1
|
Fan Z, Jia W. Ambient 1,2-propanediol exposure accelerates the degradation of lipids and amino acids in milk via allosteric effects and affects the utilization of nutrients containing amide bond. Food Res Int 2023; 170:112965. [PMID: 37316053 DOI: 10.1016/j.foodres.2023.112965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 04/22/2023] [Accepted: 05/10/2023] [Indexed: 06/16/2023]
Abstract
The scandal of detecting 1, 2-propanediol (PL) in milk brought a crisis to the trust of consumers in the dairy industry, and the potential toxicity of PL has aroused the public concern about dietary exposure. A total of 200 pasteurized milk samples were collected from 15 regions, and the quantity of PL ranged between 0 and 0.31 g kg-1. Pseudo-targeted quantitative metabolomics integrated with proteomics demonstrated that PL enhanced the reduction of κ-casein, β-casein, and 107 substances (41 amines and 66 amides) containing amide bonds. Pathway enrichment and topological analysis indicated that PL induced the metabolism of lipids, amino acids, oligosaccharide nucleotides, and alkaloids by accelerating the rate of nucleophilic reaction, and acetylcholinesterase, sarcosine oxidase, and prolyl 4-hydroxylase were determined as the vital enzymes related to the degradation of above nutrients. The results of molecular simulation calculation illustrated that the number of hydrogen bonds between acetylcholinesterase, sarcosine oxidase, and substrate increased to 2 and 3, respectively, while the position of hydrogen bonds between prolyl 4-hydroxylase and proline was shifted, indicating the change of conformation and the enhancement of hydrogen bond force were essential factors for the up-regulation of enzyme activity. This study first revealed the mechanism of deposition and transformation of PL in milk, which contributed to the knowledge of the quality control of milk and provided vital indicators to evaluate the adverse risks of PL in dairy products.
Collapse
Affiliation(s)
- Zibian Fan
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China.
| |
Collapse
|
2
|
Fan Z, Jia W, Du A. UHPLC-Q-Orbitrap-Based Integrated Lipidomics and Proteomics Reveal Propane-1,2-diol Exposure Accelerating Degradation of Lipids via the Allosteric Effect and Reducing the Nutritional Value of Milk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1178-1189. [PMID: 36598094 DOI: 10.1021/acs.jafc.2c07059] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The scandal of detecting the flavoring solvent propane-1,2-diol (PD) in milk has brought a crisis to the trust of consumers in the dairy industry, while its deposition and transformation are still indistinct. Pseudo-targeted lipidomics revealed that PD accelerated the degradation of glycerolipid (33,638.3 ± 28.9 to 104,54.2 ± 28.4 mg kg-1), phosphoglyceride (467.4 ± 8.2 to 56.6 ± 4.2 mg kg-1), and sphingolipids (11.4 ± 0.3 to 0.7 ± 0.2 mg kg-1), which extremely decreased the milk quality. Recoveries and relative standard deviations (RSDs) of the established method were 85.0-109.9 and 0.1-14.9%, respectively, indicating that the approach was credible. Protein-lipid interactions demonstrated that 10 proteins originating from fat globules were upregulated significantly and the activities of 7 enzymes related to lipid degradation were improved. Diacylglycerol cholinephosphotransferase was the only enzyme with decreased activity, and the molecular docking results indicated that PD adjusted its activity through regulating the conformation of the active center and weakening the hydrogen bond force between the enzyme and substrate. This study firstly revealed the mechanism of deposition and transformation of PD in milk, which contributed to the knowledge on the milk quality control and provided key indicators to evaluate the adverse risks of PD in dairy products.
