1
|
Geana EI, Ciucure CT, Soare A, Enache S, Ionete RE, Dinu LA. Electrochemical Detection of Glyphosate in Surface Water Samples Based on Modified Screen-Printed Electrodes. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:948. [PMID: 38869573 PMCID: PMC11173875 DOI: 10.3390/nano14110948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/30/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024]
Abstract
This study addresses the necessity to monitor the presence of glyphosate (Gly) in waters, highlighting the need for on-site detection of Gly by using electrochemical sensors in environmental and agricultural monitoring programs. Two approaches were employed: (1) modification with graphene decorated with gold nanoparticles (AuNPs-Gr) and dispersed in either dimethylformamide (DMF) or a solution containing Nafion and isopropanol (NAF), and (2) molecularly imprinted polymers (MIPs) based on polypyrrole (PPy) deposited on gold SPEs (AuSPE). Electrochemical characterization revealed that sensors made of AuNPs-Gr/SPCE exhibited enhanced conductivity, larger active area, and improved charge transfer kinetics compared to unmodified SPEs and SPEs modified with graphene alone. However, the indirect detection mechanism of Gly via complex formation with metallic cations in AuNPs-Gr-based sensors introduces complexities and compromises sensitivity and selectivity. In contrast, MIPPy/AuSPE sensors demonstrated superior performance, offering enhanced reliability and sensitivity for Gly analysis. The MIPPy/AuSPE sensor allowed the detection of Gly concentrations as low as 5 ng/L, with excellent selectivity and reproducibility. Moreover, testing in real surface water samples from the Olt River in Romania showed recovery rates ranging from 90% to 99%, highlighting the effectiveness of the detection method. Future perspectives include expanding the investigation to monitor Gly decomposition in aquatic environments over time, providing insights into the decomposition's long-term effects on water quality and ecosystem health, and modifying regulatory measures and agricultural practices for mitigating its impact. This research contributes to the development of robust and reliable electrochemical sensors for on-site monitoring of Glyphosate in environmental and agricultural settings.
Collapse
Affiliation(s)
- Elisabeta-Irina Geana
- National Research and Development Institute for Cryogenics and Isotopic Technologies—ICSI Rm. Valcea, 240050 Râmnicu Vâlcea, Romania; (C.T.C.); (A.S.); (S.E.); (R.E.I.)
| | - Corina Teodora Ciucure
- National Research and Development Institute for Cryogenics and Isotopic Technologies—ICSI Rm. Valcea, 240050 Râmnicu Vâlcea, Romania; (C.T.C.); (A.S.); (S.E.); (R.E.I.)
| | - Amalia Soare
- National Research and Development Institute for Cryogenics and Isotopic Technologies—ICSI Rm. Valcea, 240050 Râmnicu Vâlcea, Romania; (C.T.C.); (A.S.); (S.E.); (R.E.I.)
| | - Stanica Enache
- National Research and Development Institute for Cryogenics and Isotopic Technologies—ICSI Rm. Valcea, 240050 Râmnicu Vâlcea, Romania; (C.T.C.); (A.S.); (S.E.); (R.E.I.)
| | - Roxana Elena Ionete
- National Research and Development Institute for Cryogenics and Isotopic Technologies—ICSI Rm. Valcea, 240050 Râmnicu Vâlcea, Romania; (C.T.C.); (A.S.); (S.E.); (R.E.I.)
| | - Livia Alexandra Dinu
- National Institute for Research and Development in Microtechnologies (IMT Bucharest), 077190 Voluntari, Romania
| |
Collapse
|
2
|
Masci M, Caproni R, Nevigato T. Chromatographic Methods for the Determination of Glyphosate in Cereals Together with a Discussion of Its Occurrence, Accumulation, Fate, Degradation, and Regulatory Status. Methods Protoc 2024; 7:38. [PMID: 38804332 PMCID: PMC11130892 DOI: 10.3390/mps7030038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/19/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
The European Union's recent decision to renew the authorization for the use of glyphosate until 15 December 2033 has stimulated scientific discussion all around the world regarding its toxicity or otherwise for humans. Glyphosate is a chemical of which millions of tons have been used in the last 50 years worldwide to dry out weeds in cultivated fields and greenhouses and on roadsides. Concern has been raised in many areas about its possible presence in the food chain and its consequent adverse effects on health. Both aspects that argue in favor of toxicity and those that instead may indicate limited toxicity of glyphosate are discussed here. The widespread debate that has been generated requires further investigations and field measurements to understand glyphosate's fate once dispersed in the environment and its concentration in the food chain. Hence, there is a need for validated analytical methods that are available to analysts in the field. In the present review, methods for the analytical determination of glyphosate and its main metabolite, AMPA, are discussed, with a specific focus on chromatographic techniques applied to cereal products. The experimental procedures are explained in detail, including the cleanup, derivatization, and instrumental conditions, to give the laboratories involved enough information to proceed with the implementation of this line of analysis. The prevalent chromatographic methods used are LC-MS/MS, GC-MS/SIM, and GC-MS/MS, but sufficient indications are also given to those laboratories that wish to use the better performing high-resolution MS or the simpler HPLC-FLD, HPLC-UV, GC-NPD, and GC-FPD techniques for screening purposes. The concentrations of glyphosate from the literature measured in wheat, corn, barley, rye, oats, soybean, and cereal-based foods are reported, together with its regulatory status in various parts of the world and its accumulation mechanism. As for its accumulation in cereals, the available data show that glyphosate tends to accumulate more in wholemeal flours than in refined ones, that its concentration in the product strictly depends on the treatment period (the closer it is to the time of harvesting, the higher the concentration), and that in cold climates, the herbicide tends to persist in the soil for a long time.
