, human milk oligosaccharides, and bioactive peptides. We measure milk volume; maternal and infant diets, anthropometry, and morbidity; infant development, maternal genome, and the infant and maternal microbiome. RVs will be constructed based on methods for the WHO Child Growth Standards and the Intergrowth-21st Project. This trial was registered at clinical trials.gov as NCT03254329.
Collapse
Affiliation(s)
- Lindsay H Allen
- USDA, Agricultural Research Service (ARS) Western Human Nutrition Research Center, Davis, CA, USA
- Department of Nutrition, University of California, Davis, CA, USA
| | - Daniela Hampel
- USDA, Agricultural Research Service (ARS) Western Human Nutrition Research Center, Davis, CA, USA
- Department of Nutrition, University of California, Davis, CA, USA
| | - Setareh Shahab-Ferdows
- USDA, Agricultural Research Service (ARS) Western Human Nutrition Research Center, Davis, CA, USA
- Department of Nutrition, University of California, Davis, CA, USA
| | - Maria Andersson
- Nutrition Research Unit, University Children's Hospital Zurich, Zurich, Switzerland
| | - Erica Barros
- Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Kamilla Gehrt Eriksen
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark
| | | | - Munirul Islam
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), Dhaka, Bangladesh
| | - Gilberto Kac
- Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Farhana Khanam Keya
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), Dhaka, Bangladesh
| | - Kim F Michaelsen
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark
| | | | - Fanta Njie
- Medical Research Council Unit The Gambia at London School of Hygiene & Tropical Medicine, Fajara, The Gambia, West Africa
| | - Janet M Peerson
- USDA, Agricultural Research Service (ARS) Western Human Nutrition Research Center, Davis, CA, USA
| | - Sophie E Moore
- Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Medical Research Council Unit The Gambia at London School of Hygiene & Tropical Medicine, Fajara, The Gambia, West Africa
| |
Collapse
|
15
|
Jorgensen JM, Young R, Ashorn P, Ashorn U, Chaima D, Davis JCC, Goonatilleke E, Kumwenda C, Lebrilla CB, Maleta K, Sadalaki J, Totten SM, Wu LD, Zivkovic AM, Dewey KG. Associations of Human Milk Oligosaccharides and Bioactive Proteins with Infant Morbidity and Inflammation in Malawian Mother-Infant Dyads. Curr Dev Nutr 2021; 5:nzab072. [PMID: 34084993 PMCID: PMC8163417 DOI: 10.1093/cdn/nzab072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Human milk oligosaccharides (HMOs) and bioactive proteins likely benefit infant health, but information on these relations is sparse. OBJECTIVES We aimed to examine associations of milk content of HMOs and bioactive proteins with incidence and longitudinal prevalence of infant morbidity (any illness, fever, diarrhea, acute respiratory infection, and loss of appetite) and markers of inflammation [C-reactive protein (CRP) and α-1-acid glycoprotein (AGP)]. These are secondary analyses of a randomized controlled trial. METHODS Breast milk samples at 6 mo postpartum (n = 659) were analyzed to quantify absolute abundance of HMOs, relative abundance of fucosylated HMOs, sialylated HMOs, and 51 individual HMOs, and concentrations of 6 bioactive proteins (lactalbumin, lactoferrin, lysozyme, antitrypsin, IgA, and osteopontin). We examined associations of these constituents with infant morbidity from 6 to 7 and 6 to 12 mo, and CRP and AGP at 6 and 18 mo, considering maternal secretor status [presence or absence of the functional enzyme encoded by the fucosyltransferase 2 gene (FUT2) ] and adjusting for covariates and multiple hypothesis testing. RESULTS In secretors there were positive associations between total HMOs and longitudinal prevalence of fever (P = 0.032), between fucosylated HMOs and incidence of diarrhea (P = 0.026), and between lactoferrin and elevated CRP at 18 mo (P = 0.011). In nonsecretors, there were inverse associations between lactoferrin and incidence of fever (P = 0.007), between osteopontin and longitudinal prevalence of lost appetite (P = 0.038), and between fucosylated HMOs and incidence of diarrhea (P = 0.025), lost appetite (P = 0.019), and concentrations of AGP and CRP at 6 mo (P = 0.001 and 0.010); and positive associations between total HMOs and incidence of lost appetite (P = 0.024) and elevated CRP at 18 mo (P = 0.026), between lactalbumin and incidence of diarrhea (P = 0.006), and between lactoferrin and elevated CRP at 18 mo (P = 0.015). CONCLUSIONS Certain HMOs and bioactive proteins were associated with infant morbidity and inflammation, particularly in nonsecretors. Further research is needed to elucidate the causality of these relations.This trial was registered at clinicaltrials.gov as NCT01239693.
Collapse
Affiliation(s)
- Josh M Jorgensen
- Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Rebecca Young
- Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Per Ashorn
- Center for Child Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tampere University Hospital, Department of Pediatrics, Tampere, Finland
| | - Ulla Ashorn
- Center for Child Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - David Chaima
- Department of Community Health, University of Malawi College of Medicine, Blantyre, Malawi
| | - Jasmine C C Davis
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | | | - Chiza Kumwenda
- Department of Community Health, University of Malawi College of Medicine, Blantyre, Malawi
- Department of Food Science and Nutrition, School of Agricultural Sciences, University of Zambia, Lusaka, Zambia
| | - Carlito B Lebrilla
- Department of Chemistry, University of California, Davis, Davis, CA, USA
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA, USA
| | - Kenneth Maleta
- Department of Community Health, University of Malawi College of Medicine, Blantyre, Malawi
| | - John Sadalaki
- Department of Community Health, University of Malawi College of Medicine, Blantyre, Malawi
| | - Sarah M Totten
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Lauren D Wu
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Angela M Zivkovic
- Department of Nutrition, University of California, Davis, Davis, CA, USA
- Foods for Health Institute, University of California, Davis, Davis, CA, USA
| | - Kathryn G Dewey
- Department of Nutrition, University of California, Davis, Davis, CA, USA
| |
Collapse
|
16
|
Delafield DG, Li L. Recent Advances in Analytical Approaches for Glycan and Glycopeptide Quantitation. Mol Cell Proteomics 2021; 20:100054. [PMID: 32576592 PMCID: PMC8724918 DOI: 10.1074/mcp.r120.002095] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Indexed: 12/13/2022] Open
Abstract
Growing implications of glycosylation in physiological occurrences and human disease have prompted intensive focus on revealing glycomic perturbations through absolute and relative quantification. Empowered by seminal methodologies and increasing capacity for detection, identification, and characterization, the past decade has provided a significant increase in the number of suitable strategies for glycan and glycopeptide quantification. Mass-spectrometry-based strategies for glycomic quantitation have grown to include metabolic incorporation of stable isotopes, deposition of mass difference and mass defect isotopic labels, and isobaric chemical labeling, providing researchers with ample tools for accurate and robust quantitation. Beyond this, workflows have been designed to harness instrument capability for label-free quantification, and numerous software packages have been developed to facilitate reliable spectrum scoring. In this review, we present and highlight the most recent advances in chemical labeling and associated techniques for glycan and glycopeptide quantification.