Collapse
Affiliation(s)
- Zibian Fan
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an710021, China
| | - Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an710021, China
- Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an710021, China
| | - An Du
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an710021, China
| |
Collapse
|
3
|
Teixeira Tarley CR, Gorla FA, Midori de Oliveira F, Nascentes CC, Ferreira MDP, Ferreira da Costa M, Segatelli MG. Investigation of the performance of cross-linked poly(acrylic acid) and poly(methacrylic acid) as efficient adsorbents in SPE columns for simultaneous preconcentration of tricyclic antidepressants in water samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:5100-5109. [PMID: 36472141 DOI: 10.1039/d2ay01520j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A solid phase extraction-based (SPE) procedure for simultaneous preconcentration of five tricyclic antidepressants (TCAs), amitriptyline hydrochloride (AMT), nortriptyline hydrochloride (NOR), doxepin hydrochloride (DOX), imipramine hydrochloride (IMI), and clomipramine hydrochloride (CLO) from water samples with determination by HPLC-DAD is proposed. Polymers were characterized by FT-IR, SEM, and thermogravimetric analysis. SPE-based methods were carried out by the preconcentration of 320.0 mL of TCAs at pH 7.0 (buffered with 0.01 mol L-1 phosphate buffer) through 70.0 mg of adsorbent packed into a SPE cartridge, followed by elution with 1.0 mL of ACN : MeOH : acetic acid solution (45 : 45 : 10% v/v). Higher preconcentration factors were obtained ranging from 117.9 to 372.2 and 207.1 to 396.1 by using poly(MAA-co-EGDMA) and poly(AA-co-EGDMA), respectively, yielding lower limits of detection (0.03 to 0.12 μg L-1) and (0.03 to 0.15 μg L-1). These outcomes show satisfactory detectability of SPE-based methods, with slightly better performance using poly(MAA-co-EGDMA). On the other hand, poly(AA-co-EGDMA) was able to preconcentrate TCAs in the presence of humic acid (7.0 mg L-1) without interference. The precision of methods assessed as RSD (%) was very similar, ranging from 1.7% to 16.3% for poly(MAA-co-EGDMA) and 1.7% to 13.4% for poly(AA-co-EGDMA). SPE cartridges packed with the polymers showed high reusability (52 cycles of preconcentration and elution) without losing adsorption efficiency. The methods were applied to determine TCAs in tap, lake, and stream water samples and the accuracy was attested by addition and recovery tests (86.7-116.0%), with determined nortriptyline ranging from 0.48 to 0.52 μg L-1 in lake water samples.
Collapse
Affiliation(s)
- César Ricardo Teixeira Tarley
- Department of Chemistry, State University of Londrina (UEL), Rodovia Celso Garcia Cid, PR 445, Km 380, CEP 86.057-970, Londrina, Parana, Brazil.
- National Institute of Science and Technology in Bioanalytics (INCTBio), Institute of Chemistry, State University of Campinas (UNICAMP), Cidade Universitária Vaz s/n, CEP 13.083-970, Campinas, São Paulo, Brazil
| | - Felipe Augusto Gorla
- Department of Chemistry, State University of Londrina (UEL), Rodovia Celso Garcia Cid, PR 445, Km 380, CEP 86.057-970, Londrina, Parana, Brazil.
- Federal Institute of Paraná (IFPR), Avenida Cívica 475, Centro Cívico, CEP 85.935-000, Assis Chateaubriand, Parana, Brazil
| | - Fernanda Midori de Oliveira
- Department of Chemistry, State University of Londrina (UEL), Rodovia Celso Garcia Cid, PR 445, Km 380, CEP 86.057-970, Londrina, Parana, Brazil.
| | - Clésia Cristina Nascentes
- Department of Chemistry, Federal University of Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, CEP 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Milena do Prado Ferreira
- Department of Chemistry, State University of Londrina (UEL), Rodovia Celso Garcia Cid, PR 445, Km 380, CEP 86.057-970, Londrina, Parana, Brazil.
| | - Marcello Ferreira da Costa
- Department of Physics, State University of Londrina (UEL), Rodovia Celso Garcia Cid, PR 445 Km 380, CEP 86.057-970, Londrina, Parana, Brazil
| | - Mariana Gava Segatelli
- Department of Chemistry, State University of Londrina (UEL), Rodovia Celso Garcia Cid, PR 445, Km 380, CEP 86.057-970, Londrina, Parana, Brazil.
