1
|
He L, Wu J, Lin Z, Zhang Y, Liu P. Dual-Encoded Affinity Microbead Signature Combinatorial Profiling for Acute Myocardial Infarction High-Sensitivity Diagnosis. ACS Sens 2024; 9:2083-2090. [PMID: 38525874 DOI: 10.1021/acssensors.4c00117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
The early diagnosis of acute myocardial infarction (AMI) is dependent on the combined feedback of multiple cardiac biomarkers. However, it remains challenging to precisely detect multicardiac biomarkers in complex blood early due to the lack of sensitive and specific diagnostic indicators and the low abundance and small size of associated biomarkers with high specificity (such as microRNAs). To make matters worse, spectral overlap significantly limits the multiplex analysis of cardiac biomarkers by fluorescent probes, leading to bias in the diagnosis of myocardial infarction. Herein, we developed a method for simultaneous detection of miRNAs and protein biomarkers using size- and color-coded microbeads that carry signature for target capture. We also constructed a microfluidic chip with different spacer arrays that segregate these microbeads in different chip regions according to their size to produce signature signals, indicating the level of different biomarkers. The signals on the microbeads were hugely amplified by catalytic hairpin assembly and rolling circle amplification. Notably, this strategy enables the simultaneous and in situ sensitive profiling of six kinds of biomarkers via adding two different fluorescent labels, removing the limitations of spectral overlap. We envision that the strategy has great potential for application in clinical diagnosis for AMI.
Collapse
Affiliation(s)
- Luxuan He
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jiacheng Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhun Lin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuanqing Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Peiqing Liu
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
2
|
Jiang H, Li Y, Lv X, Deng Y, Li X. Recent advances in cascade isothermal amplification techniques for ultra-sensitive nucleic acid detection. Talanta 2023; 260:124645. [PMID: 37148686 PMCID: PMC10156408 DOI: 10.1016/j.talanta.2023.124645] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/30/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
Nucleic acid amplification techniques have always been one of the hot spots of research, especially in the outbreak of COVID-19. From the initial polymerase chain reaction (PCR) to the current popular isothermal amplification, each new amplification techniques provides new ideas and methods for nucleic acid detection. However, limited by thermostable DNA polymerase and expensive thermal cycler, PCR is difficult to achieve point of care testing (POCT). Although isothermal amplification techniques overcome the defects of temperature control, single isothermal amplification is also limited by false positives, nucleic acid sequence compatibility, and signal amplification capability to some extent. Fortunately, efforts to integrating different enzymes or amplification techniques that enable to achieve intercatalyst communication and cascaded biotransformations may overcome the corner of single isothermal amplification. In this review, we systematically summarized the design fundamentals, signal generation, evolution, and application of cascade amplification. More importantly, the challenges and trends of cascade amplification were discussed in depth.
Collapse
Affiliation(s)
- Hao Jiang
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuan Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Xuefei Lv
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| | - Yulin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiaoqiong Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
3
|
Tavakoli-Koopaei R, Javadi-Zarnaghi F, Mirhendi H. Unified-amplifier based primer exchange reaction (UniAmPER) enabled detection of SARS-CoV-2 from clinical samples. SENSORS AND ACTUATORS. B, CHEMICAL 2022; 357:131409. [PMID: 35035095 PMCID: PMC8750742 DOI: 10.1016/j.snb.2022.131409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/10/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Primer exchange reaction (PER) is an emergent method for non-templated synthesis of single stranded DNA molecules. PER has been shown to be effective in cell imaging systems and for detection of macromolecules. A particular application of PER is to detect a specific target nucleic acid. To this endeavor, two coupled DNA hairpins, a detector and an amplifier, play in accordance to extend a target nucleic acid with a concatemer DNA sequence. Here we introduced unified-amplifier based primer exchange reaction (UniAmPER) that beneficially extends the target by a unified-amplifier. The unified-amplifier operates as both detector and amplifier hairpins. The extension resulted in synthesis of concatemer G-rich sequences. The G-rich sequences were expected to form G-quadruplex (GQ) structures. Presence of the GQ structures were investigated by peroxidase activity of GQs in presence of hemin, H2°2 and 3,3',5,5'-Tetramethylbenzidine (TMB) as well as by fluorescence signal generation upon intercalation of thioflavin T (ThT). The presented unified-amplifier in this study facilitates application of PER systems for development of colorimetric or fluorogenic biosensors. As a proof of principle, the method has been applied for detection of reversely transcribed cDNAs from clinical SARS-CoV-2 samples.