Collapse
Affiliation(s)
- Daniel G Delafield
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA; School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
17
|
Jorgensen JM, Young R, Ashorn P, Ashorn U, Chaima D, Davis JCC, Goonatilleke E, Kumwenda C, Lebrilla CB, Maleta K, Prado EL, Sadalaki J, Totten SM, Wu LD, Zivkovic AM, Dewey KG. Associations of human milk oligosaccharides and bioactive proteins with infant growth and development among Malawian mother-infant dyads. Am J Clin Nutr 2021; 113:209-220. [PMID: 33096556 PMCID: PMC7779225 DOI: 10.1093/ajcn/nqaa272] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 09/01/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Human milk oligosaccharides (HMOs) and bioactive breast milk proteins have many beneficial properties. Information is sparse regarding associations between these milk constituents and infant growth and development in lower-income countries. OBJECTIVES We aimed to examine associations of milk content of HMOs and bioactive proteins at 6 mo postpartum with infant growth and motor and cognitive development. These are secondary analyses of a randomized controlled trial in rural Malawi. METHODS Breast milk samples were analyzed at 6 mo (n = 659) for general categories of HMOs (total HMOs, fucosylated HMOs, and sialylated HMOs), 51 individual HMOs, and 6 bioactive proteins (lactalbumin, lactoferrin, lysozyme, antitrypsin, IgA, and osteopontin). We examined associations of the relative abundances of HMOs and concentrations of bioactive proteins with infant growth from 6 to 12 mo [change in length-for-age (ΔLAZ), weight-for-age, weight-for-length, and head circumference z-scores] as well as ability to stand or walk alone at 12 mo, and motor and language skills, socioemotional development, executive function, and working memory at 18 mo. Analyses were adjusted for covariates and multiple hypothesis testing. RESULTS Among all participants, there were inverse associations of IgA and lactoferrin concentrations with motor skills (P = 0.018 and P = 0.044), and a positive association of lactalbumin concentration with motor skills (P = 0.038). Among secretors only [fucosyltransferase 2 gene (FUT2) positive], there were positive associations of absolute abundance of HMOs with ΔLAZ (P = 0.035), and relative abundance of fucosylated and sialylated HMOs with language at 18 mo (P < 0.001 and P = 0.033, respectively), and inverse associations of osteopontin with standing and walking at 12 mo (P = 0.007 and 0.002, respectively). Relative abundances of several individual HMOs were associated with growth and development, mostly among secretors. CONCLUSIONS Certain bioactive breast milk proteins and HMOs are associated with infant growth and motor and cognitive development. Further studies are needed to determine if a causal relation exists.This trial was registered at clinicaltrials.gov as NCT01239693.
Collapse
Affiliation(s)
- Josh M Jorgensen
- Department of Nutrition, University of California, Davis, CA, USA
| | - Rebecca Young
- Department of Nutrition, University of California, Davis, CA, USA
| | - Per Ashorn
- Faculty of Medicine and Life Sciences, Centre for Child Health Research, University of Tampere, Tampere, Finland
- Department of Pediatrics, Tampere University Hospital, Tampere, Finland
| | - Ulla Ashorn
- Faculty of Medicine and Life Sciences, Centre for Child Health Research, University of Tampere, Tampere, Finland
| | - David Chaima
- Department of Community Health, University of Malawi College of Medicine, Blantyre, Malawi
| | | | | | - Chiza Kumwenda
- Department of Community Health, University of Malawi College of Medicine, Blantyre, Malawi
- School of Agricultural Sciences, Department of Food Science and Nutrition, University of Zambia, Lusaka, Zambia
| | - Carlito B Lebrilla
- Department of Chemistry, University of California, Davis, CA, USA
- Department of Biochemistry and Molecular Medicine, University of California, Davis, CA, USA
| | - Kenneth Maleta
- Department of Community Health, University of Malawi College of Medicine, Blantyre, Malawi
| | | | - John Sadalaki
- Department of Community Health, University of Malawi College of Medicine, Blantyre, Malawi
| | - Sarah M Totten
- Department of Chemistry, University of California, Davis, CA, USA
| | - Lauren D Wu
- Department of Chemistry, University of California, Davis, CA, USA
| | - Angela M Zivkovic
- Department of Nutrition, University of California, Davis, CA, USA
- Foods for Health Institute, University of California, Davis, CA, USA
| | - Kathryn G Dewey
- Department of Nutrition, University of California, Davis, CA, USA
| |
Collapse
|
18
|
Lueangsakulthai J, Sah BNP, Scottoline BP, Dallas DC. Survival of recombinant monoclonal and naturally-occurring human milk immunoglobulins A and G specific to respiratory syncytial virus F protein across simulated human infant gastrointestinal digestion. J Funct Foods 2020; 73:104115. [PMID: 33101461 PMCID: PMC7573813 DOI: 10.1016/j.jff.2020.104115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Naturally-occurring antibodies were more resistant to degradation than monoclonal antibodies. Monoclonal sIgA was more resistant to degradation than IgG and IgA. Monoclonal antibodies may need to be provided at a higher dose to compensate for digestive losses.
To help rationally design an antibody for oral administration, we examined how different isotypes (IgG, IgA and sIgA) with the same variable sequence affect antibody stability across digestion. We compared the degradation of recombinant palivizumab (IgG1), and recombinant IgA and sIgA versions of palivizumab spiked in human milk to the degradation of naturally-occurring anti-respiratory syncytial virus (RSV) sIgA/IgA and IgG in human milk from four donors across gastric and intestinal phases of an in vitro model of infant digestion via a validated RSV F protein ELISA. Palivizumab IgG and IgA formats were less stable than the sIgA version after complete simulated gastrointestinal digestion: palivizumab IgG, IgA and sIgA decreased across complete simulated gastrointestinal digestion by 55%, 48% and 28%, respectively. Naturally-occurring RSV F protein-specific IgG was stable across digestion, whereas naturally-occurring sIgA/IgA was stable in the gastric phase but decreased 33% in the intestinal phase of simulated digestion.
Collapse
Affiliation(s)
- Jiraporn Lueangsakulthai
- Nutrition Program, School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97331, United States
| | - Baidya Nath P. Sah
- Nutrition Program, School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97331, United States
| | - Brian P. Scottoline
- Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239, United States
| | - David C. Dallas
- Nutrition Program, School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97331, United States
- Corresponding author.
| |
Collapse
|
19
|
Abstract
In this review, we focus on the metabolism of mammalian glycan-associated monosaccharides, where the vast majority of our current knowledge comes from research done during the 1960s and 1970s. Most monosaccharides enter the cell using distinct, often tissue specific transporters from the SLC2A family. If not catabolized, these monosaccharides can be activated to donor nucleotide sugars and used for glycan synthesis. Apart from exogenous and dietary sources, all monosaccharides and their associated nucleotide sugars can be synthesized de novo, using mostly glucose to produce all nine nucleotide sugars present in human cells. Today, monosaccharides are used as treatment options for a small number of rare genetic disorders and even some common conditions. Here, we cover therapeutic applications of these sugars and highlight biochemical gaps that must be revisited as we go forward.
Collapse
Affiliation(s)
- Paulina Sosicka
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Bobby G. Ng
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Hudson H. Freeze
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| |
Collapse
|
20
|
Illiano A, Pinto G, Melchiorre C, Carpentieri A, Faraco V, Amoresano A. Protein Glycosylation Investigated by Mass Spectrometry: An Overview. Cells 2020; 9:E1986. [PMID: 32872358 PMCID: PMC7564411 DOI: 10.3390/cells9091986] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/14/2020] [Accepted: 08/24/2020] [Indexed: 12/16/2022] Open
Abstract
The protein glycosylation is a post-translational modification of crucial importance for its involvement in molecular recognition, protein trafficking, regulation, and inflammation. Indeed, abnormalities in protein glycosylation are correlated with several disease states such as cancer, inflammatory diseases, and congenial disorders. The understanding of cellular mechanisms through the elucidation of glycan composition encourages researchers to find analytical solutions for their detection. Actually, the multiplicity and diversity of glycan structures bond to the proteins, the variations in polarity of the individual saccharide residues, and the poor ionization efficiencies make their detection much trickier than other kinds of biopolymers. An overview of the most prominent techniques based on mass spectrometry (MS) for protein glycosylation (glycoproteomics) studies is here presented. The tricks and pre-treatments of samples are discussed as a crucial step prodromal to the MS analysis to improve the glycan ionization efficiency. Therefore, the different instrumental MS mode is also explored for the qualitative and quantitative analysis of glycopeptides and the glycans structural composition, thus contributing to the elucidation of biological mechanisms.