| |
Collapse
|
4
|
Sowa I, Wójciak M, Tyszczuk-Rotko K, Klepka T, Dresler S. Polyaniline and Polyaniline-Based Materials as Sorbents in Solid-Phase Extraction Techniques. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8881. [PMID: 36556687 PMCID: PMC9786183 DOI: 10.3390/ma15248881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Polyaniline (PANI) is one of the best known and widely studied conducting polymers with multiple applications and unique physicochemical properties. Due to its porous structure and relatively high surface area as well as the affinity toward many analytes related to the ability to establish different types of interactions, PANI has a great potential as a sorbent in sample pretreatment before instrumental analyses. This study provides an overview of the applications of polyaniline and polyaniline composites as sorbents in sample preparation techniques based on solid-phase extraction, including conventional solid-phase extraction (SPE) and its modifications, solid-phase microextraction (SPME), dispersive solid-phase extraction (dSPE), magnetic solid-phase extraction (MSPE) and stir-bar sorptive extraction (SBSE). The utility of PANI-based sorbents in chromatography was also summarized. It has been shown that polyaniline is willingly combined with other components and PANI-based materials may be formed in a variety of shapes. Polyaniline alone and PANI-based composites were successfully applied for sample preparation before determination of various analytes, both metal ions and organic compounds, in different matrices such as environmental samples, food, human plasma, urine, and blood.
Collapse
Affiliation(s)
- Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Magdalena Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Katarzyna Tyszczuk-Rotko
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, 20-031 Lublin, Poland
| | - Tomasz Klepka
- Department of Technology and Polymer Processing, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
| | - Sławomir Dresler
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
- Department of Plant Physiology and Biophysics, Institute of Biological Science, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| |
Collapse
|
5
|
Abdallah NA. Application of Titanium Oxide Decorated Multi‐walled Carbon Nanotubes/Polyaniline as a Transducer Polymer for the Potentiometric Determination of Mirtazapine. ChemistrySelect 2022. [DOI: 10.1002/slct.202202985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nehad A. Abdallah
- Pharmacognosy and Pharmaceutical Chemistry Department College of Pharmacy Taibah University Al-Madinah Al Mounawarah 30078 Saudi Arabia
- Experiments and Advanced Pharmaceutical Research Unit Faculty of Pharmacy Ain Shams University Cairo 11566 Egypt
| |
Collapse
|
6
|
Preconcentration and determination of four antibiotics in biological samples using nanofluid-assisted magnetic dispersive micro-solid-phase extraction coupled with high-performance liquid chromatography. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-01903-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Ghorbani M, Mohammadi P, Keshavarzi M, Ziroohi A, Mohammadi M, Aghamohammadhasan M, Pakseresht M. Developments of Microextraction (Extraction) Procedures for Sample Preparation of Antidepressants in Biological and Water Samples, a Review. Crit Rev Anal Chem 2021; 53:1285-1312. [PMID: 34955046 DOI: 10.1080/10408347.2021.2018648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Antidepressants are an important class of drugs to treat various types of depression. The determination of antidepressants is crucial in biological samples to control adverse effects in humans and study pharmacokinetics and bioavailability. Direct measurement of antidepressants in biological and water samples is a considerable challenge for analysts due to their low concentration, the high matrix effects of real samples, and the presence of metabolites of these drugs in biological samples. The challenge leads to using sample preparation processes as a critical step in determining antidepressants. Extraction and microextraction procedures have been widely utilized as sample preparation procedures for these drugs. The purposes of extraction or microextraction methods for antidepressant medications are to preconcentrate the analyte, reduce the matrix effects, increase the selectivity of the procedures, and convert the sample to a suitable format for introducing it into detection systems. In the review, the various extraction and microextraction methods of these drugs in biological, real water, and wastewater samples were investigated. The theory of each technique was briefly addressed to understand the features and factors affecting each method. The extraction and microextraction methods were classified based on their application for antidepressants, and the advantages and disadvantages of each technique were reviewed. The new developments to overcome the limitations of each procedure were discussed. The investigation indicated the number of applications of liquid-phase microextraction for extracting antidepressants has been almost equal to that of solid-phase microextraction.