Collapse
Affiliation(s)
- Maurizio Masci
- Council for Agricultural Research and Economics (CREA), Research Centre for Food and Nutrition, via Ardeatina 546, 00178 Rome, Italy (T.N.)
| | | | | |
Collapse
|
3
|
Gong Y, Gong M. Sensitive detection of herbicide residues using field-amplified sample injection coupled with electrokinetic supercharging in flow-gated capillary electrophoresis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2025-2032. [PMID: 38516858 DOI: 10.1039/d3ay01950k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Residues of glyphosate (GlyP) and its major degradation product, aminomethylphosphonic acid (AMPA), widely exist in the water system and plant products and thus are also present in the bodies of animals and humans. Although no solid evidence has been obtained, the concern about the cancer risk of GlyP is persistent. The measurement of GlyP and AMPA in trace levels is often needed but lacks readily available analytical approaches with detection sensitivity, accuracy and speed. This study aims to develop a simple and robust technique for the sensitive detection of GlyP and AMPA residues in a surface water system with flow-gated capillary electrophoresis (CE). Experimentally, water samples were first fluorogenically derivatized with 4-fluoro-7-nitrobenzofurazan (NBD-F) in a low-conductivity buffer at room temperature, and the mixture was injected and concentrated in the capillary based on field-amplified sample injection (FASI) coupled with electrokinetic supercharging (EKS). This scheme included a step of sample buffer injection upon electroosmotic pumping, where negatively charged analytes were electrophoretically rejected, followed by automatic voltage reversal for FASI-EKS. The detection sensitivity was improved by 296, 444, and 861 times for glufosinate (GluF), AMPA, and GlyP, respectively. The proposed method was validated in terms of accuracy, precision, limits of detection (LODs), and linearity. The LODs were estimated to be 50.0 pM, 5.0 pM, and 10.0 pM for GluF, AMPA, and GlyP, respectively. Its application was demonstrated by measuring GluF and AMPA in water samples collected from a local water system. This study provides an effective approach for the online preconcentration of negatively charged analytes, thus enabling the sensitive detection of herbicide residues in water samples. The method can also be applied to analyze other samples, including biological fluids and plant products, upon appropriate sample preparation such as solid phase extraction of analytes.
Collapse
Affiliation(s)
- Ying Gong
- Department of Chemistry and Biochemistry, Wichita State University, 1845 Fairmount St, Wichita, Kansas 67260, USA.
| | - Maojun Gong
- Department of Chemistry and Biochemistry, Wichita State University, 1845 Fairmount St, Wichita, Kansas 67260, USA.
| |
Collapse
|
4
|
Rukhlyada KA, Matytcina VV, Baldina AA, Volkova O, Kozodaev DA, Barakova NV, Orlova OY, Smirnov E, Skorb EV. Universal Method Based on Layer-by-Layer Assembly for Aptamer-Based Sensors for Small-Molecule Detection. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:10820-10827. [PMID: 37490765 DOI: 10.1021/acs.langmuir.3c00822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Development of a fast and accurate pesticide analysis system is a challenging task, as a large amount of commonly used pesticide has negative effects on humans' health. Detection of pesticide residues is crucial for food safety management and environmental protection. Aptamers─short single-stranded oligonucleotides (RNA or DNA) selected by aptamer selection method SELEX─can selectively bind to their target pesticide molecules with high affinity. Thus, in the present study, we developed an electrochemical biosensor based on aptamers to detect the commonly used pesticide, glyphosate. Carbon fibers were used as the platform to assemble polyelectrolyte layers with the incorporated aptamers selectively binding with glyphosate molecules for electrochemical detection. The best limit of detection of 0.3 μM was achieved at open-circuit potential measurements, which is comparable to the current need in detection of glyphosate. The developed method can be implemented into existing systems for the determination of pesticides on farms to control residual concentrations of glyphosate in soil and water.