Collapse
Affiliation(s)
- Reyhaneh Tavakoli-Koopaei
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Fatemeh Javadi-Zarnaghi
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Hossein Mirhendi
- Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Core Facilities Research Laboratory, Mycology Reference Laboratory, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
4
|
Arshavsky‐Graham S, Heuer C, Jiang X, Segal E. Aptasensors versus immunosensors-Which will prevail? Eng Life Sci 2022; 22:319-333. [PMID: 35382545 PMCID: PMC8961048 DOI: 10.1002/elsc.202100148] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 12/11/2022] Open
Abstract
Since the invention of the first biosensors 70 years ago, they have turned into valuable and versatile tools for various applications, ranging from disease diagnosis to environmental monitoring. Traditionally, antibodies have been employed as the capture probes in most biosensors, owing to their innate ability to bind their target with high affinity and specificity, and are still considered as the gold standard. Yet, the resulting immunosensors often suffer from considerable limitations, which are mainly ascribed to the antibody size, conjugation chemistry, stability, and costs. Over the past decade, aptamers have emerged as promising alternative capture probes presenting some advantages over existing constraints of immunosensors, as well as new biosensing concepts. Herein, we review the employment of antibodies and aptamers as capture probes in biosensing platforms, addressing the main aspects of biosensor design and mechanism. We also aim to compare both capture probe classes from theoretical and experimental perspectives. Yet, we highlight that such comparisons are not straightforward, and these two families of capture probes should not be necessarily perceived as competing but rather as complementary. We, thus, elaborate on their combined use in hybrid biosensing schemes benefiting from the advantages of each biorecognition element.
Collapse
Affiliation(s)
- Sofia Arshavsky‐Graham
- Faculty of Biotechnology and Food EngineeringTechnion ‐ Israel Institute of TechnologyHaifaIsrael
| | - Christopher Heuer
- Faculty of Biotechnology and Food EngineeringTechnion ‐ Israel Institute of TechnologyHaifaIsrael
- Institute of Technical ChemistryLeibniz University HannoverHannoverGermany
| | - Xin Jiang
- Faculty of Biotechnology and Food EngineeringTechnion ‐ Israel Institute of TechnologyHaifaIsrael
| | - Ester Segal
- Faculty of Biotechnology and Food EngineeringTechnion ‐ Israel Institute of TechnologyHaifaIsrael
- Russell Berrie Nanotechnology InstituteTechnion ‐ Israel Institute of TechnologyHaifaIsrael
| |
Collapse
|
5
|
Shen T, Zhang Y, Mei L, Zhang XB, Zhu G. Single-stranded circular DNA theranostics. Theranostics 2022; 12:35-47. [PMID: 34987632 PMCID: PMC8690921 DOI: 10.7150/thno.66466] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/10/2021] [Indexed: 02/04/2023] Open
Abstract
The past decade has witnessed the blossom of nucleic acid therapeutics and diagnostics (theranostics). Unlike conventional small molecule medicines or protein biologics, nucleic acid theranostics have characteristic features such as the intrinsic ability as “information drugs” to code and execute genetic and theranostic information, ready programmability for nucleic acid engineering, intrinsic stimulatory or regulatory immunomodulation, versatile functionalities, and easy conformational recovery upon thermal or chemical denaturation. Single-stranded circular DNA (circDNA) are a class of single-stranded DNAs (ssDNA) featured with their covalently-closed topology. In addition to the basic advantages of nucleic acids-based materials, such as low cost, biocompatibility, and simplicity of chemical modification, the lack of terminals in circDNA prevents exonuclease degradation, resulting in enhanced biostability relative to the corresponding linear ssDNA. circDNA has been explored for versatile theranostic applications. For instance, circDNA has been extensively studied as templates for bioanalytical signal amplification and the synthesis of nano-/micro-/macro- biomaterials via rolling circle amplification (RCA) and rolling circle transcription (RCT) technologies. circDNA has also been commonly used as the scaffolds for the self-assembly of versatile DNA origami. Finally, circDNA has been implemented as theranostic aptamers, miRNA inhibitors, as well as clustered regularly interspaced short palindromic repeats-CRISPR-associated proteins (CRISPR-Cas) gene editing donors. In this review article, we will discuss the chemistry, characteristic properties, and the theranostic applications of circDNA (excluding double-stranded circular DNA such as plasmids); we will also envision the challenges and opportunities in this research field.
Collapse
|
6
|
Bialy RM, Mainguy A, Li Y, Brennan JD. Functional nucleic acid biosensors utilizing rolling circle amplification. Chem Soc Rev 2022; 51:9009-9067. [DOI: 10.1039/d2cs00613h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Functional nucleic acids regulate rolling circle amplification to produce multiple detection outputs suitable for the development of point-of-care diagnostic devices.
