1
|
Chang Y, Liu G, Li S, Liu L, Song Q. Biorecognition element-free electrochemical detection of recombinant glycoproteins using metal-organic frameworks as signal tags. Anal Chim Acta 2023; 1273:341540. [PMID: 37423655 DOI: 10.1016/j.aca.2023.341540] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/08/2023] [Accepted: 06/16/2023] [Indexed: 07/11/2023]
Abstract
Accurate and sensitive determination of recombinant glycoproteins is in great demand for the treatment of anemia-induced chronic kidney disease and the illegal use of doping agents in sports. In this study, an antibody and enzyme-free electrochemical method for the detection of recombinant glycoproteins was proposed via the sequential chemical recognition of hexahistidine (His6) tag and glycan residue on the target protein under the cooperation interaction of nitrilotriacetic acid (NTA)-Ni2+complex and boronic acid, respectively. Specifically, NTA-Ni2+ complex-modified magnetic beads (MBs-NTA-Ni2+) are employed to selectively capture the recombinant glycoprotein through the coordination interaction between His6 tag and NTA-Ni2+ complex. Then, boronic acid-modified Cu-based metal-organic frameworks (Cu-MOFs) were recruited by glycans on the glycoprotein via the formation of reversible boronate ester bonds. MOFs with abundant Cu2+ ions acted as efficient electroactive labels to directly produce amplified electrochemical signals. By using recombinant human erythropoietin as a model analyte, this method showed a wide linear detection range from 0.01 to 50 ng/mL and a low detection limit of 5.3 pg/mL. With the benefits from the simple operation and low cost, the stepwise chemical recognition-based method shows great promise in the determination of recombinant glycoproteins in the fields of biopharmaceutical research, anti-doping analysis and clinical diagnosis.
Collapse
Affiliation(s)
- Yong Chang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China; College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, People's Republic of China
| | - Gang Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, People's Republic of China; College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan, 450001, People's Republic of China
| | - Shuang Li
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, People's Republic of China
| | - Lin Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, People's Republic of China.
| | - Qijun Song
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
| |
Collapse
|
2
|
Jin L, Wang J, Wu L. ELECTROCHEMICAL BIOSENSOR FOR ERYTHROPOIETIN DETECTION IN ATHLETES. REV BRAS MED ESPORTE 2023. [DOI: 10.1590/1517-8692202329012022_0419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
ABSTRACT Introduction: The cytokine erythropoietin (EPO) is a crucial hormone for producing RBCs, which carry oxygenated blood to the rest of the body. Objective: This paper aimed to create an electrochemical detection based on Fe2O3-NiO nanoparticles and graphene oxide to measure EPO levels in athletes’ blood. Methods: On a glassy carbon electrode, Fe2O3-NiO@GO was synthesized using the electrochemical deposition method. Results: The Fe2O3-NiO@GO/GCE was validated by structural characterizations using scanning electron microscopy (SEM). The Fe2O3-NiO@GO/GCE was found to be a suitable and stable erythropoietin biosensor with a linear range of 0-500 ng/l and a detection limit of 0.03ng/l in electrochemical tests using the DPV technique. Fe2O3-NiO@GO/erythropoietin was investigated as a biosensor for erythropoietin in athlete's plasma. Conclusion: The results showed that the values obtained for recovery (94.56% to 98.40) and RSD (2.01% to 3.22%) were acceptable, indicating that the suggested technique can be used as a practical erythropoietin biosensor in blood samples. Level of evidence II; Therapeutic studies - investigation of treatment outcomes.