Collapse
Affiliation(s)
- Anna Illiano
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Napoles, Italy; (A.I.); (G.P.); (C.M.); (A.C.); (A.A.)
- CEINGE Advanced Biotechnology, University of Naples Federico II, Via Cinthia 26, 80126 Napoles, Italy
| | - Gabriella Pinto
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Napoles, Italy; (A.I.); (G.P.); (C.M.); (A.C.); (A.A.)
| | - Chiara Melchiorre
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Napoles, Italy; (A.I.); (G.P.); (C.M.); (A.C.); (A.A.)
| | - Andrea Carpentieri
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Napoles, Italy; (A.I.); (G.P.); (C.M.); (A.C.); (A.A.)
| | - Vincenza Faraco
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Napoles, Italy; (A.I.); (G.P.); (C.M.); (A.C.); (A.A.)
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Napoles, Italy; (A.I.); (G.P.); (C.M.); (A.C.); (A.A.)
- Istituto Nazionale Biostrutture e Biosistemi—Consorzio Interuniversitario, Viale delle Medaglie d’Oro, 305, 00136 Rome, Italy
| |
Collapse
|
21
|
Chen HF, Shiao CY, Wu MY, Lin YC, Chen HH, Chang WC, Wu MS, Kao CC, Tsai IL. Quantitative determination of human IgA subclasses and their Fc-glycosylation patterns in plasma by using a peptide analogue internal standard and ultra-high-performance liquid chromatography/triple quadrupole mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34 Suppl 1:e8606. [PMID: 31705576 DOI: 10.1002/rcm.8606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/08/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
RATIONALE Glycosylation on immunoglobulins is important for the immune function. In this study, we developed and validated a method for the absolute quantification of IgA subclasses and relative quantification of IgA-Fc glycopeptides by using affinity purification and ultrahigh-performance liquid chromatography/tandem mass spectrometry (UHPLC/MS/MS). Only micro-volumes of plasma were required from each sample and we also applied the method to discover IgA and IgA-glycopeptide profiles in patients with chronic kidney diseases and IgA nephropathy. METHODS Peptide M affinity beads were used to purify IgA, and a cost-effective peptide analogue was added as internal standard. With an efficient on-bead digestion process, purified samples were analyzed by UHPLC/MS/MS in multiple reaction monitoring mode. RESULTS Correlation coefficients were greater than 0.999 for the IgA1 and IgA2 calibration curves and greater than 0.994 for glycopeptide regression curves. Intraday and interday precisions for IgA1 and IgA2 were <1.6% and <5.1% RSD, respectively. Intraday and interday accuracies ranged from 102.6 to 114.9% and 103.5 to 113.5% for IgA1 and IgA2, respectively. Stabilities of IgA1 and IgA2 at -80°C for 7 to 15 days ranged from 96.0 to 109.4%, respectively. The Pearson's correlation coefficient was 0.916 when comparing the IgA quantification results of the 30 clinical samples by using ELISAs and the developed UHPLC/MS/MS method. Compared with healthy controls, IgA and IgA-glycopeptides showed different profiles in patients with chronic kidney diseases and IgA nephropathy. CONCLUSIONS The developed method showed good validation results, and the absolute quantification results of IgA correlated with those from ELISA. The pilot application study showed that IgA and IgA-glycopeptides can be potential biomarker candidates for kidney diseases, and more clinical sample applications are worth investigating.
Collapse
Affiliation(s)
- Hsiao-Fan Chen
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ching-Ya Shiao
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Tapei, Taiwan
| | - Mei-Yi Wu
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Yen-Chung Lin
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsi-Hsien Chen
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Wei-Chiao Chang
- Department of Clinical Pharmacy, School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Department of Pharmacy, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Master Program for Clinical Pharmacogenomics and Pharmacoproteomics, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Mai-Szu Wu
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Chin Kao
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - I-Lin Tsai
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Tapei, Taiwan
- Master Program for Clinical Pharmacogenomics and Pharmacoproteomics, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
- International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
22
|
Development of efficient on-bead protein elution process coupled to ultra-high performance liquid chromatography-tandem mass spectrometry to determine immunoglobulin G subclass and glycosylation for discovery of bio-signatures in pancreatic disease. J Chromatogr A 2020; 1621:461039. [PMID: 32295703 DOI: 10.1016/j.chroma.2020.461039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/06/2020] [Accepted: 03/10/2020] [Indexed: 12/30/2022]
Abstract
Type 1 autoimmune pancreatitis (AIP) is a kind of IgG4-related disease in which higher IgG4 and total IgG levels have been found in patient serum. Due to the similar imaging features and laboratory parameters between AIP and pancreatic ductal adenocarcinoma (PDAC), a differential diagnosis is still challenging. Since IgG profiles can be potential bio-signatures for disease, we developed and validated a method which coupled on-bead enzymatic protein elution process to an efficient UHPLC-MS/MS method to determine IgG subclass and glycosylation. A stable-isotope labeled IgG was incorporated as internal standard to achieve accurate quantification. For calibration curves, the correlation coefficients for total IgG and the four IgG subclasses were higher than 0.995. Intraday (n = 5) and interday (n = 3) precisions of the peak area ratios of LLOQ, low, medium, and high QC samples were all less than 6.6% relative standard deviation (% RSD), and the accuracies were between 93.5 and 114.9%. Calibration curves, precision, and accuracy were also evaluated for 26 IgG glycopeptides. The method was applied to samples from healthy controls and patients with AIP and PDAC. Distinct IgG patterns were discovered among the groups, and 7 glycopeptides showed high potential in differentiating AIP and PDAC. The results demonstrated that the developed method is suitable for multi-feature analysis of human IgG, and the discovered IgG profiles can be used as bio-signatures for AIP and PDAC.
Collapse
|
23
|
Casavale KO, Ahuja JKC, Wu X, Li Y, Quam J, Olson R, Pehrsson P, Allen L, Balentine D, Hanspal M, Hayward D, Hines EP, McClung JP, Perrine CG, Belfort MB, Dallas D, German B, Kim J, McGuire M, McGuire M, Morrow AL, Neville M, Nommsen-Rivers L, Rasmussen KM, Zempleni J, Lynch CJ. NIH workshop on human milk composition: summary and visions. Am J Clin Nutr 2019; 110:769-779. [PMID: 31274142 PMCID: PMC6895543 DOI: 10.1093/ajcn/nqz123] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/27/2019] [Indexed: 12/19/2022] Open
Abstract
Nationally representative data from mother-child dyads that capture human milk composition (HMC) and associated health outcomes are important for advancing the evidence to inform federal nutrition and related health programs, policies, and consumer information across the governments in the United States and Canada as well as in nongovernment sectors. In response to identified gaps in knowledge, the National Institute of Diabetes and Digestive and Kidney Diseases of the NIH sponsored the "Workshop on Human Milk Composition-Biological, Environmental, Nutritional, and Methodological Considerations" held 16-17 November 2017 in Bethesda, Maryland. Through presentations and discussions, the workshop aimed to 1) share knowledge on the scientific need for data on HMC; 2) explore the current understanding of factors affecting HMC; 3) identify methodological challenges in human milk (HM) collection, storage, and analysis; and 4) develop a vision for a research program to develop an HMC data repository and database. The 4 workshop sessions included 1) perspectives from both federal agencies and nonfederal academic experts, articulating scientific needs for data on HMC that could lead to new research findings and programmatic advances to support public health; 2) information about the factors that influence lactation and/or HMC; 3) considerations for data quality, including addressing sampling strategies and the complexities in standardizing collection, storage, and analyses of HM; and 4) insights on how existing research programs and databases can inform potential visions for HMC initiatives. The general consensus from the workshop is that the limited scope of HM research initiatives has led to a lack of robust estimates of the composition and volume of HM consumed and, consequently, missed opportunities to improve maternal and infant health.