Collapse
Affiliation(s)
- Mahdi Ghorbani
- Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Parisa Mohammadi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Faculty of Health, Sabzevar, Iran
| | - Majid Keshavarzi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Faculty of Health, Sabzevar, Iran
| | - Aliakbar Ziroohi
- Department of biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Morteza Mohammadi
- School of Medicine, Sechenov University of Medical Sciences, Moscow, Russia
| | | | - Maryam Pakseresht
- Department of Chemistry, Faculty of Arts and Sciences, Near East University, Nicosia, Cyprus
| |
Collapse
|
8
|
Magnetic Dispersive Solid Phase Extraction of Cu (II) as 1- (2-pyridylazo)-2-naphthol Chelates on Fe3O4@XAD-16. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY, TRANSACTIONS A: SCIENCE 2021. [DOI: 10.1007/s40995-021-01194-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Borahan T, Karlıdağ NE, Zaman BT, Bakırdere S. A Sensitive Microextraction Method Using Effervescence Tablets to Disperse Fe
3
O
4
Nanoparticles for Cadmium Determination in Lake Water Samples. ChemistrySelect 2021. [DOI: 10.1002/slct.202100405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Tülay Borahan
- Chemistry Department Yıldız Technical University 34210 İstanbul Turkey
| | | | - Buse Tuğba Zaman
- Chemistry Department Yıldız Technical University 34210 İstanbul Turkey
| | - Sezgin Bakırdere
- Chemistry Department Yıldız Technical University 34210 İstanbul Turkey
- Turkish Academy of Sciences (TÜBA) Vedat Dalokay Street, No: 112 06670 Çankaya 06690 Ankara Turkey
| |
Collapse
|
10
|
Manousi N, Plastiras OE, Deliyanni EA, Zachariadis GA. Green Bioanalytical Applications of Graphene Oxide for the Extraction of Small Organic Molecules. Molecules 2021; 26:molecules26092790. [PMID: 34065150 PMCID: PMC8126010 DOI: 10.3390/molecules26092790] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 11/16/2022] Open
Abstract
Bioanalysis is the scientific field of the quantitative determination of xenobiotics (e.g., drugs and their metabolites) and biotics (e.g., macromolecules) in biological matrices. The most common samples in bioanalysis include blood (i.e., serum, plasma and whole blood) and urine. However, the analysis of alternative biosamples, such as hair and nails are gaining more and more attention. The main limitations for the determination of small organic compounds in biological samples is their low concentration in these matrices, in combination with the sample complexity. Therefore, a sample preparation/analyte preconcentration step is typically required. Currently, the development of novel microextraction and miniaturized extraction techniques, as well as novel adsorbents for the analysis of biosamples, in compliance with the requirements of Green Analytical Chemistry, is in the forefront of research in analytical chemistry. Graphene oxide (GO) is undoubtedly a powerful adsorbent for sample preparation that has been successfully coupled with a plethora of green extraction techniques. GO is composed of carbon atoms in a sp2 single-atom layer of a hybrid connection, and it exhibits high surface area, as well as good mechanical and thermal stability. In this review, we aim to discuss the applications of GO and functionalized GO derivatives in microextraction and miniaturized extraction techniques for the determination of small organic molecules in biological samples.