Collapse
Affiliation(s)
| | - Juan Wang
- Kaifeng Vocational College of Culture and Arts, China
| | | |
Collapse
|
3
|
Huang H, Zhang Z, Li G. A Review of Magnetic Nanoparticle-Based Surface-Enhanced Raman Scattering Substrates for Bioanalysis: Morphology, Function and Detection Application. BIOSENSORS 2022; 13:30. [PMID: 36671865 PMCID: PMC9855913 DOI: 10.3390/bios13010030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/15/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is a kind of popular non-destructive and water-free interference analytical technology with fast response, excellent sensitivity and specificity to trace biotargets in biological samples. Recently, many researches have focused on the preparation of various magnetic nanoparticle-based SERS substrates for developing efficient bioanalytical methods, which greatly improved the selectivity and accuracy of the proposed SERS bioassays. There has been a rapid increase in the number of reports about magnetic SERS substrates in the past decade, and the number of related papers and citations have exceeded 500 and 2000, respectively. Moreover, most of the papers published since 2009 have been dedicated to analytical applications. In the paper, the recent advances in magnetic nanoparticle-based SERS substrates for bioanalysis were reviewed in detail based on their various morphologies, such as magnetic core-shell nanoparticles, magnetic core-satellite nanoparticles and non-spherical magnetic nanoparticles and their different functions, such as separation and enrichment, recognition and SERS tags. Moreover, the typical application progress on magnetic nanoparticle-based SERS substrates for bioanalysis of amino acids and protein, DNA and RNA sequences, cancer cells and related tumor biomarkers, etc., was summarized and introduced. Finally, the future trends and prospective for SERS bioanalysis by magnetic nanoparticle-based substrates were proposed based on the systematical study of typical and latest references. It is expected that this review would provide useful information and clues for the researchers with interest in SERS bioanalysis.
Collapse
Affiliation(s)
| | - Zhuomin Zhang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
4
|
Vigo F, Tozzi A, Disler M, Gisi A, Kavvadias V, Kavvadias T. Vibrational Spectroscopy in Urine Samples as a Medical Tool: Review and Overview on the Current State-of-the-Art. Diagnostics (Basel) 2022; 13:diagnostics13010027. [PMID: 36611319 PMCID: PMC9818072 DOI: 10.3390/diagnostics13010027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Although known since the first half of the twentieth century, the evolution of spectroscopic techniques has undergone a strong acceleration after the 2000s, driven by the successful development of new computer technologies suitable for analyzing the large amount of data obtained. Today's applications are no longer limited to analytical chemistry, but are becoming useful instruments in the medical field. Their versatility, rapidity, the volume of information obtained, especially when applied to biological fluids that are easy to collect, such as urine, could provide a novel diagnostic tool with great potential in the early detection of different diseases. This review aims to summarize the existing literature regarding spectroscopy analyses of urine samples, providing insight into potential future applications.
Collapse
Affiliation(s)
- Francesco Vigo
- Department of Biomedicine, University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland
- Correspondence:
| | - Alessandra Tozzi
- Department of Gynecology and Obstetrics, University Hospital of Basel Petersgraben 4, CH-4031 Basel, Switzerland
| | - Muriel Disler
- Department of Biomedicine, University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland
| | - Alessia Gisi
- Faculty of Medicine, University of Basel, Petersplatz 1, CH-4001 Basel, Switzerland
| | | | - Tilemachos Kavvadias
- Department of Gynecology and Obstetrics, University Hospital of Basel Petersgraben 4, CH-4031 Basel, Switzerland
| |
Collapse
|
5
|
Gholami MD, Theiss F, Sonar P, Ayoko GA, Izake EL. Rapid and selective detection of recombinant human erythropoietin in human blood plasma by a sensitive optical sensor. Analyst 2021; 145:5508-5515. [PMID: 32598413 DOI: 10.1039/d0an00972e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recombinant human erythropoietin (rHuEPO) is an important hormone drug that is used to treat several medical conditions. It is also frequently abused by athletes as a performance enhancing agent at sporting events. The time window of the rHuEPO in blood is short. Therefore, the rapid detection of rHuEPO use/abuse at points of care and in sports requires a selective analytical method and a sensitive sensor. Herein, we present a highly selective method for the rapid detection of rHuEPO in human blood plasma by a sensitive optical sensor. rHuEPO is selectively extracted from human blood plasma by a target-specific extractor chip and converted into a biothiol by reducing its disulfide bond structure. The formed biothiol reacts with a water soluble (E)-1-((6-methoxybenzo[d]thiazole-2-yl)diazenyl)naphthalene-2,6-diolHg(ii) (BAN-Hg) optical sensor and causes its rapid decomposition. This leads to a rapid change in the sensor color from blue to pink that can be observed by the naked eye. The optical sensor was used to quantify rHuEPO in the concentration range 1 × 10-8 M to 1 × 10-12 M by UV-Vis spectroscopy. For the screening of blood plasma, an EPO-specific extractor chip was synthesized and used to selectively extract the protein from the biological matrix prior to its conversion into biothiol and quantification by the optical sensor. Since many proteins have a disulfide bond structure, the new method has strong potential for their rapid sensitive and selective detection by the BAN-Hg sensor and UV-Vis spectroscopy.