Collapse
Affiliation(s)
- Kellie O Casavale
- Office of Disease Prevention and Health Promotion, US Department of Health and Human Services, Rockville, MD, USA,Address correspondence to KOC (e-mail: ). Present address for KOC: US Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD, USA
| | - Jaspreet K C Ahuja
- Nutrient Data Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, US Department of Agriculture, Beltsville, MD, USA
| | - Xianli Wu
- Nutrient Data Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, US Department of Agriculture, Beltsville, MD, USA
| | - Ying Li
- Nutrient Data Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, US Department of Agriculture, Beltsville, MD, USA
| | - Julia Quam
- Office of Disease Prevention and Health Promotion, US Department of Health and Human Services, Rockville, MD, USA
| | - Richard Olson
- Office of Disease Prevention and Health Promotion, US Department of Health and Human Services, Rockville, MD, USA
| | - Pamela Pehrsson
- Nutrient Data Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, US Department of Agriculture, Beltsville, MD, USA
| | - Lindsay Allen
- Western Human Nutrition Research Center, Agricultural Research Service, US Department of Agriculture, Davis, CA, USA
| | - Douglas Balentine
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, US Department of Health and Human Services, College Park, MD, USA
| | - Manjit Hanspal
- Environmental influences on Child Health Outcomes (ECHO) program, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
| | - Deborah Hayward
- Bureau of Nutritional Sciences, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Erin Pias Hines
- National Center for Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - James P McClung
- US Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Cria G Perrine
- Centers for Disease Control and Prevention; US Department of Health and Human Services, Atlanta, GA, USA
| | | | - David Dallas
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| | - Bruce German
- Department of Food Science and Technology, University of California, Davis, Davis, CA, USA
| | - Jae Kim
- Divisions of Neonatology and Pediatric Gastroenterology, University of California, San Diego, San Diego, CA, USA
| | - Mark McGuire
- College of Agricultural and Life Sciences, University of Idaho, Moscow, ID, USA
| | - Michelle McGuire
- School of Biological Sciences, Washington State University, Pullman, WA, USA,Present address for Michelle McGuire: University of Idaho, Moscow, ID, USA
| | - Ardythe L Morrow
- Center for Interdisciplinary Research in Human Milk and Lactation, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Margaret Neville
- Department of Physiology and Biophysics, University of Colorado, Denver, Denver, CO, USA
| | | | | | - Janos Zempleni
- Nebraska Center for the Prevention of Obesity Diseases, University of Nebraska–Lincoln, Lincoln, NE, USA
| | - Christopher J Lynch
- Office of Nutrition Research, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
| |
Collapse
|
24
|
Zhu J, Dingess KA. The Functional Power of the Human Milk Proteome. Nutrients 2019; 11:E1834. [PMID: 31398857 PMCID: PMC6723708 DOI: 10.3390/nu11081834] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/02/2019] [Accepted: 08/06/2019] [Indexed: 12/14/2022] Open
Abstract
Human milk is the most complete and ideal form of nutrition for the developing infant. The composition of human milk consistently changes throughout lactation to meet the changing functional needs of the infant. The human milk proteome is an essential milk component consisting of proteins, including enzymes/proteases, glycoproteins, and endogenous peptides. These compounds may contribute to the healthy development in a synergistic way by affecting growth, maturation of the immune system, from innate to adaptive immunity, and the gut. A comprehensive overview of the human milk proteome, covering all of its components, is lacking, even though numerous analyses of human milk proteins have been reported. Such data could substantially aid in our understanding of the functionality of each constituent of the proteome. This review will highlight each of the aforementioned components of human milk and emphasize the functionality of the proteome throughout lactation, including nutrient delivery and enhanced bioavailability of nutrients for growth, cognitive development, immune defense, and gut maturation.
Collapse
Affiliation(s)
- Jing Zhu
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Kelly A Dingess
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands.
- Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
25
|
Goonatilleke E, Huang J, Xu G, Wu L, Smilowitz JT, German JB, Lebrilla CB. Human Milk Proteins and Their Glycosylation Exhibit Quantitative Dynamic Variations during Lactation. J Nutr 2019; 149:1317-1325. [PMID: 31098625 PMCID: PMC6686052 DOI: 10.1093/jn/nxz086] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/19/2019] [Accepted: 04/03/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Proteins in human milk are essential and known to support the growth, development, protection, and health of the newborn. These proteins are highly modified by glycans that are currently being recognized as vital to protein structure, stability, function, and health of the intestinal mucosa. Although milk proteins have been studied, the quantitative changes in milk proteins and their respective site-specific glycosylation are unknown. OBJECTIVE This study expanded the analytical tools for milk proteins and their site-specific glycosylation and applied these tools to a large cohort to determine changes in individual protein concentrations and their site-specific N-glycosylation across lactation. DESIGN A tandem mass spectrometry method was applied to 231 breast-milk samples from 33 mothers in Davis, California, obtained during 7 different periods of lactation. Dynamic changes in the absolute abundances of milk proteins, as well as variation in site-specific N-glycosylation of individual proteins, were quantified. RESULTS α-Lactalbumin, β-casein, k-casein, and α-antitrypsin were significantly increased from colostrum to transitional milk (4.37 ± 1.33 g/L to 6.41 ± 0.72 g/L, 2.25 ± 0.86 g/L to 2.59 ± 0.78 g/L, 1.33 ± 0.44 g/L to 1.60 ± 0.39 g/L, and 0.09 ± 0.10 g/L to 0.11 ± 0.04 g/L, respectively; P < 0.002). α-Lactalbumin (37%), β-casein (9%), and lysozyme (159%) were higher in mature milk than in colostrum. Glycans exhibited different behavior. Fucosylated glycans of lactoferrin and high-mannose, undecorated, fucosylated, sialylated, and combined fucosylated + sialylated glycans of secretory immunoglobulin A increased during lactation even when the concentrations of the parent proteins decreased. CONCLUSIONS Proteins in healthy mothers vary dynamically through lactation to support the development of infants. Individual milk proteins carried unique glycan modifications that varied systematically in structure even with site specificity. The role of glycosylation in human milk proteins will be important in understanding the functional components of human milk. This trial was registered at clinicaltrials.gov as NCT01817127.
