1
|
Pundlik SS, Barik A, Venkateshvaran A, Sahoo SS, Jaysingh MA, Math RGH, Lal H, Hashmi MA, Ramanathan A. Senescent cells inhibit mouse myoblast differentiation via the SASP-lipid 15d-PGJ 2 mediated modification and control of HRas. eLife 2024; 13:RP95229. [PMID: 39196610 PMCID: PMC11357351 DOI: 10.7554/elife.95229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024] Open
Abstract
Senescent cells are characterized by multiple features such as increased expression of senescence-associated β-galactosidase activity (SA β-gal) and cell cycle inhibitors such as p21 or p16. They accumulate with tissue damage and dysregulate tissue homeostasis. In the context of skeletal muscle, it is known that agents used for chemotherapy such as Doxorubicin (Doxo) cause buildup of senescent cells, leading to the inhibition of tissue regeneration. Senescent cells influence the neighboring cells via numerous secreted factors which form the senescence-associated secreted phenotype (SASP). Lipids are emerging as a key component of SASP that can control tissue homeostasis. Arachidonic acid-derived lipids have been shown to accumulate within senescent cells, specifically 15d-PGJ2, which is an electrophilic lipid produced by the non-enzymatic dehydration of the prostaglandin PGD2. This study shows that 15d-PGJ2 is also released by Doxo-induced senescent cells as an SASP factor. Treatment of skeletal muscle myoblasts with the conditioned medium from these senescent cells inhibits myoblast fusion during differentiation. Inhibition of L-PTGDS, the enzyme that synthesizes PGD2, diminishes the release of 15d-PGJ2 by senescent cells and restores muscle differentiation. We further show that this lipid post-translationally modifies Cys184 of HRas in C2C12 mouse skeletal myoblasts, causing a reduction in the localization of HRas to the Golgi, increased HRas binding to Ras Binding Domain (RBD) of RAF Kinase (RAF-RBD), and activation of cellular Mitogen Activated Protein (MAP) kinase-Extracellular Signal Regulated Kinase (Erk) signaling (but not the Akt signaling). Mutating C184 of HRas prevents the ability of 15d-PGJ2 to inhibit the differentiation of muscle cells and control the activity of HRas. This work shows that 15d-PGJ2 released from senescent cells could be targeted to restore muscle homeostasis after chemotherapy.
Collapse
Affiliation(s)
- Swarang Sachin Pundlik
- Metabolic Regulation of Cell Fate (RCF), Institute for Stem Cell Science and Regenerative Medicine (InStem), Bangalore Life Science ClusterBengaluruIndia
- Manipal Academy of Higher Education (MAHE)ManipalIndia
| | - Alok Barik
- Metabolic Regulation of Cell Fate (RCF), Institute for Stem Cell Science and Regenerative Medicine (InStem), Bangalore Life Science ClusterBengaluruIndia
| | - Ashwin Venkateshvaran
- Metabolic Regulation of Cell Fate (RCF), Institute for Stem Cell Science and Regenerative Medicine (InStem), Bangalore Life Science ClusterBengaluruIndia
| | - Snehasudha Subhadarshini Sahoo
- Metabolic Regulation of Cell Fate (RCF), Institute for Stem Cell Science and Regenerative Medicine (InStem), Bangalore Life Science ClusterBengaluruIndia
- University of North Carolina at Chapel HillChapel HillUnited States
| | - Mahapatra Anshuman Jaysingh
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata (IISER-K)MohanpurIndia
- Division of Biology and Biomedical Sciences, Washington University in St LouisSt LouisUnited States
| | | | - Heera Lal
- Metabolic Regulation of Cell Fate (RCF), Institute for Stem Cell Science and Regenerative Medicine (InStem), Bangalore Life Science ClusterBengaluruIndia
- Manipal Academy of Higher Education (MAHE)ManipalIndia
| | - Maroof Athar Hashmi
- Metabolic Regulation of Cell Fate (RCF), Institute for Stem Cell Science and Regenerative Medicine (InStem), Bangalore Life Science ClusterBengaluruIndia
- Manipal Academy of Higher Education (MAHE)ManipalIndia
| | - Arvind Ramanathan
- Metabolic Regulation of Cell Fate (RCF), Institute for Stem Cell Science and Regenerative Medicine (InStem), Bangalore Life Science ClusterBengaluruIndia
| |
Collapse
|
2
|