Collapse
Affiliation(s)
- Mahnaz D Gholami
- Queensland University of Technology (QUT), School of Chemistry and Physics, 2 George street QLD, 4000, Australia.
| | - Frederick Theiss
- Queensland University of Technology (QUT), School of Chemistry and Physics, 2 George street QLD, 4000, Australia.
| | - Prashant Sonar
- Queensland University of Technology (QUT), School of Chemistry and Physics, 2 George street QLD, 4000, Australia. and Centre for Material Science, Queensland University of Technology (QUT), 2 George street QLD, 4000, Australia
| | - Godwin A Ayoko
- Queensland University of Technology (QUT), School of Chemistry and Physics, 2 George street QLD, 4000, Australia. and Centre for Material Science, Queensland University of Technology (QUT), 2 George street QLD, 4000, Australia
| | - Emad L Izake
- Queensland University of Technology (QUT), School of Chemistry and Physics, 2 George street QLD, 4000, Australia. and Centre for Material Science, Queensland University of Technology (QUT), 2 George street QLD, 4000, Australia
| |
Collapse
|
6
|
Huynh KH, Hahm E, Noh MS, Lee JH, Pham XH, Lee SH, Kim J, Rho WY, Chang H, Kim DM, Baek A, Kim DE, Jeong DH, Park SM, Jun BH. Recent Advances in Surface-Enhanced Raman Scattering Magnetic Plasmonic Particles for Bioapplications. NANOMATERIALS 2021; 11:nano11051215. [PMID: 34064407 PMCID: PMC8147842 DOI: 10.3390/nano11051215] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/25/2021] [Accepted: 04/30/2021] [Indexed: 01/10/2023]
Abstract
The surface-enhanced Raman scattering (SERS) technique, that uses magnetic plasmonic particles (MPPs), is an advanced SERS detection platform owing to the synergetic effects of the particles’ magnetic and plasmonic properties. As well as being an ultrasensitive and reliable SERS material, MPPs perform various functions, such as aiding in separation, drug delivery, and acting as a therapeutic material. This literature discusses the structure and multifunctionality of MPPs, which has enabled the novel application of MPPs to various biological fields.
Collapse
Affiliation(s)
- Kim-Hung Huynh
- Department of Bioscience and Biotechnology, Konkuk University,120 Neungdong-ro, Gwangjin-Gu, Seoul 05029, Korea; (K.-H.H.); (E.H.); (X.-H.P.); (J.K.); (D.M.K.); (A.B.); (D.-E.K.)
| | - Eunil Hahm
- Department of Bioscience and Biotechnology, Konkuk University,120 Neungdong-ro, Gwangjin-Gu, Seoul 05029, Korea; (K.-H.H.); (E.H.); (X.-H.P.); (J.K.); (D.M.K.); (A.B.); (D.-E.K.)
| | - Mi Suk Noh
- Medical Device & Bio-research Team, Bio-medical & Environ-chemical Division, Korea Testing Certification, Gunpo, Gyeonggi-do 15809, Korea;
| | - Jong-Hwan Lee
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea;
| | - Xuan-Hung Pham
- Department of Bioscience and Biotechnology, Konkuk University,120 Neungdong-ro, Gwangjin-Gu, Seoul 05029, Korea; (K.-H.H.); (E.H.); (X.-H.P.); (J.K.); (D.M.K.); (A.B.); (D.-E.K.)
| | - Sang Hun Lee
- Department of Chemical and Biological Engineering, Hanbat National University, 125 Dongseo-daero, Yuseong-gu, Daejeon 34158, Korea;
| | - Jaehi Kim
- Department of Bioscience and Biotechnology, Konkuk University,120 Neungdong-ro, Gwangjin-Gu, Seoul 05029, Korea; (K.-H.H.); (E.H.); (X.-H.P.); (J.K.); (D.M.K.); (A.B.); (D.-E.K.)