Collapse
Affiliation(s)
- Natalia Manousi
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Correspondence: (N.M.); (G.A.Z.)
| | - Orfeas-Evangelos Plastiras
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Eleni A. Deliyanni
- Laboratory of Chemical and Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - George A. Zachariadis
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Correspondence: (N.M.); (G.A.Z.)
| |
Collapse
|
11
|
|
12
|
Ghorbani M, Ariavand S, Aghamohammadhasan M, Seyedin O. Synthesis and optimization of a green and efficient sorbent for removal of three heavy metal ions from wastewater samples: kinetic, thermodynamic, and isotherm studies. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2021. [DOI: 10.1007/s13738-021-02161-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
13
|
Mohammadi P, Masrournia M, Es'haghi Z, Pordel M. Determination of four antiepileptic drugs with solvent assisted dispersive solid phase microextraction – Gas chromatography–mass spectrometry in human urine samples. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105542] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
14
|
Ghorbani M, Aghamohammadhassan M, Ghorbani H, Zabihi A. Trends in sorbent development for dispersive micro-solid phase extraction. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105250] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Magnetic dispersive solid-phase microextraction for determination of two organophosphorus pesticides in cucumber and orange samples. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-01991-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
16
|
Liu S, Huang Y, Qian C, Xiang Z, Ouyang G. Physical assistive technologies of solid-phase microextraction: Recent trends and future perspectives. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115916] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Ghorbani M, Seyedin O, Aghamohammadhassan M. Adsorptive removal of lead (II) ion from water and wastewater media using carbon-based nanomaterials as unique sorbents: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 254:109814. [PMID: 31726282 DOI: 10.1016/j.jenvman.2019.109814] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/26/2019] [Accepted: 10/31/2019] [Indexed: 06/10/2023]
Abstract
Carbon-based nanomaterials and its derivatives such as carbon nanotubes, graphene, reduced graphene oxide, and graphene oxide have been widely used as unique sorbents for removal of both organic and inorganic contaminants due to unique physical and chemical properties. In the review, application of the carbon-based nanomaterials or nanocomposites is considered with particular focus on the lead(II) removal from water and wastewater samples. Moreover, various procedures of synthesis and functionalization of each class of carbon-based nanomaterials were reviewed. A critical review has been given to the adsorption behavior of these nanomaterials and interaction type between the sorbent and lead(II) ion s due to changes in their surface structure and functional group modification for the removal of lead(II)ions. The adsorption capacity, the sorbent selectivity and structure, and the adsorption mechanism for lead(II) ion adsorption with these sorbents were studied and compared. Specific consideration is devoted to effecting of pH of samples as a critical factor in the adsorption of lead(II)ions on each class of carbon-based nanomaterials. Also, the advantages and disadvantages of the nanomaterials or nanocomposites for the adsorption of lead(II) ion were evaluated in detail. In this way, the paper will contribute to presenting suggestions for the preparation of new sorbents to researchers for future study, as well as the remaining research challenges in this field.
Collapse
Affiliation(s)
- Mahdi Ghorbani
- Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Orkideh Seyedin
- Department of Mathematics and Computer Sciences, Hakim Sabzevari University, Sabzevar, Iran
| | | |
Collapse
|
18
|
|
19
|
Ghorbani M, Pedramrad T, Aghamohammadhasan M, Seyedin O, Akhlaghi H, Afshar Lahoori N. Simultaneous clean-up and determination of Cu(II), Pb(II) and Cr(III) in real water and food samples using a magnetic dispersive solid phase microextraction and differential pulse voltammetry with a green and novel modified glassy carbon electrode. Microchem J 2019. [DOI: 10.1016/j.microc.2019.03.072] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Ghorbani M, Aghamohammadhasan M, Shams A, Tajfirooz F, Pourhassan R, Bana Khosravi SR, Karimi E, Jampour A. Ultrasonic assisted magnetic dispersive solid phase microextraction for preconcentration of two nonsteroidal anti-inflammatory drugs in real water, biological and milk samples employing an experimental design. Microchem J 2019. [DOI: 10.1016/j.microc.2018.12.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