Albiach-Delgado A, Moreno-Casillas JL, Ten-Doménech I, Cascant-Vilaplana MM, Moreno-Giménez A, Gómez-Ferrer M, Sepúlveda P, Kuligowski J, Quintás G. Oxylipin profile of human milk and human milk-derived extracellular vesicles. Anal Chim Acta 2024; 1313:342759. [PMID: 38862207 DOI: 10.1016/j.aca.2024.342759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND Small Extracellular Vesicles (sEVs) are nano-sized vesicles that are present in all biofluids including human milk (HM) playing a crucial role in cell-to-cell communication and the stimulation of the neonatal immune system. Oxylipins, which are bioactive lipids formed from polyunsaturated fatty acids, have gained considerable attention due to their potential role in mitigating disease progression and modulating the inflammatory status of breastfed infants. This study aims at an in-depth characterization of the oxylipin profiles of HM and, for the first time, of HM-derived sEVs (HMEVs) employing an ad-hoc developed and validated ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method. RESULTS The UPLC-MS/MS method covered a panel of 13 oxylipins for quantitation and 93 oxylipins for semi-quantitation. In 200 μL of HM and HMEV isolates of 15 individuals, 42 out of 106 oxylipins were detected in either HM or HMEVs, with 38 oxylipins being detected in both matrices. Oxylipins presented distinct profiles in HM and HMEVs, suggesting specific mechanisms responsible for the encapsulation of target molecules in HMEVs. Ten and eight oxylipins were quantified with ranges between 0.03 - 73 nM and 0.30 pM-0.07 nM in HM and HMEVs, respectively. The most abundant oxylipins found in HMEVs were docosahexaenoic acid derivatives (17-HDHA and 14-HDHA) with known anti-inflammatory properties, and linoleic acid derivatives (9-10-DiHOME and 12,13-DiHOME) in HM samples. SIGNIFICANCE AND NOVELTY This is the first time a selective, relative enrichment of anti-inflammatory oxylipins in HMEVs has been described. Future studies will focus on the anti-inflammatory and pro-healing capacity of oxylipins encapsulated in HMEVs, with potential clinical applications in the field of preterm infant care, specifically the prevention of severe intestinal complications including necrotizing enterocolitis.
Collapse
Affiliation(s)
- Abel Albiach-Delgado
- Neonatal Research Group, Health Research Institute Hospital La Fe (IIS La Fe), Avda Fernando Abril Martorell 106, 46026, Valencia, Spain; Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin Network (RICORS-SAMID) (RD21/0012/0015), Instituto de Salud Carlos III, Madrid, Spain; Servicio de Análisis de Vesículas Extracelulares (SAVE), Health Research Institute Hospital La Fe (IIS La Fe), Avda Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Jose L Moreno-Casillas
- Neonatal Research Group, Health Research Institute Hospital La Fe (IIS La Fe), Avda Fernando Abril Martorell 106, 46026, Valencia, Spain; Servicio de Análisis de Vesículas Extracelulares (SAVE), Health Research Institute Hospital La Fe (IIS La Fe), Avda Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Isabel Ten-Doménech
- Neonatal Research Group, Health Research Institute Hospital La Fe (IIS La Fe), Avda Fernando Abril Martorell 106, 46026, Valencia, Spain; Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin Network (RICORS-SAMID) (RD21/0012/0015), Instituto de Salud Carlos III, Madrid, Spain; Servicio de Análisis de Vesículas Extracelulares (SAVE), Health Research Institute Hospital La Fe (IIS La Fe), Avda Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Mari Merce Cascant-Vilaplana
- Neonatal Research Group, Health Research Institute Hospital La Fe (IIS La Fe), Avda Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Alba Moreno-Giménez
- Neonatal Research Group, Health Research Institute Hospital La Fe (IIS La Fe), Avda Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Marta Gómez-Ferrer
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avda Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Pilar Sepúlveda
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avda Fernando Abril Martorell 106, 46026, Valencia, Spain; Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Carlos III Institute of Health, Madrid, Spain; Cardiology Service, University & Polytechnic Hospital La Fe, Avenida Fernando Abril Martorell 106, 46026, Valencia, Spain; Department of Pathology, University of Valencia, Avenida Blasco Ibáñez 15, 46010, Valencia, Spain.