Collapse
Affiliation(s)
- Ksenia A Rukhlyada
- ITMO University, Lomonosova str. 9, Saint Petersburg 191002, Russian Federation
| | | | - Anna A Baldina
- ITMO University, Lomonosova str. 9, Saint Petersburg 191002, Russian Federation
| | - Olga Volkova
- ITMO University, Lomonosova str. 9, Saint Petersburg 191002, Russian Federation
| | | | - Nadezhda V Barakova
- ITMO University, Lomonosova str. 9, Saint Petersburg 191002, Russian Federation
| | - Olga Yu Orlova
- ITMO University, Lomonosova str. 9, Saint Petersburg 191002, Russian Federation
| | - Evgeny Smirnov
- ITMO University, Lomonosova str. 9, Saint Petersburg 191002, Russian Federation
| | - Ekaterina V Skorb
- ITMO University, Lomonosova str. 9, Saint Petersburg 191002, Russian Federation
| |
Collapse
|
5
|
Lach P, Garcia-Cruz A, Canfarotta F, Groves A, Kalecki J, Korol D, Borowicz P, Nikiforow K, Cieplak M, Kutner W, Piletsky SA, Sharma PS. Electroactive molecularly imprinted polymer nanoparticles for selective glyphosate determination. Biosens Bioelectron 2023; 236:115381. [PMID: 37267687 DOI: 10.1016/j.bios.2023.115381] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/21/2023] [Accepted: 05/05/2023] [Indexed: 06/04/2023]
Abstract
Redox-active molecularly imprinted polymer nanoparticles selective for glyphosate, MIP-Gly NPs, were devised, synthesized, and subsequently integrated onto platinum screen-printed electrodes (Pt-SPEs) to fabricate a chemosensor for selective determination of glyphosate (Gly) without the need for redox probe in the test solution. That was because, ferrocenylmethyl methacrylate was added to the polymerization mixtures during the NPs synthesis so that the resulting MIP-Gly NPs contained covalently immobilized ferrocenyl moieties as the reporting redox ingredient, conferring these NPs with electroactive properties. MIP-Gly NPs of four different compositions were evaluated. The herein described approach represents a simple and effective way to endow MIP NPs with electrochemical reporting capabilities with neither the need to functionalize them post-synthesis nor to use electrochemical mediators present in the tested solution during the analyte determinations. MIP-Gly NPs synthesized using allylamine and squaramide-based monomers appeared most selective to Gly. The Pt-SPEs modified with MIP-Gly NPs were characterized with differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). Changes in the DPV peak originating from the oxidation of the ferrocenyl moieties in these MIP-Gly NPs served as the analytical signal. The DPV limit of detection and the linear dynamic concentration range for Gly were 3.7 pM and 25 pM-500 pM, respectively. Moreover, the selectivity of the fabricated chemosensors was sufficiently high to determine Gly successfully in spiked river water samples.
Collapse
Affiliation(s)
- Patrycja Lach
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Alvaro Garcia-Cruz
- Chemistry Department, College of Science and Engineering, University of Leicester, LE1 7RH, United Kingdom
| | | | - Alistair Groves
- MIP Discovery, Colworth Science Park, MK44 1LQ, United Kingdom
| | - Jakub Kalecki
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Dominik Korol
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Pawel Borowicz
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Kostiantyn Nikiforow
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Maciej Cieplak
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland.
| | - Wlodzimierz Kutner
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland; Faculty of Mathematics and Natural Sciences. School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, Wóycickiego 1/3, 01-938, Warsaw, Poland.
| | - Sergey A Piletsky
- Chemistry Department, College of Science and Engineering, University of Leicester, LE1 7RH, United Kingdom.
| | - Piyush Sindhu Sharma
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| |
Collapse
|
6
|
Froehlich CE, He J, Haynes CL. Investigation of Charged Small Molecule-Aptamer Interactions with Surface Plasmon Resonance. Anal Chem 2023; 95:2639-2644. [PMID: 36704862 DOI: 10.1021/acs.analchem.2c04192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Investigating the interactions between small, charged molecules and aptamers using surface plasmon resonance (SPR) is limited by the inherent low response of small molecules and difficulties with nonspecific electrostatic interactions between the aptamer, analyte, and sensor surface. However, aptamers are increasingly being used in sensors for small molecule detection in critical areas like healthcare and environmental safety. The ability to probe these interactions through simple, direct SPR assays would be greatly beneficial and allow for the development of improved sensors without the need for complicated signal enhancement. However, these assays are nearly nonexistent in the current literature and are instead surpassed by sandwich or competitive binding techniques, which require additional sample preparation and reagents. In this work, we develop a method to characterize the interaction between the charged small molecule serotonin (176 Da) and an aptamer with SPR using streptavidin-biotin capture and a high-ionic-strength buffer. Additionally, other methods, such as serotonin immobilization and thiol-coupling of the aptamer, were investigated for comparison. These techniques give insight into working with small molecules and allow for quickly adapting a binding affinity assay into a direct SPR sensor.