Collapse
Affiliation(s)
| | | | - Gege Xu
- Department of Chemistry, Davis, CA
| | | | - Jennifer T Smilowitz
- Foods for Health Institute, Davis, CA
- Department of Food Science and Technology, Davis, CA
| | - J Bruce German
- Foods for Health Institute, Davis, CA
- Department of Food Science and Technology, Davis, CA
| | - Carlito B Lebrilla
- Department of Chemistry, Davis, CA
- Foods for Health Institute, Davis, CA
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA
| |
Collapse
|
26
|
Hampel D, Shahab-Ferdows S, Hossain M, Islam MM, Ahmed T, Allen LH. Validation and Application of Biocrates Absolute IDQ® p180 Targeted Metabolomics Kit Using Human Milk. Nutrients 2019; 11:E1733. [PMID: 31357543 PMCID: PMC6723914 DOI: 10.3390/nu11081733] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 12/11/2022] Open
Abstract
Human-milk-targeted metabolomics analysis offers novel insights into milk composition and relationships with maternal and infant phenotypes and nutritional status. The Biocrates AbsoluteIDQ® p180 kit, targeting 40 acylcarnitines, 42 amino acids/biogenic amines, 91 phospholipids, 15 sphingolipids, and sum of hexoses, was evaluated for human milk using the AB Sciex 5500 QTRAP mass-spectrometer in liquid chromatography-tandem mass-spectrometry (LC-MS/MS) and flow-injection analysis (FIA) mode. Milk (<6 months lactation) from (A) Bangladeshi apparently healthy mothers (body mass index (BMI) > 18.5; n = 12) and (B) Bangladeshi mothers of stunted infants (height-for-age Z (HAZ)-score <-2; n = 13) was analyzed. Overall, 123 of the possible 188 metabolites were detected in milk. New internal standards and adjusted calibrator levels were used for improved precision and concentration ranges for milk metabolites. Recoveries ranged between 43% and 120% (coefficient of variation (CV): 2.4%-24.1%, 6 replicates). Milk consumed by stunted infants vs. that from mothers with BMI > 18.5 was lower in 6 amino acids/biogenic amines but higher in isovalerylcarnitine, two phospholipids, and one sphingomyelin (p < 0.05 for all). Associations between milk metabolites differed between groups. The AbsoluteIDQ® p180 kit is a rapid analysis tool suitable for human milk analysis and reduces analytical bias by allowing the same technique for different specimens. More research is needed to examine milk metabolite relationships with maternal and infant phenotypes.
Collapse
Affiliation(s)
- Daniela Hampel
- USDA/ARS Western Human Nutrition Research Center, 430 West Health Sciences Drive, Davis, CA 95616, USA.
- Department of Nutrition, University of California, One Shields Ave, Davis, CA 95616, USA.
| | - Setareh Shahab-Ferdows
- USDA/ARS Western Human Nutrition Research Center, 430 West Health Sciences Drive, Davis, CA 95616, USA
| | - Muttaquina Hossain
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, 68 Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka 1212, Bangladesh
| | - M Munirul Islam
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, 68 Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka 1212, Bangladesh
| | - Tahmeed Ahmed
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, 68 Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka 1212, Bangladesh
| | - Lindsay H Allen
- USDA/ARS Western Human Nutrition Research Center, 430 West Health Sciences Drive, Davis, CA 95616, USA
- Department of Nutrition, University of California, One Shields Ave, Davis, CA 95616, USA
| |
Collapse
|
27
|
Flowers SA, Lane CS, Karlsson NG. Deciphering Isomers with a Multiple Reaction Monitoring Method for the Complete Detectable O-Glycan Repertoire of the Candidate Therapeutic, Lubricin. Anal Chem 2019; 91:9819-9827. [PMID: 31246420 DOI: 10.1021/acs.analchem.9b01485] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Glycosylation is a fundamental post-translational modification, occurring on half of all proteins. Despite its significance, our understanding is limited, in part due to the inherent difficulty in studying these branched, multi-isomer structures. Accessible, detailed, and quantifiable methods for studying glycans, particularly O-glycans, are needed. Here we take a multiple reaction monitoring (MRM) approach to differentiate and relatively quantify all detectable glycans, including isomers, on the heavily O-glycosylated protein lubricin. Lubricin (proteoglycan 4) is essential for lubrication of the joint and eye. Given the therapeutic potential of lubricin, it is essential to understand its O-glycan repertoire in biological and recombinantly produced samples. O-Glycans were released by reductive β-elimination and defined, showing a range of 26 neutral, sulfated, sialylated, and both sulfated and sialylated core 1 (Galβ1-3GalNAcα1-) and core 2 (Galβ1-3(GlcNAcβ1-6)GalNAcα1-) structures. Isomer-specific MRM transitions allowed effective differentiation of neutral glycan isomers as well as sulfated isomeric structures, where the sulfate was retained on the fragment ions. This strategy was not as effective with labile sialylated structures; instead, it was observed that the optimal collision energy for the m/z 290.1 sialic acid B-fragment differed consistently between sialic acid isomers, allowing differentiation between isomers when fragmentation spectra were insufficient. This approach was also effective for purchased Neu5Acα2-3Galβ1-4Glc and Neu5Acα2-6Galβ1-4Glc and for Neu5Acα2-3Galβ1-4GlcNAc and Neu5Acα2-6Galβ1-4GlcNAc linkage isomers with the Neu5Acα2-6 consistently requiring more energy for optimal generation of the m/z 290.1 fragment. Overall, this method provides an effective and easily accessible approach for the quantification and annotation of complex released O-glycan samples.
Collapse
Affiliation(s)
- Sarah A Flowers
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy , University of Gothenburg , Medicinaregatan 9A , 40530 Gothenburg , Sweden.,Department of Neuroscience , Georgetown University , 3970 Reservoir Road NW, New Research Building EP20 , Washington, D.C. , United States
| | - Catherine S Lane
- SCIEX , Phoenix House, Lakeside Drive, Centre Park , Warrington WA1 1RX , United Kingdom
| | - Niclas G Karlsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy , University of Gothenburg , Medicinaregatan 9A , 40530 Gothenburg , Sweden
| |
Collapse
|
28
|
Core Fucosylation of Maternal Milk N-Glycan Evokes B Cell Activation by Selectively Promoting the l-Fucose Metabolism of Gut Bifidobacterium spp. and Lactobacillus spp. mBio 2019; 10:mBio.00128-19. [PMID: 30940702 PMCID: PMC6445936 DOI: 10.1128/mbio.00128-19] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
This study provides novel evidence for the critical role of maternal milk protein glycosylation in shaping early-life gut microbiota and promoting B cell activation of neonates. The special core-fucosylated oligosaccharides might be promising prebiotics for the personalized nutrition of infants. The maternal milk glycobiome is crucial for shaping the gut microbiota of infants. Although high core fucosylation catalyzed by fucosyltransferase 8 (Fut8) is a general feature of human milk glycoproteins, its role in the formation of a healthy microbiota has not been evaluated. In this study, we found that the core-fucosylated N-glycans in milk of Chinese mothers selectively promoted the colonization of specific gut microbial groups, such as Bifidobacterium spp. and Lactobacillus spp. in their breast-fed infants during lactation. Compared with Fut8+/+ (WT) mouse-fed neonates, the offspring fed by Fut8+/− maternal mice had a distinct gut microbial profile, which was featured by a significant reduction of Lactobacillus spp., Bacteroides spp., and Bifidobacterium spp. and increased abundance of members of the Lachnospiraceae NK4A136 group and Akkermansia spp. Moreover, these offspring mice showed a lower proportion of splenic CD19+ CD69+ B lymphocytes and attenuated humoral immune responses upon ovalbumin (OVA) immunization. In vitro studies demonstrated that the chemically synthesized core-fucosylated oligosaccharides possessed the ability to promote the growth of tested Bifidobacterium and Lactobacillus strains in minimal medium. The resulting L-fucose metabolites, lactate and 1,2-propanediol, could promote the activation of B cells via the B cell receptor (BCR)-mediated signaling pathway.