| | - Julia Kuligowski
- Neonatal Research Group, Health Research Institute Hospital La Fe (IIS La Fe), Avda Fernando Abril Martorell 106, 46026, Valencia, Spain; Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin Network (RICORS-SAMID) (RD21/0012/0015), Instituto de Salud Carlos III, Madrid, Spain; Servicio de Análisis de Vesículas Extracelulares (SAVE), Health Research Institute Hospital La Fe (IIS La Fe), Avda Fernando Abril Martorell 106, 46026, Valencia, Spain.
| | - Guillermo Quintás
- Health and Biomedicine, Leitat Technological Center, Avda Fernando Abril Martorell 106, 46026, Valencia, Spain
| |
Collapse
|
3
|
Slanovc J, Mikulčić M, Jahn N, Wizsy NGT, Sattler W, Malle E, Hrzenjak A. Prostaglandin 15d-PGJ 2 inhibits proliferation of lung adenocarcinoma cells by inducing ROS production and activation of apoptosis via sirtuin-1. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166924. [PMID: 37898426 DOI: 10.1016/j.bbadis.2023.166924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/26/2023] [Accepted: 10/20/2023] [Indexed: 10/30/2023]
Abstract
Lung adenocarcinoma (LUADC) belongs to the most prevalent and lethal cancer types. As 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) displays anti-oxidative, -inflammatory, and -cancer properties, we investigated whether this cyclopentenone PG, a stable degradation end-product of cyclooxygenase-generated PGD2, exerts beneficial effects in three LUADC cell lines (A549, H1299, H23). We here report that 15d-PGJ2 had substantial cytotoxic effects in all three LUADC cell lines by promoting early apoptosis and inhibiting the cell cycle, proliferation, and migration. As indicators of cell malignancy, scratch closure and colony formation were significantly inhibited by 15d-PGJ2. 15d-PGJ2 induced generation of ROS and subsequent activation of MAPKs. Expression of Nrf-2, a well-known tumor driver, was markedly diminished by 15d-PGJ2 treatment. Although PPARγ, DP1, and DP2 are expressed in LUADC cells, blocking these receptors with specific inhibitors (SR16832 and BW245C) did not reverse 15d-PGJ2-mediated cytotoxicity, suggesting receptor-independent effects. 15d-PGJ2 decreased SIRT1 expression in LUADC cells and the knockdown of SIRT1 diminished the cytotoxic effects of 15d-PGJ2. Importantly, 15d-PGJ2 significantly reduced tumor growth using the chorioallantoic membrane (CAM) assay. The structural analog of 15d- PGJ2, 9,10-dihydro-15d-PGJ2 (lacking the α,β-unsaturated ketone structural element), did not show any toxic effects in LUADC cells. Altogether, our findings suggest that 15d-PGJ2 led to significantly reduced tumor growth and cell proliferation in three LUADC cell lines. The CAM assay results suggest that 15d-PGJ2 is a suitable endogenous compound to interfere with LUADC tumor progression. We show that SIRT1 modulates the effects of 15d-PGJ2 and may be used as a therapeutic target for LUADC.
Collapse
Affiliation(s)
- Julia Slanovc
- Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, 8036 Graz, Austria.
| | - Mateja Mikulčić
- Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, 8036 Graz, Austria.
| | - Nicole Jahn
- Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, 8036 Graz, Austria.
| | | | - Wolfgang Sattler
- Gottfried Schatz Research Center, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria.
| | - Ernst Malle
- Gottfried Schatz Research Center, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria.
| | - Andelko Hrzenjak
- Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, 8036 Graz, Austria; Ludwig Boltzmann Institute for Lung Vascular Research, Medical University of Graz, 8010 Graz, Austria.