Collapse
|
7
|
Emonds-Alt G, Malherbe C, Kasemiire A, Avohou HT, Hubert P, Ziemons E, Monbaliu JCM, Eppe G. Development and validation of an integrated microfluidic device with an in-line Surface Enhanced Raman Spectroscopy (SERS) detection of glyphosate in drinking water. Talanta 2022; 249:123640. [PMID: 35716473 DOI: 10.1016/j.talanta.2022.123640] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 12/26/2022]
Abstract
Glyphosate, also known as N-(phosphonomethyl)glycine, is one of the most widely used herbicides in the world. However, the controversy surrounding the toxicity of glyphosate and its main breakdown product, aminomethylphosphonic acid (AMPA), remains a serious public concern. Therefore, there is a clear need to develop a rapid, sensitive and automated alternative method for the quantification of glyphosate and AMPA. In this context, surface enhanced Raman spectroscopy (SERS) coupled with a microfluidic system for the determination of glyphosate in tap water was developed, optimized and validated. The design of the microfluidic configuration for this application was built constructed to integrate the synthesis of the SERS substrate through to the detection of the analyte. To optimize the microfluidic setup, a design of experiments approach was used to maximize the SERS signal of glyphosate. Subsequently, an approach based on the European guideline document SANTE/11312/2021 was used to validate the method in the range of 78-480 μg/L using the normalized band intensities. The limit of detection and quantification obtained for glyphosate were 40 and 78 μg/L, respectively. Recoveries were in the range 76-117%, while repeatability and intra-day reproducibility were ≤17%. Finally, the method was also tested for the determination of AMPA in tap water matrix and for the simultaneous detection of AMPA and glyphosate.
Collapse
Affiliation(s)
- Gauthier Emonds-Alt
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, B4000, Liège, Belgium; Center for Integrated Technology and Organic Synthesis, MolSys Research Unit, University of Liège, B4000, Liège, Belgium
| | - Cedric Malherbe
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, B4000, Liège, Belgium
| | - Alice Kasemiire
- University of Liege (ULiege), CIRM, ViBra-Sante Hub, Department of Pharmacy, Laboratory of Pharmaceutical Analytical Chemistry, Avenue Hippocrate 15, B4000, Liege, Belgium
| | - Hermane T Avohou
- University of Liege (ULiege), CIRM, ViBra-Sante Hub, Department of Pharmacy, Laboratory of Pharmaceutical Analytical Chemistry, Avenue Hippocrate 15, B4000, Liege, Belgium
| | - Philippe Hubert
- University of Liege (ULiege), CIRM, ViBra-Sante Hub, Department of Pharmacy, Laboratory of Pharmaceutical Analytical Chemistry, Avenue Hippocrate 15, B4000, Liege, Belgium
| | - Eric Ziemons
- University of Liege (ULiege), CIRM, ViBra-Sante Hub, Department of Pharmacy, Laboratory of Pharmaceutical Analytical Chemistry, Avenue Hippocrate 15, B4000, Liege, Belgium
| | - Jean-Christophe M Monbaliu
- Center for Integrated Technology and Organic Synthesis, MolSys Research Unit, University of Liège, B4000, Liège, Belgium
| | - Gauthier Eppe
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, B4000, Liège, Belgium.
| |
Collapse
|
8
|
Periodic Copper Microbead Array on Silver Layer for Dual Mode Detection of Glyphosate. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Gotti R, Fiori J, Furlanetto S, Orlandini S, Candela M, Franzellitti S. Assessment of bioaccumulation of glyphosate and aminomethylphosphonic acid in marine mussels using capillary electrophoresis with light‐emitting diode‐induced fluorescence detection. J Chromatogr A 2022; 1681:463452. [DOI: 10.1016/j.chroma.2022.463452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 10/15/2022]
|
10
|
Graf HG, Rudisch BM, Ude L, Müller L, Huhn C. Picomolar detection limits for glyphosate by two-dimensional column-coupled isotachophoresis/capillary zone electrophoresis-mass spectrometry. J Sep Sci 2022; 45:3887-3899. [PMID: 35998068 DOI: 10.1002/jssc.202200519] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/09/2022]
Abstract
Capillary electrophoresis-mass spectrometry often lacks sufficient limits of detection for trace substances in the environment due to its low loadability. To overcome this problem, we conducted a feasibility study for column-coupling isotachophoresis to capillary electrophoresis-mass spectrometry. The first dimension isotachophoresis preconcentrated the analytes. The column-coupling of both dimensions was achieved by a hybrid capillary microfluidic chip setup. Reliable analyte transfer by voltage switching was enabled by an in-chip capacitively coupled contactless conductivity detector placed around the channel of the common section between two T-shaped crossings in the chip connecting both dimensions. This eliminated the need to calculate the moment of analyte transfer. A commercial capillary electrophoresis-mass spectrometry instrument with easily installable adaptations operated the setup. Prior to coupling isotachophoresis with capillary zone electrophoresis-mass spectrometry, both dimensions were optimized individually by simulations and verified experimentally. Both dimensions were able to stack/separate all degradation products of glyphosate, the most important herbicide applied worldwide. The first dimension isotachophoresis also removed phosphate, which is a critical matrix component in many environmental samples. Enrichment and separation of glyphosate and its main degradation product aminomethylphosphonic acid by the 2D setup provided an excellent limit of detection of 150 pM (25 ng/L) for glyphosate. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hannes Georg Graf