| | - Won-Yeop Rho
- School of International Engineering and Science, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Korea;
| | - Hyejin Chang
- Division of Science Education, Kangwon National University, 1 Gangwondaehakgil, Chuncheon-si, Gangwon-do 24341, Korea;
| | - Dong Min Kim
- Department of Bioscience and Biotechnology, Konkuk University,120 Neungdong-ro, Gwangjin-Gu, Seoul 05029, Korea; (K.-H.H.); (E.H.); (X.-H.P.); (J.K.); (D.M.K.); (A.B.); (D.-E.K.)
| | - Ahruem Baek
- Department of Bioscience and Biotechnology, Konkuk University,120 Neungdong-ro, Gwangjin-Gu, Seoul 05029, Korea; (K.-H.H.); (E.H.); (X.-H.P.); (J.K.); (D.M.K.); (A.B.); (D.-E.K.)
| | - Dong-Eun Kim
- Department of Bioscience and Biotechnology, Konkuk University,120 Neungdong-ro, Gwangjin-Gu, Seoul 05029, Korea; (K.-H.H.); (E.H.); (X.-H.P.); (J.K.); (D.M.K.); (A.B.); (D.-E.K.)
| | - Dae Hong Jeong
- Department of Chemistry Education, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea;
- Center for Educational Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Seung-min Park
- Department of Urology, Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA 94305, USA
- Correspondence: (S.-m.P.); (B.-H.J.); Tel.: +82-2-450-0521 (B.-H.J.)
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University,120 Neungdong-ro, Gwangjin-Gu, Seoul 05029, Korea; (K.-H.H.); (E.H.); (X.-H.P.); (J.K.); (D.M.K.); (A.B.); (D.-E.K.)
- Correspondence: (S.-m.P.); (B.-H.J.); Tel.: +82-2-450-0521 (B.-H.J.)
| |
Collapse
|
7
|
Shen Z, Fan Q, Yu Q, Wang R, Wang H, Kong X. Facile detection of carbendazim in food using TLC-SERS on diatomite thin layer chromatography. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 247:119037. [PMID: 33086143 DOI: 10.1016/j.saa.2020.119037] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/22/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
This work aims to isolate and detect pesticide (carbendazim) residue in real food samples: orange juice and kale leaves. The combination of on-chip thin layer chromatography (TLC) and surface enhanced Raman scattering (SERS) spectroscopy was used for the separating and detecting of carbendazim (MBC) from the complex food sample. In order to achieve on-site detection of MBC from real food sample, the portable Raman spectrometer was coupled with TLC-SERS. The porous stationary phase composed of diatomite biosilica is beneficial for SERS enhancement and eluent migration. The experiments exhibited that the diatomite chip was suitable for TLC separation and has not shown SERS background and provided excellent separation efficiency, 10-8 M silver colloids were appropriate for the SERS measurement on TLC chip. The food sample was directly spotted onto the diatomite chip for TLC separation without any pretreatment. The separation and detection process were finished in less than 5 min, the mixture of pyrimethanil, pymetrozine and MBC could be distinguished simultaneously by TLC-SERS at one diatomite chip. The MBC in orange juice and kale were successfully detected, and a limit of detection (LOD) less than 2 ppm could be achieved.
Collapse
Affiliation(s)
- Zhengdong Shen
- School of Petrochemical Engineering, Liaoning Shihua University, Fushun, Liaoning 113001, PR China
| | - Qinzhen Fan
- College of Chemical Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China
| | - Qian Yu
- School of Petrochemical Engineering, Liaoning Shihua University, Fushun, Liaoning 113001, PR China.
| | - Rui Wang
- School of Petrochemical Engineering, Liaoning Shihua University, Fushun, Liaoning 113001, PR China
| | - Huan Wang
- School of Petrochemical Engineering, Liaoning Shihua University, Fushun, Liaoning 113001, PR China.
| | - Xianming Kong
- School of Petrochemical Engineering, Liaoning Shihua University, Fushun, Liaoning 113001, PR China.