Collapse
Affiliation(s)
- Roger M. Bialy
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4O3, Canada
| | - Alexa Mainguy
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4O3, Canada
| | - Yingfu Li
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4O3, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - John D. Brennan
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4O3, Canada
| |
Collapse
|
7
|
Jarczewska M, Malinowska E. The application of antibody-aptamer hybrid biosensors in clinical diagnostics and environmental analysis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:3183-3199. [PMID: 32930180 DOI: 10.1039/d0ay00678e] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The growing number of various diseases and the increase of environmental contamination are the causes for the development of novel methods for their detection. The possibility of the application of affinity-based biosensors for such purposes seems particularly promising as they provide high selectivity and low detection limits. Recently, the usage of hybrid antibody-aptamer sandwich constructs was shown to be more advantageous in terms of working parameters in comparison to aptamer-based and immune-based biosensors. This review is focused on the usage of hybrid antibody-aptamer receptor layers for the determination of clinically and environmentally important target molecules. In this work, antibodies and aptamer molecules are characterized and the methods of their immobilization as well as analytical signal generation are shown. This is followed by the critical presentation of examples of hybrid sandwich biosensors that have been elaborated in the past 12 years.
Collapse
Affiliation(s)
- Marta Jarczewska
- The Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw, 00-664, Poland.
| | - Elżbieta Malinowska
- The Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw, 00-664, Poland.
- Centre for Advanced Materials and Technologies CEZAMAT, Poleczki 19, 02-822 Warsaw, Poland
| |
Collapse
|
8
|
Wang C, Zhao Q. A competitive thrombin-linked aptamer assay for small molecule: aflatoxin B 1. Anal Bioanal Chem 2019; 411:6637-6644. [PMID: 31352501 DOI: 10.1007/s00216-019-02037-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 01/03/2023]
Abstract
We described a competitive thrombin-linked aptamer assay for small molecule, using aflatoxin B1 (AFB1) as a model, taking advantage of aptamer affinity binding and enzymatic activity of thrombin. We designed a dual functional DNA probe that contained the aptamer sequence for thrombin and the aptamer sequence for AFB1. Thrombin was labeled on the DNA probe by affinity binding between thrombin and anti-thrombin aptamer. This thrombin-labeled DNA probe was attached on AFB1-bovine serum albumin conjugate (BSA-AFB1) coated on a microplate through the affinity interaction between AFB1 and anti-AFB1 aptamer. The thrombin attached on the microplate catalyzed the cleavage of peptide substrate into detectable product, generating signal for detection. In the presence of AFB1, free AFB1 competed with BSA-AFB1 in the binding to the limited amount of DNA probe, leading to signal decrease. Detection of AFB1 was achieved by measuring the signal change. Under optimized conditions, AFB1 was successfully detected in the range from 0.5 nM to 1 μM when fluorogenic peptide substrate of thrombin and fluorescence analysis were applied. The use of chromogenic peptide substrate in the assay allowed the detection of AFB1 ranging from 0.5 to 125 nM by simple absorbance analysis. The thrombin-linked aptamer assay showed good selectivity towards AFB1, and enabled the detection of AFB1 spiked in diluted beer and corn flour. This TLAA strategy extends the analytical application of thrombin and aptamers in detection of small molecules. Graphical abstract.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing, 100085, China.,University of Chinese Academy of Science, Beijing, 100049, China
| | - Qiang Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing, 100085, China. .,University of Chinese Academy of Science, Beijing, 100049, China.
| |
Collapse
|
9
|
Kim J, Jang D, Park H, Jung S, Kim DH, Kim WJ. Functional-DNA-Driven Dynamic Nanoconstructs for Biomolecule Capture and Drug Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1707351. [PMID: 30062803 DOI: 10.1002/adma.201707351] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/13/2018] [Indexed: 06/08/2023]
Abstract
The discovery of sequence-specific hybridization has allowed the development of DNA nanotechnology, which is divided into two categories: 1) structural DNA nanotechnology, which utilizes DNA as a biopolymer; and 2) dynamic DNA nanotechnology, which focuses on the catalytic reactions or displacement of DNA structures. Recently, numerous attempts have been made to combine DNA nanotechnologies with functional DNAs such as aptamers, DNAzymes, amplified DNA, polymer-conjugated DNA, and DNA loaded on functional nanoparticles for various applications; thus, the new interdisciplinary research field of "functional DNA nanotechnology" is initiated. In particular, a fine-tuned nanostructure composed of functional DNAs has shown immense potential as a programmable nanomachine by controlling DNA dynamics triggered by specific environments. Moreover, the programmability and predictability of functional DNA have enabled the use of DNA nanostructures as nanomedicines for various biomedical applications, such as cargo delivery and molecular drugs via stimuli-mediated dynamic structural changes of functional DNAs. Here, the concepts and recent case studies of functional DNA nanotechnology and nanostructures in nanomedicine are reviewed, and future prospects of functional DNA for nanomedicine are indicated.