- Institute of Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | | | - Lukas Ude
- Institute of Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Linda Müller
- Institute of Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Carolin Huhn
- Institute of Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen, Tübingen, Germany
| |
Collapse
|
11
|
Zambrano-Intriago LA, Amorim CG, Rodríguez-Díaz JM, Araújo AN, Montenegro MCBSM. Challenges in the design of electrochemical sensor for glyphosate-based on new materials and biological recognition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148496. [PMID: 34182449 DOI: 10.1016/j.scitotenv.2021.148496] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/08/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
Glyphosate (GLY) is the main ingredient in the weed killer Roundup and the most widely used pesticide in the world. Studies of the harmful effects of GLY on human health began to become more wide-ranging after 2015. GLY is listed by the International Agency for Research on Cancer (IARC) as a carcinogenic hazard to humans. Moreover, GLY has the property to complex with transition metals and are stable for long periods, being considered a high-risk element for different matrices, such as environmental (soil and water) and food (usually genetically modified crops). Since that, it was noticed an increment in the development of new analytical methods for its determination in different matrices like food, environmental and biological fluids. Noteworthy, the application of electrochemical techniques for downstream detection sparked interest due to the ability to minimize or eliminate the use of polluting chemicals, using simple and affordable equipment. This work aims to review the contribution of the electroanalytical methods for the determination of GLY in different food and environmental matrices. Parameters such as the electrochemical transduction techniques based on the electrical measurement signals, receptor materials for electrodes preparation, and the detection mechanisms are described in this review. The literature review shows that the electrochemical sensors are powerful detection system that can be improved by their design and by their portability to fulfil the needs of the GLY determination in laboratory benches, or even in situ analysis.
Collapse
Affiliation(s)
- Luis Angel Zambrano-Intriago
- LAQV-REQUIMTE/Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, 228, Porto 4050-313, Portugal; Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, Portoviejo, Ecuador.
| | - Célia G Amorim
- LAQV-REQUIMTE/Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, 228, Porto 4050-313, Portugal.
| | - Joan Manuel Rodríguez-Díaz
- Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, Portoviejo, Ecuador; Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Ecuador; Programa de Pós-graduação em Engenharia Química, Universidade Federal da Paraíba, João Pessoa, Brazil.
| | - Alberto N Araújo
- LAQV-REQUIMTE/Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, 228, Porto 4050-313, Portugal.
| | - Maria C B S M Montenegro
- LAQV-REQUIMTE/Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, 228, Porto 4050-313, Portugal.
| |
Collapse
|
12
|
Uka B, Kieninger J, Urban GA, Weltin A. Electrochemical Microsensor for Microfluidic Glyphosate Monitoring in Water Using MIP-Based Concentrators. ACS Sens 2021; 6:2738-2746. [PMID: 34255489 DOI: 10.1021/acssensors.1c00884] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glyphosate (GLY) is a broad-spectrum herbicide and is the most used pesticide worldwide. This vast usage has raised strong interest in the ecotoxicological impacts and human risks, with contamination of water being a major concern. Decentralized analytical techniques for water monitoring are of high importance. In this work, we present a small, low-cost, and time-effective electrochemical, chip-based microfluidic device for direct electrochemical detection of GLY downstream of a molecularly imprinted polymer (MIP) concentrator. We studied the electrochemical behavior of GLY and its metabolite aminomethylphosphonic acid (AMPA) using cyclic voltammetry with noble metal electrodes in acidic, neutral, and basic media. A chronoamperometric sensor protocol was developed for sensitive and selective GLY measurements on gold electrodes. The optimized protocol was transferred to a chip-based microsensor platform for online and real-time detection of GLY in a microfluidic setup. The results in the range from 0 to 50 μM GLY in 0.5 M H2SO4 show high linearity and a sensitivity of 10.3 ± 0.6 μA mm-2 mM-1 for the chip-based microfluidic platform. Successful recovery of GLY concentrated from untreated tap water and its precise detection from low volumes demonstrates the advantages of our system.