| |
Collapse
|
4
|
Moens de Hase E, Petitfils C, Alhouayek M, Depommier C, Le Faouder P, Delzenne NM, Van Hul M, Muccioli GG, Cenac N, Cani PD. Dysosmobacter welbionis effects on glucose, lipid, and energy metabolism are associated with specific bioactive lipids. J Lipid Res 2023; 64:100437. [PMID: 37648213 PMCID: PMC10542644 DOI: 10.1016/j.jlr.2023.100437] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 08/14/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023] Open
Abstract
The newly identified bacterium Dysosmobacter welbionis J115T improves host metabolism in high-fat diet (HFD)-fed mice. To investigate mechanisms, we used targeted lipidomics to identify and quantify bioactive lipids produced by the bacterium in the culture medium, the colon, the brown adipose tissue (BAT), and the blood of mice. In vitro, we compared the bioactive lipids produced by D. welbionis J115T versus the probiotic strain Escherichia coli Nissle 1917. D. welbionis J115T administration reduced body weight, fat mass gain, and improved glucose tolerance and insulin resistance in HFD-fed mice. In vitro, 19 bioactive lipids were highly produced by D. welbionis J115T as compared to Escherichia coli Nissle 1917. In the plasma, 13 lipids were significantly changed by the bacteria. C18-3OH was highly present at the level of the bacteria, but decreased by HFD treatment in the plasma and normalized in D. welbionis J115T-treated mice. The metabolic effects were associated with a lower whitening of the BAT. In the BAT, HFD decreased the 15-deoxy-Δ12,14-prostaglandin J2, a peroxisome proliferator-activated receptor (PPAR-γ) agonist increased by 700% in treated mice as compared to HFD-fed mice. Several genes controlled by PPAR-γ were upregulated in the BAT. In the colon, HFD-fed mice had a 60% decrease of resolvin D5, whereas D. welbionis J115T-treated mice exhibited a 660% increase as compared to HFD-fed mice. In a preliminary experiment, we found that D. welbionis J115T improves colitis. In conclusion, D. welbionis J115T influences host metabolism together with several bioactive lipids known as PPAR-γ agonists.
Collapse
Affiliation(s)
- Emilie Moens de Hase
- Metabolism and Nutrition Research group, Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium; WELBIO-Walloon Excellence in Life Sciences and Biotechnology, WELBIO department, WEL Research Institute, Wavre, Belgium
| | - Camille Petitfils
- IRSD, INSERM, INRA, INP-ENVT, Toulouse University 3 Paul Sabatier, Toulouse, France
| | - Mireille Alhouayek
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group (BPBL), Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Clara Depommier
- Metabolism and Nutrition Research group, Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium; WELBIO-Walloon Excellence in Life Sciences and Biotechnology, WELBIO department, WEL Research Institute, Wavre, Belgium
| | | | - Nathalie M Delzenne
- Metabolism and Nutrition Research group, Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Matthias Van Hul
- Metabolism and Nutrition Research group, Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium; WELBIO-Walloon Excellence in Life Sciences and Biotechnology, WELBIO department, WEL Research Institute, Wavre, Belgium
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group (BPBL), Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Nicolas Cenac
- IRSD, INSERM, INRA, INP-ENVT, Toulouse University 3 Paul Sabatier, Toulouse, France
| | - Patrice D Cani
- Metabolism and Nutrition Research group, Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium; WELBIO-Walloon Excellence in Life Sciences and Biotechnology, WELBIO department, WEL Research Institute, Wavre, Belgium; Institute of Experimental and Clinical Research (IREC), UCLouvain, Université catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
5
|
Prostanoid Metabolites as Biomarkers in Human Disease. Metabolites 2022; 12:metabo12080721. [PMID: 36005592 PMCID: PMC9414732 DOI: 10.3390/metabo12080721] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Prostaglandins (PGD2, PGE2, PGF2α), prostacyclin (PGI2), and thromboxane A2 (TXA2) together form the prostanoid family of lipid mediators. As autacoids, these five primary prostanoids propagate intercellular signals and are involved in many physiological processes. Furthermore, alterations in their biosynthesis accompany a wide range of pathological conditions, which leads to substantially increased local levels during disease. Primary prostanoids are chemically instable and rapidly metabolized. Their metabolites are more stable, integrate the local production on a systemic level, and their analysis in various biological matrices yields valuable information under different pathological settings. Therefore, prostanoid metabolites may be used as diagnostic, predictive, or prognostic biomarkers in human disease. Although their potential as biomarkers is great and extensive research has identified major prostanoid metabolites that serve as target analytes in different biofluids, the number of studies that correlate prostanoid metabolite levels to disease outcome is still limited. We review the metabolism of primary prostanoids in humans, summarize the levels of prostanoid metabolites in healthy subjects, and highlight existing biomarker studies. Since analysis of prostanoid metabolites is challenging because of ongoing metabolism and limited half-lives, an emphasis of this review lies on the reliable measurement and interpretation of obtained levels.