Collapse
|
29
|
Fucosylated Human Milk Oligosaccharides and N-Glycans in the Milk of Chinese Mothers Regulate the Gut Microbiome of Their Breast-Fed Infants during Different Lactation Stages. mSystems 2018; 3:mSystems00206-18. [PMID: 30637338 PMCID: PMC6306508 DOI: 10.1128/msystems.00206-18] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/03/2018] [Indexed: 02/07/2023] Open
Abstract
Human milk glycans provide a broad range of carbon sources for gut microbes in infants. Levels of protein glycosylation in human milk vary during lactation and may also be affected by the stages of gestation and lactation and by the secretor status of the mother. This was the first study to evaluate systematically dynamic changes in human milk oligosaccharides and fucosylated N-glycans in the milk of Chinese mothers with different secretor statuses during 6 months of lactation. Given the unique single nucleotide polymorphism site (rs1047781, A385T) on the fucosyltransferase 2 gene among Chinese populations, our report provides a specific insight into the milk glycobiome of Chinese mothers, which may exert effects on the gut microbiota of infants that differ from findings from other study cohorts. The milk glycobiome has a significant impact on the gut microbiota of infants, which plays a pivotal role in health and development. Fucosylated human milk oligosaccharides (HMOs) and N-glycans on milk proteins are beneficial for the development of healthy gut microbiota, and the fucosylation levels of these glycans can be affected by the maternal fucosyltransferase 2 gene (FUT2). Here, we present results of longitudinal research on paired milk and stool samples from 56 Chinese mothers (CMs) and their breast-fed children. Changes of HMOs and fucosylated N-glycans in milk of CMs at different lactation stages were detected, which allowed characterization of the major differences in milk glycans and consequential effects on the gut microbiome of infants according to maternal FUT2 status. Significant differences in the abundance of total and fucosylated HMOs between secretor and nonsecretor CMs were noted, especially during early lactation. Despite a tendency toward decreasing milk protein concentrations, the fucosylation levels of milk N-glycans increased during late lactation. The changes in the levels of fucosylated HMOs and milk N-glycans were highly correlated with the growth of Bifidobacterium spp. and Lactobacillus spp. in the gut of infants during early and later lactation, respectively. Enriched expression of genes encoding glycoside hydrolases, glycosyl transferases, ATP-binding cassette (ABC) transporters, and permeases in infants fed by secretor CMs contributed to the promotion of these bacteria in infants. Our data highlight the important role of fucosylated milk glycans in shaping the gut microbiome of infants and provide a solid foundation for development of “personalized” nutrition for Chinese infants. IMPORTANCE Human milk glycans provide a broad range of carbon sources for gut microbes in infants. Levels of protein glycosylation in human milk vary during lactation and may also be affected by the stages of gestation and lactation and by the secretor status of the mother. This was the first study to evaluate systematically dynamic changes in human milk oligosaccharides and fucosylated N-glycans in the milk of Chinese mothers with different secretor statuses during 6 months of lactation. Given the unique single nucleotide polymorphism site (rs1047781, A385T) on the fucosyltransferase 2 gene among Chinese populations, our report provides a specific insight into the milk glycobiome of Chinese mothers, which may exert effects on the gut microbiota of infants that differ from findings from other study cohorts.
Collapse
|
30
|
Galermo AG, Nandita E, Barboza M, Amicucci MJ, Vo TTT, Lebrilla CB. Liquid Chromatography-Tandem Mass Spectrometry Approach for Determining Glycosidic Linkages. Anal Chem 2018; 90:13073-13080. [PMID: 30299929 DOI: 10.1021/acs.analchem.8b04124] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The structural analysis of carbohydrates remains challenging mainly due to the lack of rapid analytical methods able to determine and quantitate glycosidic linkages between the diverse monosaccharides found in natural oligosaccharides and polysaccharides. In this research, we present the first liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based method for the rapid and simultaneous relative quantitation of glycosidic linkages for oligosaccharide and polysaccharide characterization. The method developed employs ultrahigh-performance liquid chromatography coupled with triple quadrupole mass spectrometry (UHPLC/QqQ-MS) analysis performed in multiple reaction monitoring (MRM) mode. A library of 22 glycosidic linkages was built using commercial oligosaccharide standards. Permethylation and hydrolysis conditions along with LC-MS/MS parameters were optimized resulting in a workflow requiring only 50 μg of substrate for the analysis. Samples were homogenized, permethylated, hydrolyzed, and then derivatized with 1-phenyl-3-methyl-5-pyrazolone (PMP) prior to analysis by UHPLC/MRM-MS. Separation by C18 reversed-phase UHPLC along with the simultaneous monitoring of derivatized terminal, linear, bisecting, and trisecting monosaccharide linkages by mass spectrometry is achieved within a 15 min run time. Reproducibility, efficacy, and robustness of the method was demonstrated with galactan ( Lupin) and polysaccharides within food such as whole carrots. The speed and specificity of the method enables its application toward the rapid glycosidic linkage analysis of oligosaccharides and polysaccharides.
Collapse
|
31
|
Klein LD, Huang J, Quinn EA, Martin MA, Breakey AA, Gurven M, Kaplan H, Valeggia C, Jasienska G, Scelza B, Lebrilla CB, Hinde K. Variation among populations in the immune protein composition of mother's milk reflects subsistence pattern. Evol Med Public Health 2018; 2018:230-245. [PMID: 30430010 PMCID: PMC6222208 DOI: 10.1093/emph/eoy031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 09/25/2018] [Indexed: 12/29/2022] Open
Abstract
LAY SUMMARY Adaptive immune proteins in mothers' milk are more variable than innate immune proteins across populations and subsistence strategies. These results suggest that the immune defenses in milk are shaped by a mother's environment throughout her life. BACKGROUND AND OBJECTIVES Mother's milk contains immune proteins that play critical roles in protecting the infant from infection and priming the infant's developing immune system during early life. The composition of these molecules in milk, particularly the acquired immune proteins, is thought to reflect a mother's immunological exposures throughout her life. In this study, we examine the composition of innate and acquired immune proteins in milk across seven populations with diverse disease and cultural ecologies. METHODOLOGY Milk samples (n = 164) were collected in Argentina, Bolivia, Nepal, Namibia, Philippines, Poland and the USA. Populations were classified as having one of four subsistence patterns: urban-industrialism, rural-shop, horticulturalist-forager or agro-pastoralism. Milk innate (lactalbumin, lactoferrin and lysozyme) and acquired (Secretory IgA, IgG and IgM) protein concentrations were determined using triple-quadrupole mass spectrometry. RESULTS Both innate and acquired immune protein composition in milk varied among populations, though the acquired immune protein composition of milk differed more among populations. Populations living in closer geographic proximity or having similar subsistence strategies (e.g. agro-pastoralists from Nepal and Namibia) had more similar milk immune protein compositions. Agro-pastoralists had different milk innate immune protein composition from horticulturalist-foragers and urban-industrialists. Acquired immune protein composition differed among all subsistence strategies except horticulturist-foragers and rural-shop. CONCLUSIONS AND IMPLICATIONS Our results reveal fundamental variation in milk composition that has not been previously explored in human milk research. Further study is needed to understand what specific aspects of the local environment influence milk composition and the effects this variation may have on infant health outcomes.