Collapse
Affiliation(s)
- Besnik Uka
- Laboratory for Sensors, IMTEK-Department of Microsystems Engineering, University of Freiburg, 79110 Freiburg, Germany
| | - Jochen Kieninger
- Laboratory for Sensors, IMTEK-Department of Microsystems Engineering, University of Freiburg, 79110 Freiburg, Germany
| | - Gerald A Urban
- Laboratory for Sensors, IMTEK-Department of Microsystems Engineering, University of Freiburg, 79110 Freiburg, Germany
| | - Andreas Weltin
- Laboratory for Sensors, IMTEK-Department of Microsystems Engineering, University of Freiburg, 79110 Freiburg, Germany
| |
Collapse
|
13
|
Ahlawat J, Masoudi Asil S, Guillama Barroso G, Nurunnabi M, Narayan M. Application of carbon nano onions in the biomedical field: recent advances and challenges. Biomater Sci 2021; 9:626-644. [PMID: 33241797 DOI: 10.1039/d0bm01476a] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Carbon nano onions (CNOs) are carbonaceous nanostructures composed of multiple concentric shells of fullerenes. These cage-within-cage structures remain as one of the most exciting and fascinating carbon forms, along with graphene and its derivatives, due to their unique chemical and physical properties. Their exceptional biocompatibility and biosafety make them an attractive choice in a wide range of areas, including biological systems. This nanomaterial displays low toxicity, high dispersity in aqueous solutions (upon surface functionalization), and high pharmaceutical efficiency. Even though CNOs were discovered almost simultaneously along with carbon nanotubes (CNTs), their potential in biomedical applications still appears unrealized. The existence of CNOs is equally important, just like any other carbon nanostructures such as CNTs and fullerenes, because they display the ability of carbon to form another unique nanostructure with wonderful properties. Therefore, this mini-review summarizes recent studies geared towards developing CNOs for various biomedical applications, including sensing, drug delivery, imaging, tissue engineering, and as a therapeutic drug. It concludes by discussing other potential applications of this unique nanomaterial.
Collapse
Affiliation(s)
- Jyoti Ahlawat
- The Department of Chemistry & Biochemistry, The University of Texas at El Paso, TX: 79968, USA.
| | - Shima Masoudi Asil
- The Department of Environmental Science & Engineering, The University of Texas at El Paso, TX: 79968, USA
| | | | - Md Nurunnabi
- The Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas at El Paso, TX: 79968, USA
| | - Mahesh Narayan
- The Department of Chemistry & Biochemistry, The University of Texas at El Paso, TX: 79968, USA.
| |
Collapse
|
14
|
Wimmer B, Pattky M, Zada LG, Meixner M, Haderlein SB, Zimmermann HP, Huhn C. Capillary electrophoresis-mass spectrometry for the direct analysis of glyphosate: method development and application to beer beverages and environmental studies. Anal Bioanal Chem 2020; 412:4967-4983. [PMID: 32524371 PMCID: PMC7334262 DOI: 10.1007/s00216-020-02751-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 05/22/2020] [Accepted: 05/29/2020] [Indexed: 12/26/2022]
Abstract
In this study, we developed and validated a CE-TOF-MS method for the quantification of glyphosate (N-(phosphonomethyl)glycine) and its major degradation product aminomethylphosphonic acid (AMPA) in different samples including beer, media from toxicological analysis with Daphnia magna, and sorption experiments. Using a background electrolyte (BGE) of very low pH, where glyphosate is still negatively charged but many matrix components become neutral or protonated, a very high separation selectivity was reached. The presence of inorganic salts in the sample was advantageous with regard to preconcentration via transient isotachophoresis. The advantages of our new method are the following: no derivatization is needed, high separation selectivity and thus matrix tolerance, speed of analysis, limits of detection suitable for many applications in food and environmental science, negligible disturbance by metal chelation. LODs for glyphosate were < 5 μg/L for both aqueous and beer samples, the linear range in aqueous samples was 5-3000 μg/L, for beer samples 10-3000 μg/L. For AMPA, LODs were 3.3 and 30.6 μg/L, and the linear range 10-3000 μg/L and 50-3000 μg/L, for aqueous and beer samples, respectively. Recoveries in beer samples for glyphosate were 94.3-110.7% and for AMPA 80.2-100.4%. We analyzed 12 German and 2 Danish beer samples. Quantification of glyphosate and AMPA was possible using isotopically labeled standards without enrichment, purification, or dilution, only degassing and filtration were required for sample preparation. Finally, we demonstrate the applicability of the method for other strong acids, relevant in food and environmental sciences such as N-acetyl glyphosate, N-acetyl AMPA (present in some glyphosate resistant crop), trifluoroacetic acid, 2-methyl-4-chlorophenoxyacetic acid, glufosinate and its degradation product 3-(methylphosphinico)propionic acid, oxamic acid, and others.
Collapse
Affiliation(s)
- Benedikt Wimmer
- Institute for Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Martin Pattky
- Institute for Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Leyla Gulu Zada
- Center for Applied Geosciences, Environmental Mineralogy and Chemistry, Eberhard Karls Universität Tübingen, Hölderlinstr. 12, 72074, Tübingen, Germany
| | - Martin Meixner
- Institute for Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Stefan B Haderlein
- Center for Applied Geosciences, Environmental Mineralogy and Chemistry, Eberhard Karls Universität Tübingen, Hölderlinstr. 12, 72074, Tübingen, Germany
| | | | - Carolin Huhn
- Institute for Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany.
| |
Collapse
|
15
|
Wang Y, Shen L, Gong Z, Pan J, Zheng X, Xue J. Analytical methods to analyze pesticides and herbicides. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:1009-1024. [PMID: 31233653 DOI: 10.1002/wer.1167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/12/2019] [Accepted: 06/16/2019] [Indexed: 06/09/2023]
Abstract
Presented in this paper is an annual review of literatures published in 2018 on topics relating to analytical methods for pesticides and herbicides. According to the different techniques, this review is divided into six sections, including extraction methods; chromatographic or mass spectrometric techniques; electrochemical techniques; spectrophotometric techniques; chemiluminescence and fluorescence methods; and biochemical assays. PRACTITIONER POINTS: Totally 134 relevant research articles are summarized. The review is divided into six parts according to the techniques. Chromatographic and mass spectrometric methods are the most widely used.