| |
Collapse
|
8
|
A Fluorescence Sensing Method with Reduced DNA Typing and Low-Cost Instrumentation for Detection of Sample Tampering Cases in Urinalysis. Ann Biomed Eng 2019; 48:644-654. [PMID: 31624980 DOI: 10.1007/s10439-019-02386-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/04/2019] [Indexed: 10/25/2022]
Abstract
This work presents a method to unequivocally detect urine sample tampering in cases where integrity of the sample needs to be verified prior to urinalysis. The technique involves the detection of distinct patterns of a triplex short tandem repeats system in DNA extracted from human urine. The analysis is realized with single-dye fluorescence detection and using a regular smartphone camera. The experimental results had demonstrated the efficacy of the analytical approach to obtaining distinct profiles of amplicons in urine from different sample providers. Reproducibility tests with fresh and stored urine have revealed a maximum variation in the profiles within an interval of 5 to 9%. Cases of urine sample tampering via mixture were simulated in the study, and the experiments have identified patterns of mixed genotypes from dual mixtures of urine samples. Moreover, sample adulteration by mixing a non-human fluid with urine in a volume ratio over 25% can be detected. The low cost of the approach is accompanied by the compatibility of the technique to use with different DNA sample preparation protocols and PCR instrumentation. Furthermore, the possibility of realizing the method in an integrated microchip system open great perspectives to conducting sample integrity tests at the site of urine sample reception and/or at resource-limited settings.
Collapse
|
9
|
Yang H, Luo C, Shen C, Ding H, Wu B, Cai X. Influence of drugs on the prospective diagnostic method for coronary heart disease with urine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 217:176-181. [PMID: 30933782 DOI: 10.1016/j.saa.2019.03.087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/01/2019] [Accepted: 03/25/2019] [Indexed: 06/09/2023]
Abstract
The morbidity of coronary heart disease (CHD) with high risks has been rising in recent years. A novel and noninvasive method based on surface-enhanced Raman spectroscopy (SERS) was proposed by Yang et al. (Analyst 143: 2235, 2018) to prospectively diagnose the arterial blockage by detecting platelet-derived growth factor-BB (PDGF-BB) in urine. Clinically, anti-platelet drugs (such as aspirin, statins and clopidogrel) are often used for ordinary CHD patients or patients with percutaneous coronary intervention (PCI). Therefore, whether the previous developed method can be applied to the CHD patients on long-term medication (more than 6 months) or post-PCI patients was investigated here. Firstly, urine samples of 13 CHD patients on long-term medication (aspirin, rosuvastatin, clopidogrel bisulfate) and 13 post-PCI patients were measured by the proposed method. Clinical data of coronary angiography results provided by Xin Hua Hospital and Yangpu District Central Hospital Antu Branch revealed that these 26 patients were with serious arterial blockage, however, characteristic Raman peak at 1509 cm-1 attributed to PDGF-BB was not observed in the SERS spectra of these 26 patients. In addition, an eight-day follow-up investigation was performed on a CHD patient with PCI three years ago and on long-term medication. It was found that the Raman peak at 1509 cm-1 could be only observed in the third and fourth day after suspending the drugs. Furthermore, SERS spectra of mixed solutions of PDGF-BB and aspirin, rosuvastatin, mixed solutions of these two drugs and clopidogrel bisulfate were analyzed. The Raman peak at 1509 cm-1 was not found in all these spectra, it indicated that all the three kinds of drugs could influence on the SERS signal of PDGF-BB. Therefore, the previous developed method is not suitable for CHD patients on long-term medication and post-PCI patients.
Collapse
Affiliation(s)
- Huinan Yang
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Chengfang Luo
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Chengxing Shen
- Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huirong Ding
- Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Wu
- Shanghai Yangpu District Central Hospital Antu Branch, Shanghai, China
| | - Xiaoshu Cai
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, China.
| |
Collapse
|
10
|
Thevis M, Kuuranne T, Geyer H. Annual banned-substance review: Analytical approaches in human sports drug testing. Drug Test Anal 2017; 10:9-27. [DOI: 10.1002/dta.2336] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 10/30/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Mario Thevis
- Center for Preventive Doping Research - Institute of Biochemistry; German Sport University Cologne; Germany
- European Monitoring Center for Emerging Doping Agents; Cologne Germany
| | - Tiia Kuuranne
- Swiss Laboratory for Doping Analyses; University Center of Legal Medicine, Genève and Lausanne, Centre Hospitalier Universitaire Vaudois and University of Lausanne; Epalinges Switzerland
| | - Hans Geyer
- Center for Preventive Doping Research - Institute of Biochemistry; German Sport University Cologne; Germany
- European Monitoring Center for Emerging Doping Agents; Cologne Germany
| |
Collapse
|