Collapse
Affiliation(s)
- Jinhwan Kim
- Center for Self-Assembly and Complexity, Institute for Basic Science (IBS), Pohang, 37673, Korea
| | - Donghyun Jang
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Hyeongmok Park
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Sungjin Jung
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Dae Heon Kim
- Department of Biology, Sunchon National University, Sunchon, 57922, Korea
| | - Won Jong Kim
- Center for Self-Assembly and Complexity, Institute for Basic Science (IBS), Pohang, 37673, Korea
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| |
Collapse
|
10
|
Zhu C, Zhu W, Xu L, Zhou X. A label-free electrochemical aptasensor based on magnetic biocomposites with Pb 2+-dependent DNAzyme for the detection of thrombin. Anal Chim Acta 2018; 1047:21-27. [PMID: 30567652 DOI: 10.1016/j.aca.2018.09.040] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/03/2018] [Accepted: 09/17/2018] [Indexed: 12/21/2022]
Abstract
Herein, a novel magnetic biocomposite (Fe3O4@Au-S1/S2) was applied to analyze thrombin. The Fe3O4@Au-S1/S2 consisted of Fe3O4@Au nanoparticles (Fe3O4@Au NPs) as carriers for magnetic separation and magnetic field-induced self-assembly, thiolated complementary strand (S1) anchored based on Au-S bond and thrombin binding aptamer (S2) as a recognition element. As a redox indicator, methylene blue (MB) can be adsorbed to DNA anchored on the surface of Fe3O4@Au NPs by electro-static interaction. In the absence of thrombin, MB were adsorbed on double-stranded DNA (S1/S2) which anchored on Fe3O4@Au NPs and a high electrochemical signal of MB was recorded by Differential pulse voltammetry. Conversely, the complementary strand (S1) exposed after thrombin competitively bonded with aptamer. The introduction of Pb2+-dependent DNAzyme (S3) split S1 at specific rA site, resulting in the significantly decreased adsorption capacity of MB. Thus, the thrombin detection could be recorded by monitoring the electrochemical signal reduction of MB through incubation of thrombin with S3. This method exhibited a high sensitivity toward thrombin with a broad linear range from 5 pmol L-1 to 5 nmol L-1 and a limit of detection of 1.8 pmol L-1.
Collapse
Affiliation(s)
- Chunhong Zhu
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, PR China
| | - Wanying Zhu
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, PR China
| | - Lei Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, PR China
| | - Xuemin Zhou
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, PR China.
| |
Collapse
|
11
|
Gu L, Yan W, Liu L, Wang S, Zhang X, Lyu M. Research Progress on Rolling Circle Amplification (RCA)-Based Biomedical Sensing. Pharmaceuticals (Basel) 2018; 11:E35. [PMID: 29690513 PMCID: PMC6027247 DOI: 10.3390/ph11020035] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/10/2018] [Accepted: 04/10/2018] [Indexed: 12/26/2022] Open
Abstract
Enhancing the limit of detection (LOD) is significant for crucial diseases. Cancer development could take more than 10 years, from one mutant cell to a visible tumor. Early diagnosis facilitates more effective treatment and leads to higher survival rate for cancer patients. Rolling circle amplification (RCA) is a simple and efficient isothermal enzymatic process that utilizes nuclease to generate long single stranded DNA (ssDNA) or RNA. The functional nucleic acid unit (aptamer, DNAzyme) could be replicated hundreds of times in a short period, and a lower LOD could be achieved if those units are combined with an enzymatic reaction, Surface Plasmon Resonance, electrochemical, or fluorescence detection, and other different kinds of biosensor. Multifarious RCA-based platforms have been developed to detect a variety of targets including DNA, RNA, SNP, proteins, pathogens, cytokines, micromolecules, and diseased cells. In this review, improvements in using the RCA technique for medical biosensors and biomedical applications were summarized and future trends in related research fields described.