21
|
Ghorbani M, Chamsaz M, Aghamohammadhasan M, Shams A. Ultrasonic assisted magnetic dispersive solid phase microextraction for pre concentration of serotonin–norepinephrine reuptake inhibitor drugs. Anal Biochem 2018; 551:7-18. [DOI: 10.1016/j.ab.2018.05.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/29/2018] [Accepted: 05/02/2018] [Indexed: 12/13/2022]
|
22
|
Recent advances in graphene-based magnetic composites for magnetic solid-phase extraction. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.01.009] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Zhang R, Wang S, Yang Y, Deng Y, Li D, Su P, Yang Y. Modification of polydopamine-coated Fe3O4 nanoparticles with multi-walled carbon nanotubes for magnetic-μ-dispersive solid-phase extraction of antiepileptic drugs in biological matrices. Anal Bioanal Chem 2018; 410:3779-3788. [DOI: 10.1007/s00216-018-1047-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 03/05/2018] [Accepted: 03/26/2018] [Indexed: 12/14/2022]
|
24
|
Ghorbani M, Shams A, Seyedin O, Afshar Lahoori N. Magnetic ethylene diamine-functionalized graphene oxide as novel sorbent for removal of lead and cadmium ions from wastewater samples. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:5655-5667. [PMID: 29222663 DOI: 10.1007/s11356-017-0929-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 12/03/2017] [Indexed: 06/07/2023]
Abstract
In this paper, magnetic ethylene diamine-functionalized graphene oxide (MDFGO) as a novel sorbent was synthesized and applied for removal of Pb(II) and Cd(II) from real wastewater samples. The morphology and molecular structure of MDFGO were studied by different analytical methods. The effective parameters in adsorption efficiency of Pb(II) and Cd(II) were studied and optimized using experimental design. Under the optimal condition, the effective parameters including pH, sorbent dosage, shaking rate, and adsorption time were 6.2, 33.0 mg, 500 rpm, and 11 min, respectively. Mechanism of adsorption kinetic was investigated using the Lagergren pseudo-first-order, pseudo-second-order, and intraparticle diffusion models. It was found that adsorption of lead and cadmium ions in the MDFGO sorbent followed from pseudo-first-order and pseudo-second-order models, respectively. Thermodynamic parameters (ΔG°, ΔH°, and ΔS°) for the lead and cadmium ions uptake onto the MDFGO sorbent were calculated and indicated that the adsorption processes were spontaneous and endothermic in nature for both cations. In order to investigate the isotherm model for adsorption of Pb(II) and Cd(II), the experimental data were studied using the Langmuir, Freundlich, and Harkins-Jura isotherm models. The results fitted well with Freundlich model for both metal ions. The new sorbent (MDFGO) was applied to remove Pb(II) and Cd(II) from battery wastewater and electroplating wastewater. The removal percentage of Pb(II) and Cd(II) were 99.6±0.5 and 99.4±0.6, respectively, and demonstrated that the new sorbent was very suitable for removal of lead and cadmium ion from the real wastewater samples.
Collapse
Affiliation(s)
- Mahdi Ghorbani
- Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Alireza Shams
- Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
- Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Orkideh Seyedin
- Department of Mathematics and Computer Sciences, Hakim Sabzevari University, Sabzevar, Iran
| | | |
Collapse
|
25
|
Asati A, Satyanarayana G, Panchal S, Thakur RS, Ansari NG, Patel DK. Ionic liquid based vortex assisted liquid–liquid microextraction combined with liquid chromatography mass spectrometry for the determination of bisphenols in thermal papers with the aid of response surface methodology. J Chromatogr A 2017. [DOI: 10.1016/j.chroma.2017.06.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Baghban N, Yilmaz E, Soylak M. A magnetic MoS2-Fe3O4 nanocomposite as an effective adsorbent for dispersive solid-phase microextraction of lead(II) and copper(II) prior to their determination by FAAS. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2384-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
27
|
Asati A, Satyanarayana GNV, Patel DK. Vortex-assisted surfactant-enhanced emulsification microextraction combined with LC–MS/MS for the determination of glucocorticoids in water with the aid of experimental design. Anal Bioanal Chem 2017; 409:2905-2918. [DOI: 10.1007/s00216-017-0236-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/15/2016] [Accepted: 01/30/2017] [Indexed: 11/24/2022]
|