Collapse
|
6
|
Mikulčić M, Tabrizi-Wizsy NG, Bernhart EM, Asslaber M, Trummer C, Windischhofer W, Sattler W, Malle E, Hrzenjak A. 15d-PGJ 2 Promotes ROS-Dependent Activation of MAPK-Induced Early Apoptosis in Osteosarcoma Cell In Vitro and in an Ex Ovo CAM Assay. Int J Mol Sci 2021; 22:ijms222111760. [PMID: 34769194 PMCID: PMC8583949 DOI: 10.3390/ijms222111760] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023] Open
Abstract
Osteosarcoma (OS) is the most common type of bone tumor, and has limited therapy options. 15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) has striking anti-tumor effects in various tumors. Here, we investigated molecular mechanisms that mediate anti-tumor effects of 15d-PGJ2 in different OS cell lines. Human U2-OS and Saos-2 cells were treated with 15d-PGJ2 and cell survival was measured by MTT assay. Cell proliferation and motility were investigated by scratch assay, the tumorigenic capacity by colony forming assay. Intracellular ROS was estimated by H2DCFDA. Activation of MAPKs and cytoprotective proteins was detected by immunoblotting. Apoptosis was detected by immunoblotting and Annexin V/PI staining. The ex ovo CAM model was used to study growth capability of grafted 15d-PGJ2-treated OS cells, followed by immunohistochemistry with hematoxylin/eosin and Ki-67. 15d-PGJ2 substantially decreased cell viability, colony formation and wound closure capability of OS cells. Non-malignant human osteoblast was less affected by 15d-PGJ2. 15d-PGJ2 induced rapid intracellular ROS production and time-dependent activation of MAPKs (pERK1/2, pJNK and pp38). Tempol efficiently inhibited 15d-PGJ2-induced ERK1/2 activation, while N-acetylcystein and pyrrolidine dithiocarbamate were less effective. Early but weak activation of cytoprotective proteins was overrun by induction of apoptosis. A structural analogue, 9,10-dihydro-15d-PGJ2, did not show toxic effects in OS cells. In the CAM model, we grafted OS tumors with U2-OS, Saos-2 and MG-63 cells. 15d-PGJ2 treatment resulted in significant growth inhibition, diminished tumor tissue density, and reduced tumor cell proliferation for all cell lines. Our in vitro and CAM data suggest 15d-PGJ2 as a promising natural compound to interfere with OS tumor growth.
Collapse
Affiliation(s)
- Mateja Mikulčić
- Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, 8036 Graz, Austria;
| | - Nassim Ghaffari Tabrizi-Wizsy
- Otto Loewi Research Center, Division of Immunology and Pathophysiology, Medical University of Graz, 8010 Graz, Austria;
| | - Eva M. Bernhart
- Gottfried Schatz Research Center, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (E.M.B.); (C.T.); (W.S.); (E.M.)
| | - Martin Asslaber
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria;
| | - Christopher Trummer
- Gottfried Schatz Research Center, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (E.M.B.); (C.T.); (W.S.); (E.M.)