Collapse
Affiliation(s)
- Yifan Wang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, Shaanxi Province, China
| | - Lin Shen
- Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Zhanyang Gong
- Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Jian Pan
- Environmental Technology Innovation Center of Jiande, Hangzhou, Zhejiang Province, China
- Hangzhou Bertzer Catalyst Co., Ltd., Hangzhou, Zhejiang Province, China
| | - Xing Zheng
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, Shaanxi Province, China
| | - Jinkai Xue
- School of Civil Engineering, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
16
|
Gotti R, Fiori J, Bosi S, Dinelli G. Field-amplified sample injection and sweeping micellar electrokinetic chromatography in analysis of glyphosate and aminomethylphosphonic acid in wheat. J Chromatogr A 2019; 1601:357-364. [PMID: 31104848 DOI: 10.1016/j.chroma.2019.05.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/23/2019] [Accepted: 05/10/2019] [Indexed: 01/01/2023]
Abstract
Glyphosate, a widely used herbicide, has been classified as probably carcinogenic to humans by the International Agency for Research on Cancer (IARC). In the present study a method based on Field-Amplified Sample Injection and Sweeping Micellar Electrokinetic Chromatography (FASI sweep-MEKC) has been developed and validated for determination of glyphosate and its microbial metabolite aminomethylphosphonic acid (AMPA) in wheat flour. The method involved a preliminary solid phase extraction for cleanup of the aqueous extracts from wheat flour, based sequentially on C18 and strong anion exchange cartridges, followed by derivatization using 9-fluorenylmethylchloroformate. Optimization of sample cleanup and derivatization procedure was carried out by a HPLC-UV method, whereas FASI sweep-MEKC was applied for achieving the sensitivity necessary for analysis of real samples. To this regard, optimum conditions involved the use of an extended path fused-silica capillary (80 cm total length, 50 μm, i.d.) filled with a high concentration buffer (sodium phosphate 100 mM, pH 2.2). Electrokinetic sampling was carried out at -10 kV with injection time of 700 s and the separation of the loaded analytes was performed under MEKC conditions using sodium phosphate buffer 50 mM at pH 2.2, supplemented with sodium dodecyl sulfate, 100 mM. The method was validated for linearity, precision, accuracy and sensitivity, showing that using conventional UV detection (210 nm) the achieved limit of quantitation (LOQ) values for both the analytes were widely lower than those set by Authorities. In particular, LOQ for glyphosate and AMPA were found to be 5 and 2.5 ng/mL, respectively, corresponding to 0.1 and 0.05 mg/kg, in wheat flour. The method, applied to commercially available real samples (wheat flour from different manufacturers) and to an experimental sample obtained by cv. Svevo wheat, can be considered as a convenient alternative to the existing approaches in analysis of complex matrices.
Collapse
Affiliation(s)
- Roberto Gotti
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy.
| | - Jessica Fiori
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Sara Bosi
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy
| | - Giovanni Dinelli
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy
| |
Collapse
|
17
|
Jansons M, Pugajeva I, Bartkevics V. Evaluation of selected buffers for simultaneous determination of ionic and acidic pesticides including glyphosate using anion exchange chromatography with mass spectrometric detection. J Sep Sci 2019; 42:3077-3085. [PMID: 31347252 DOI: 10.1002/jssc.201900308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/23/2019] [Accepted: 07/23/2019] [Indexed: 11/06/2022]
Abstract
Ion chromatography coupled with mass spectrometry is an established technique for determination of ionic analytes, however, sophisticated buffer removal equipment is required to eliminate inorganic compounds from the eluate before introduction into the ion source of mass spectrometer. A standard high-performance liquid chromatography coupled with tandem mass spectrometry setup using an ion exchange column (Metrosep® A Supp 5) is proposed as an alternative approach. For that reason, some buffers including non-volatile carboxylic acid based solutions have been evaluated for simultaneous trace determination of ionic and acidic pesticides including glyphosate in the same extract without a need for sophisticated buffer removal equipment. Two differently designed ionisation sources were compared qualitatively for the application of non-volatile buffers. The study revealed that the choice of buffers had a strong influence on matrix effects in case of spiked extract injections. Finally, pesticides with very different physicochemical properties (logP < 0, logP ≥ 0) and structures (containing carboxylate, phosphonate, azolide, azanide, phenolate, bromate, and chlorate moieties) were quantified in spiked beer and oat extracts with acceptable recoveries (80-110%) using tandem mass spectrometry detection with AB SCIEX QTRAP 5500 instrument after separation using edetate buffer.