Collapse
Affiliation(s)
- Lide Gu
- College of Marine Life and Fisheries, Huahai Institute of Technology, Lianyungang 222005, China.
| | - Wanli Yan
- College of Marine Life and Fisheries, Huahai Institute of Technology, Lianyungang 222005, China.
| | - Le Liu
- College of Marine Life and Fisheries, Huahai Institute of Technology, Lianyungang 222005, China.
| | - Shujun Wang
- Marine Resources Development Institute of Jiangsu, Lianyungang 222005, China.
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang 222005, China.
| | - Xu Zhang
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang 222005, China.
- Verschuren Centre for Sustainability in Energy & the Environment, Cape Breton University, Sydney, NS B1P 6L2, Canada.
| | - Mingsheng Lyu
- College of Marine Life and Fisheries, Huahai Institute of Technology, Lianyungang 222005, China.
- Marine Resources Development Institute of Jiangsu, Lianyungang 222005, China.
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang 222005, China.
| |
Collapse
|
12
|
Luan C, Xu Y, Fu F, Wang H, Xu Q, Chen B, Zhao Y. Responsive photonic barcodes for sensitive multiplex bioassay. NANOSCALE 2017; 9:14111-14117. [PMID: 28902202 DOI: 10.1039/c7nr04867j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Barcodes have a demonstrated value for multiplex high-throughput bioassays. The tendency of this technology is to pursue high sensitivity target screening. Herein, we presented a new type of inverse opal-structured poly(N-isopropylacrylamide) (pNIPAM) hydrogel photonic crystal (PhC) barcodes with the function of fluorescent signal self-amplification for the detection. During the bio-reaction process at body temperature, the pNIPAM hydrogel barcodes kept swelling, and their inverse opal structure with interconnected pores provided unblocked channels for the targets to diffuse into the voids of the barcodes and react. During the detection process, the barcodes were kept at a volume phase transition temperature (VPTT) to shrink their volume; this resulted in an obvious increase in the density of fluorescent molecules and signal amplification. It was demonstrated that the responsive barcodes could achieve the limits of detection (LOD) of α-fetoprotein (AFP) and carcinoembryonic antigen (CEA) at 0.623 ng mL-1 and 0.492 ng mL-1, respectively. In addition, the proposed barcodes showed good multiplex detection capacity with acceptable cross-reactivity, accuracy, and reproducibility, and the results were consistent with those of common clinical laboratory methods for the detection of clinical samples. These features of the inverse opal-structured responsive hydrogel barcodes indicate that they are ideal technology for high-sensitive multiplex bioassays.
Collapse
Affiliation(s)
- Chengxin Luan
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine), Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China.
| | | | | | | | | | | | | |
Collapse
|
13
|
Sakhabutdinova AR, Maksimova MA, Garafutdinov RR. Synthesis of circular DNA templates with T4 RNA ligase for rolling circle amplification. Mol Biol 2017. [DOI: 10.1134/s0026893317040161] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Modh H, Scheper T, Walter JG. Detection of ochratoxin A by aptamer-assisted real-time PCR-based assay (Apta-qPCR). Eng Life Sci 2017; 17:923-930. [PMID: 32624841 DOI: 10.1002/elsc.201700048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 06/09/2017] [Accepted: 07/04/2017] [Indexed: 12/18/2022] Open
Abstract
Detection of food toxins with high sensitivity is very important and challenging. Ochratoxin A (OTA) is frequently present as food contaminant in contaminated grains and grain derivatives such as bread and beer. In this work, a target-induced dissociation (TID) based aptamer-assisted real-time PCR-based assay (apta-qPCR) is developed that features effective detection of OTA. Apta-qPCR effectively combines the capabilities of aptamer to be amplified, being a nucleotide sequence, with its specific interaction with the corresponding target molecule. Compared to commonly used fluorescence-based and colorimetric methods, the sensitivity of qPCR to detect a nucleotide sequence (aptamer) has ameliorated the sensitivity of the aptamer-based detection of OTA. Here, the OTA aptamer was immobilized on the magnetic beads coated with d(T)25 (dT beads). A sequence complementary to the OTA-binding portion of the aptamer was used as a linker between dT beads and the aptamer sequence. When OTA was added, the aptamer was released from the dT beads due to TID. The resulting assay was able to detect 0.009 ng/mL OTA with a wide dynamic range of 0.039-1000 ng/mL. Apta-qPCR can be easily transferred to other small molecules for highly sensitive detection using corresponding aptamers.
Collapse
Affiliation(s)
- Harshvardhan Modh
- Institute of Technical Chemistry Leibniz University of Hannover Hannover Germany
| | - Thomas Scheper
- Institute of Technical Chemistry Leibniz University of Hannover Hannover Germany
| | | |
Collapse
|