- Department of Pediatrics and Adolescence Medicine, Medical University of Graz, 8036 Graz, Austria;
| | - Werner Windischhofer
- Department of Pediatrics and Adolescence Medicine, Medical University of Graz, 8036 Graz, Austria;
| | - Wolfgang Sattler
- Gottfried Schatz Research Center, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (E.M.B.); (C.T.); (W.S.); (E.M.)
| | - Ernst Malle
- Gottfried Schatz Research Center, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (E.M.B.); (C.T.); (W.S.); (E.M.)
| | - Andelko Hrzenjak
- Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, 8036 Graz, Austria;
- Ludwig Boltzmann Institute for Lung Vascular Research, Medical University of Graz, 8010 Graz, Austria
- Correspondence: ; Tel.: +43-316-385-73860
| |
Collapse
|
7
|
Kim SJ, Cho NC, Han B, Kim K, Hahn YI, Kim KP, Suh YG, Choi BY, Na HK, Surh YJ. 15-Deoxy-Δ 12,14 -prostaglandin J 2 binds and inactivates STAT3 via covalent modification of cysteine 259 in H-Ras-transformed human breast epithelial cells. FEBS Lett 2021; 595:604-622. [PMID: 33452674 DOI: 10.1002/1873-3468.14040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 01/02/2023]
Abstract
Signal transducer and activator of transcription 3 (STAT3) has been considered as a potential target for development of anticancer therapeutics. Here, we report a novel mechanism by which the cyclopentenone prostaglandin, 15-deoxy-Δ12,14 -prostaglandin J2 (15d-PGJ2 ) functions as an allosteric inhibitor of STAT3. 15d-PGJ2 inhibits phosphorylation, dimerization, nuclear translocation, and transcriptional activity of STAT3 in H-Ras-transformed human mammary epithelial cells (MCF10A-Ras) through the Michael addition reaction at cysteine 259 of STAT3. Comparative studies with 15d-PGJ2 analogues reveal that both C12-C13 and C9-C10 double bonds conjugated to the carbonyl group in the cyclopentenone ring of 15d-PGJ2 are essential for STAT3 binding. Antiproliferative and pro-apoptotic activities of 15d-PGJ2 in MCF10A-Ras cells are attributable to covalent modification of STAT3 on Cys259, and mimic the effects induced by mutation of this amino acid.
Collapse
Affiliation(s)
- Su-Jung Kim
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Korea
| | - Nam-Chul Cho
- Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology, Korea
| | - Bitnara Han
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, Korea
| | - Kyeojin Kim
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Korea
| | - Young-Il Hahn
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Korea
| | - Kwang Pyo Kim
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, Korea.,Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, Korea
| | - Young Ger Suh
- College of Pharmacy, CHA University, Gyeonggi-do, Korea
| | - Bu Young Choi
- Department of Pharmaceutical Science and Engineering, School of Convergence Bioscience and Technology, Seowon University, Chungbuk, Korea
| | - Hye-Kyung Na
- Department of Food Science and Biotechnology, College of Knowledge Based Services Engineering, Sungshin Women's University, Seoul, Korea
| | - Young-Joon Surh
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Korea.,Cancer Research Institute, Seoul National University, Korea
| |
Collapse
|
8
|
Morgenstern J, Fleming T, Kliemank E, Brune M, Nawroth P, Fischer A. Quantification of All-Trans Retinoic Acid by Liquid Chromatography-Tandem Mass Spectrometry and Association with Lipid Profile in Patients with Type 2 Diabetes. Metabolites 2021; 11:metabo11010060. [PMID: 33478094 PMCID: PMC7835841 DOI: 10.3390/metabo11010060] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 01/23/2023] Open
Abstract
Retinoic acids are vitamin A metabolites that have numerous essential functions in humans, and are also used as drugs to treat acne and acute promyelocytic leukemia. All-trans retinoic acid (atRA) is the major occurring metabolite of retinoic acid in humans. This study provides a sensitive and specific liquid chromatography-tandem mass spectrometry approach in order to quantify atRA in human plasma samples. The isolation of atRA by hyperacidified liquid-liquid extraction using hexane and ethyl acetate resulted in a recovery of 89.7 ± 9.2%. The lower limit of detection was 20 pg·mL-1, and 7 point calibration displayed good linearity (R2 = 0.994) in the range of 50-3200 pg mL-1. Selectivity was guaranteed by the use of two individual mass transitions (qualifier and quantifier), and precision and accuracy were determined intraday and interday with a coefficient variation of 9.3% (intraday) and 14.0% (interday). Moreover, the method could be used to isolate atRA from hyperlipidemic samples. Applying this method to plasma samples from patients with poorly controlled Type 2 diabetes significantly decreased atRA plasma levels as compared to those of the healthy controls. In addition, atRA concentrations were highly associated with increased low-density lipoprotein (LDL) and decreased high-density lipoprotein (HDL) cholesterol levels.