Collapse
Affiliation(s)
- Martins Jansons
- University of Latvia, Faculty of Chemistry, Riga, Latvia.,Institute of Food Safety, Animal Health and Environment "BIOR", Riga, Latvia
| | - Iveta Pugajeva
- Institute of Food Safety, Animal Health and Environment "BIOR", Riga, Latvia
| | - Vadims Bartkevics
- University of Latvia, Faculty of Chemistry, Riga, Latvia.,Institute of Food Safety, Animal Health and Environment "BIOR", Riga, Latvia
| |
Collapse
|
18
|
Sok V, Fragoso A. Amperometric biosensor for glyphosate based on the inhibition of tyrosinase conjugated to carbon nano-onions in a chitosan matrix on a screen-printed electrode. Mikrochim Acta 2019; 186:569. [PMID: 31338611 DOI: 10.1007/s00604-019-3672-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/06/2019] [Indexed: 12/25/2022]
Abstract
Glyphosate [N-(phosphonomethyl)glycine] is the most frequently used herbicide to date. Due to its indiscriminate use, it has become a globally occurring pollutant of surface waters. A biosensor for glyphosate is described here that consists of a carbon nano-onion/tyrosinase conjugate immobilized in a chitosan matrix on a screen-printed electrode. The analytical principle is based on the inhibition of the enzyme tyrosinase by glyphosate. L-DOPA is used as the enzyme substrate. The presence of the carbon nano-onions has a beneficial effect on the sensitivity of the assay. Glyphosate can be amperometrically quantified in the 0.015 to 10 μM concentration range and with a 6.5 nM (1.1 μg L-1) detection limit. The biosensor is stable more than 2 months at 4 °C. It was applied to the detection of glyphosate in water and soil samples taken from irrigation of a rice field after aerial application. Results were in good agreement with data obtained by a commercial ELISA. Graphical abstract A highly sensitive amperometric biosensor for glyphosate is reported, based on the covalent immobilization of a carbon nano-onion/tyrosinase conjugate on a chitosan matrix.
Collapse
Affiliation(s)
- Vibol Sok
- Nanobiotechnology & Bioanalysis Group, Departament d'Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans 26, 43007, Tarragona, Spain
| | - Alex Fragoso
- Nanobiotechnology & Bioanalysis Group, Departament d'Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans 26, 43007, Tarragona, Spain.
| |
Collapse
|
19
|
Rigobello-Masini M, Pereira EAO, Abate G, Masini JC. Solid-Phase Extraction of Glyphosate in the Analyses of Environmental, Plant, and Food Samples. Chromatographia 2019. [DOI: 10.1007/s10337-019-03748-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
20
|
Determination of glyphosate and aminomethylphosphonic acid by sequential-injection reversed-phase chromatography: method improvements and application in adsorption studies. Anal Bioanal Chem 2019; 411:2317-2326. [PMID: 30798336 DOI: 10.1007/s00216-019-01672-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/17/2019] [Accepted: 02/05/2019] [Indexed: 10/27/2022]
|
21
|
Bettazzi F, Romero Natale A, Torres E, Palchetti I. Glyphosate Determination by Coupling an Immuno-Magnetic Assay with Electrochemical Sensors. SENSORS (BASEL, SWITZERLAND) 2018; 18:E2965. [PMID: 30200562 PMCID: PMC6164882 DOI: 10.3390/s18092965] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/31/2018] [Accepted: 09/01/2018] [Indexed: 01/05/2023]
Abstract
Glyphosate (N-(phosphonomethyl)glycine) is the most frequently used broad-spectrum herbicide worldwide. Its mechanism of action is based on the inhibition of an enzyme that is essential to plant growth. Its intensive use has caused global contamination to occur, which has not only affected the ecosystems, but even food and other objects of common use. Thus, there is a pronounced need for developing analytical methods for glyphosate determination in different matrices. Here, an electrochemical competitive immunoassay, based on the use of antibody-modified magnetic particles, has been developed. Tetramethylbenzidine (TMB) has been used as an enzymatic substrate. The extent of the affinity reaction has been achieved by monitoring the current value, due to the reduction of the enzymatic product. A disposable screen-printed electrochemical cell has been used. The calibration curve has been recorded in the 0⁻10,000 ng/L concentration range, with a detection limit of 5 ng/L and quantification limit of 30 ng/L. The electrochemical immunoassay has also been applied to the analysis of spiked beer samples.
Collapse
Affiliation(s)
- Francesca Bettazzi
- Dipartimento di Chimica, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino (Fi), Italy.
| | - Aline Romero Natale
- Centro de Química-ICUAP, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Mexico.
| | - Eduardo Torres
- Centro de Química-ICUAP, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Mexico.
| | - Ilaria Palchetti
- Dipartimento di Chimica, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino (Fi), Italy.
| |
Collapse
|
22
|
More and enhanced glyphosate analysis is needed. Anal Bioanal Chem 2018; 410:3041-3045. [DOI: 10.1007/s00216-018-1000-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 02/23/2018] [Accepted: 03/05/2018] [Indexed: 01/01/2023]
|