Collapse
Affiliation(s)
- Laura D Klein
- Department of Human Evolutionary Biology, Harvard University, 11 Divinity Avenue, Cambridge, MA, USA
- Department of Anthropology, University of Illinois at Chicago, 1007 West Harrison Street, Chicago IL, USA
| | - Jincui Huang
- Chemistry Department, University of California Davis, 2465 Chemistry Annex, One Shields Avenue, Davis, CA, USA
| | - Elizabeth A Quinn
- Department of Anthropology, Washington University in St Louis, Campus Box 1114, One Brookings Drive, St Louis, MO, USA
| | - Melanie A Martin
- Department of Anthropology, University of California Santa Barbara, Santa Barbara, CA, USA
- Department of Anthropology, University of Washington, 314 Denny Hall, Box 353100, Seattle, WA, USA
| | - Alicia A Breakey
- Department of Human Evolutionary Biology, Harvard University, 11 Divinity Avenue, Cambridge, MA, USA
| | - Michael Gurven
- Department of Anthropology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Hillard Kaplan
- Department of Anthropology, University of New Mexico, MSC01-1040, 1 University of New Mexico, Albuquerque, NM, USA
| | - Claudia Valeggia
- Department of Anthropology, Yale University, 10 Sachem Street, New Haven, CT, USA
| | - Grazyna Jasienska
- Department of Environmental Health, Faculty of Health Sciences, Jagiellonian University Medical College, ul. Grzegorzecka 20, Krakow, Poland
| | - Brooke Scelza
- Department of Anthropology, University of California Los Angeles, 341 Haines Hall, Box 951553, Los Angeles, CA, USA
| | - Carlito B Lebrilla
- Chemistry Department, University of California Davis, 2465 Chemistry Annex, One Shields Avenue, Davis, CA, USA
| | - Katie Hinde
- Department of Human Evolutionary Biology, Harvard University, 11 Divinity Avenue, Cambridge, MA, USA
- School of Human Evolution and Social Change
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
32
|
Ruhaak LR, Xu G, Li Q, Goonatilleke E, Lebrilla CB. Mass Spectrometry Approaches to Glycomic and Glycoproteomic Analyses. Chem Rev 2018; 118:7886-7930. [PMID: 29553244 PMCID: PMC7757723 DOI: 10.1021/acs.chemrev.7b00732] [Citation(s) in RCA: 277] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glycomic and glycoproteomic analyses involve the characterization of oligosaccharides (glycans) conjugated to proteins. Glycans are produced through a complicated nontemplate driven process involving the competition of enzymes that extend the nascent chain. The large diversity of structures, the variations in polarity of the individual saccharide residues, and the poor ionization efficiencies of glycans all conspire to make the analysis arguably much more difficult than any other biopolymer. Furthermore, the large number of glycoforms associated with a specific protein site makes it more difficult to characterize than any post-translational modification. Nonetheless, there have been significant progress, and advanced separation and mass spectrometry methods have been at its center and the main reason for the progress. While glycomic and glycoproteomic analyses are still typically available only through highly specialized laboratories, new software and workflow is making it more accessible. This review focuses on the role of mass spectrometry and separation methods in advancing glycomic and glycoproteomic analyses. It describes the current state of the field and progress toward making it more available to the larger scientific community.
Collapse
Affiliation(s)
- L. Renee Ruhaak
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Gege Xu
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Qiongyu Li
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Elisha Goonatilleke
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Carlito B. Lebrilla
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, California 95616, United States
- Foods for Health Institute, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
33
|
Peptidomic profiling of human milk with LC-MS/MS reveals pH-specific proteolysis of milk proteins. Food Chem 2018; 274:766-774. [PMID: 30373006 DOI: 10.1016/j.foodchem.2018.09.051] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 09/06/2018] [Accepted: 09/09/2018] [Indexed: 11/22/2022]
Abstract
Human milk is a dynamic protein-protease system that delivers bioactive peptides to infants. The pH of milk changes from the mother's mammary gland to the infant's digestive tract. Although the release of human milk peptides has been studied during in vivo or in vitro digestion, these models did not explicitly vary nor observe the effect of pH. The objective of this research was to determine the effect of pH on the proteolysis of human milk. Using high-resolution accurate-mass Orbitrap mass spectrometry, profiles of endogenous human milk peptides before and after incubation at various pH levels have been mapped. Over 5000 peptides were identified. Comparative analyses classified 74 peptides that were consistently found independent of pH alterations, and 8 peptides that were released only at pH 4 or 5 (typical infant gastric pH). Results documented that the proteolysis of milk proteins, particularly β-casein, polymeric immunoglobulin receptor, and α-lactalbumin, is pH-dependent.
Collapse
|
34
|
Yuan W, Benicky J, Wei R, Goldman R, Sanda M. Quantitative Analysis of Sex-Hormone-Binding Globulin Glycosylation in Liver Diseases by Liquid Chromatography-Mass Spectrometry Parallel Reaction Monitoring. J Proteome Res 2018; 17:2755-2766. [PMID: 29972295 DOI: 10.1021/acs.jproteome.8b00201] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sex-hormone-binding globulin (SHBG) is a liver-secreted glycoprotein and a major regulator of steroid distribution. It has been reported that the serum concentration of SHBG changes in liver disease. To explore the involvement of SHBG in liver disease of different etiologies in greater detail, we developed a sensitive and selective liquid chromatography-mass spectrometry parallel reaction monitoring workflow to achieve quantitative analysis of SHBG glycosylation microheterogeneity. The method uses energy-optimized "soft" fragmentation to extract informative Y ions for maximal coverage of glycoforms and their quantitative comparisons. A total of 15 N-glycoforms of two N-glycosites and 3 O-glycoforms of 1 O-glycosite of this low-abundance serum protein were simultaneously analyzed in the complex samples. At the same time, we were able to partially resolve linkage isoforms of the fucosylated glycoforms and to identify and quantify SHBG N-glycoforms that were not previously reported. The results show that both core and outer-arm fucosylation of the N-glycoforms increases with liver cirrhosis but that a further increase of fucosylation is not observed with hepatocellular carcinoma (HCC). In contrast, the α-2-6 sialylated glycoform of the O-glycopeptide of SHBG increases in liver cirrhosis, and a significant 2-fold further increase is observed in HCC. In general, we do not find a significant contribution of different liver disease etiologies to the observed changes in glycosylation; however, elevation of the newly reported HexNAc(4)Hex(6) N-glycoform is associated with alcoholic liver disease.
Collapse
|
35
|
Allen LH, Dror DK. Introduction to Current Knowledge on Micronutrients in Human Milk: Adequacy, Analysis, and Need for Research. Adv Nutr 2018; 9:275S-277S. [PMID: 29846523 PMCID: PMC6008952 DOI: 10.1093/advances/nmy018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Lindsay H Allen
- US Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA
| | - Daphna K Dror
- US Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA,Address correspondence to DKD (e-mail: )
| |
Collapse
|
36
|
Kailemia MJ, Wei W, Nguyen K, Beals E, Sawrey-Kubicek L, Rhodes C, Zhu C, Sacchi R, Zivkovic AM, Lebrilla CB. Targeted Measurements of O- and N-Glycopeptides Show That Proteins in High Density Lipoprotein Particles Are Enriched with Specific Glycosylation Compared to Plasma. J Proteome Res 2017; 17:834-845. [PMID: 29212317 DOI: 10.1021/acs.jproteome.7b00604] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
High density lipoprotein (HDL) particles are believed to be protective due to their inverse correlation with the prevalence of cardiovascular diseases. However, recent studies show that in some conditions such as heart disease and diabetes, HDL particles can become dysfunctional. Great attention has been directed toward HDL particle composition because the relative abundances of HDL constituents determine HDL's functional properties. A key factor to consider when studying the structure and composition of plasma particles is the protein glycosylation. Here, we profile the O- and N-linked glycosylation of HDL associated-proteins including the truncated form of Apo CIII and their glycan heterogeneity in a site-specific manner. Apolipoprotein CIII, fetuin A, and alpha 1 antitrypsin are glycoproteins associated with lipoproteins and are implicated in many cardiovascular and other disease conditions. A targeted method (UHPLC-QQQ) was used to measure the glycoprotein concentrations and site-specific glycovariations of the proteins in human plasma and compared with HDL particles isolated from the same plasma samples. The proteins found in the plasma are differentially glycosylated compared to those isolated in HDL. The results of this study suggest that glycosylation may play a role in protein partitioning in the blood, with possible functional implications.
Collapse
Affiliation(s)
- Muchena J Kailemia
- Department of Chemistry, ‡Department of Nutrition, and §Foods for Health Institute, University of California , Davis, California 95616, United States
| | - Wanghui Wei
- Department of Chemistry, ‡Department of Nutrition, and §Foods for Health Institute, University of California , Davis, California 95616, United States
| | - Khoa Nguyen
- Department of Chemistry, ‡Department of Nutrition, and §Foods for Health Institute, University of California , Davis, California 95616, United States
| | - Elizabeth Beals
- Department of Chemistry, ‡Department of Nutrition, and §Foods for Health Institute, University of California , Davis, California 95616, United States
| | - Lisa Sawrey-Kubicek
- Department of Chemistry, ‡Department of Nutrition, and §Foods for Health Institute, University of California , Davis, California 95616, United States
| | - Christopher Rhodes
- Department of Chemistry, ‡Department of Nutrition, and §Foods for Health Institute, University of California , Davis, California 95616, United States
| | - Chenghao Zhu
- Department of Chemistry, ‡Department of Nutrition, and §Foods for Health Institute, University of California , Davis, California 95616, United States
| | - Romina Sacchi
- Department of Chemistry, ‡Department of Nutrition, and §Foods for Health Institute, University of California , Davis, California 95616, United States
| | - Angela M Zivkovic
- Department of Chemistry, ‡Department of Nutrition, and §Foods for Health Institute, University of California , Davis, California 95616, United States
| | - Carlito B Lebrilla
- Department of Chemistry, ‡Department of Nutrition, and §Foods for Health Institute, University of California , Davis, California 95616, United States
| |
Collapse
|
37
|
Xu G, Amicucci MJ, Cheng Z, Galermo AG, Lebrilla CB. Revisiting monosaccharide analysis - quantitation of a comprehensive set of monosaccharides using dynamic multiple reaction monitoring. Analyst 2017; 143:200-207. [PMID: 29186215 PMCID: PMC6203862 DOI: 10.1039/c7an01530e] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A rapid method for the quantitation of sixteen neutral and acidic monosaccharides, from both animal and plant sources was developed using ultra-high performance liquid chromatography triple quadrupole mass spectrometry (UHPLC/QqQ-MS) in dynamic multiple reaction monitoring (dMRM) mode. Monosaccharides including three pentoses (ribose, xylose, arabinose), two deoxyhexoses (rhamnose, fucose), five hexoses (fructose, mannose, allose, glucose, galactose), two hexuronic acids (glucuronic acid, galacturonic acid), and two N-acetyl-hexosamines (GlcNAc, GalNAc), were derivatized with 1-phenyl-3-methyl-5-pyrazolone (PMP), while underivatized sialic acids, Neu5Ac and Neu5Gc, were simultaneously analyzed with a 10-minute run. With the optimized UHPLC conditions, baseline separations of the isomers were achieved. The sensitivity and calibration ranges of this method were determined. The limits of detection were between femtomoles and attomoles with linear ranges spanning four to six orders of magnitude and coefficients of variation (CVs) ≤7.2%. Spiking experiments performed on a pooled fecal sample demonstrated the high accuracy of this method even when applied to samples with complicated matrices. The validated method was applied to fecal samples from an infant transitioning from breast milk to weaning foods. Major milk monosaccharides including galactose, fucose, glucose, GlcNAc, and Neu5Ac were found to be the most abundant components in the feces of milk-fed infants. PMP-derivatives of nine other monosaccharides including apiose, lyxose, altrose, talose, gulose, glucosamine, galactosamine, mannosamine, and N-acetylmannosamine (ManNAc) were also tested and could be added to the quantitation method depending on the need. The speed and sensitivity of the method makes it readily adaptable to rapid throughput analysis of monosaccharides in biological samples.
Collapse
Affiliation(s)
- Gege Xu
- Department of Chemistry, University of California, Davis, CA 95616, USA.
| | | | | | | | | |
Collapse
|
38
|
Jorgensen JM, Arnold C, Ashorn P, Ashorn U, Chaima D, Cheung YB, Davis JCC, Fan YM, Goonatilleke E, Kortekangas E, Kumwenda C, Lebrilla CB, Maleta K, Totten SM, Wu LD, Dewey KG. Lipid-Based Nutrient Supplements During Pregnancy and Lactation Did Not Affect Human Milk Oligosaccharides and Bioactive Proteins in a Randomized Trial. J Nutr 2017; 147:1867-1874. [PMID: 28794206 PMCID: PMC5610548 DOI: 10.3945/jn.117.252981] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 05/12/2017] [Accepted: 07/10/2017] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Human milk oligosaccharides (HMOs) and bioactive proteins are beneficial to infant health. Recent evidence suggests that maternal nutrition may affect the amount of HMOs and proteins in breast milk; however, the effect of nutrient supplementation on HMOs and bioactive proteins has not yet been well studied. OBJECTIVE We aimed to determine whether lipid-based nutrient supplements (LNSs) affect milk bioactive protein and HMO concentrations at 6 mo postpartum in women in rural Malawi. These are secondary outcomes of a previously published randomized controlled trial. METHODS Women were randomly assigned to consume either an iron and folic acid capsule (IFA) daily from ≤20 wk gestation until delivery, followed by placebo daily from delivery to 6 mo postpartum, or a multiple micronutrient (MMN) capsule or LNS daily from ≤20 wk gestation to 6 mo postpartum. Breast milk concentrations of total HMOs, sialylated HMOs, fucosylated HMOs, lactoferrin, lactalbumin, lysozymes, antitrypsin, immunoglobulin A, and osteopontin were analyzed at 6 mo postpartum (n = 647). Between-group differences in concentrations and in proportions of women classified as having low concentrations were tested. RESULTS HMO and bioactive protein concentrations did not differ between groups (P > 0.10 for all comparisons). At 6 mo postpartum, the proportions of women with low HMOs or bioactive proteins were not different between groups except for osteopontin. A lower proportion of women in the IFA group had low osteopontin compared with the LNS group after adjusting for covariates (OR: 0.5; 95% CI: 0.3, 0.9; P = 0.016). CONCLUSION The study findings do not support the hypothesis that supplementation with an LNS or MMN capsule during pregnancy and postpartum would increase HMO or bioactive milk proteins at 6 mo postpartum among Malawian women. This trial was registered at clinicaltrials.gov as NCT01239693.
Collapse
Affiliation(s)
| | | | - Per Ashorn
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland;,Department of Pediatrics, Tampere University Hospital, Tampere, Finland
| | - Ulla Ashorn
- Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA
| | - David Chaima
- Department of Community Health, University of Malawi College of Medicine, Blantyre, Malawi
| | - Yin Bun Cheung
- Centre for Quantitative Medicine, Duke-National University of Singapore Graduate Medical School, Singapore, Singapore; and,Department of Biostatistics, Singapore Clinical Research Institute, Singapore, Singapore
| | | | - Yue-Mei Fan
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | | | - Emma Kortekangas
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Chiza Kumwenda
- Department of Community Health, University of Malawi College of Medicine, Blantyre, Malawi
| | - Carlito B Lebrilla
- Chemistry, and,Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA
| | - Kenneth Maleta
- Department of Community Health, University of Malawi College of Medicine, Blantyre, Malawi
| | | | | | | |
Collapse
|