Collapse
Affiliation(s)
- Jakob Morgenstern
- Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (T.F.); (E.K.); (M.B.); (P.N.); (A.F.)
- Correspondence: ; Fax: +49-6221-565-226
| | - Thomas Fleming
- Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (T.F.); (E.K.); (M.B.); (P.N.); (A.F.)
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Elisabeth Kliemank
- Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (T.F.); (E.K.); (M.B.); (P.N.); (A.F.)
| | - Maik Brune
- Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (T.F.); (E.K.); (M.B.); (P.N.); (A.F.)
| | - Peter Nawroth
- Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (T.F.); (E.K.); (M.B.); (P.N.); (A.F.)
| | - Andreas Fischer
- Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (T.F.); (E.K.); (M.B.); (P.N.); (A.F.)
- Division Vascular Signaling and Cancer (A270), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| |
Collapse
|
9
|
Naineni SK, Itoua Maïga R, Cencic R, Putnam AA, Amador LA, Rodriguez AD, Jankowsky E, Pelletier J. A comparative study of small molecules targeting eIF4A. RNA (NEW YORK, N.Y.) 2020; 26:541-549. [PMID: 32014999 PMCID: PMC7161356 DOI: 10.1261/rna.072884.119] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 01/30/2020] [Indexed: 05/13/2023]
Abstract
The PI3K/Akt/mTOR kinase pathway is extensively deregulated in human cancers. One critical node under regulation of this signaling axis is eukaryotic initiation factor (eIF) 4F, a complex involved in the control of translation initiation rates. eIF4F-dependent addictions arise during tumor initiation and maintenance due to increased eIF4F activity-generally in response to elevated PI3K/Akt/mTOR signaling flux. There is thus much interest in exploring eIF4F as a small molecule target for the development of new anticancer drugs. The DEAD-box RNA helicase, eIF4A, is an essential subunit of eIF4F, and several potent small molecules (rocaglates, hippuristanol, pateamine A) affecting its activity have been identified and shown to demonstrate anticancer activity in vitro and in vivo in preclinical models. Recently, a number of new small molecules have been reported as having the capacity to target and inhibit eIF4A. Here, we undertook a comparative analysis of their biological activity and specificity relative to the eIF4A inhibitor, hippuristanol.
Collapse
Affiliation(s)
- Sai Kiran Naineni
- Department of Biochemistry, McGill University, Montreal, Québec H3G 1Y6, Canada
| | - Rayelle Itoua Maïga
- Department of Biochemistry, McGill University, Montreal, Québec H3G 1Y6, Canada
| | - Regina Cencic
- Department of Biochemistry, McGill University, Montreal, Québec H3G 1Y6, Canada
| | - Andrea A Putnam
- School of Medicine, Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Luis A Amador
- Department of Chemistry, Faculty of Natural Sciences, University of Puerto Rico, San Juan, 00931-3346, Puerto Rico
| | - Abimael D Rodriguez
- Department of Chemistry, Faculty of Natural Sciences, University of Puerto Rico, San Juan, 00931-3346, Puerto Rico
| | - Eckhard Jankowsky
- School of Medicine, Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, Québec H3G 1Y6, Canada
- Department of Oncology, McGill University, Montreal, Québec H4A 3T2, Canada
- Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, Québec H3A 1A3, Canada
| |
Collapse
|
10
|
Jastrząb A, Gęgotek A, Skrzydlewska E. Cannabidiol Regulates the Expression of Keratinocyte Proteins Involved in the Inflammation Process through Transcriptional Regulation. Cells 2019; 8:cells8080827. [PMID: 31382646 PMCID: PMC6721680 DOI: 10.3390/cells8080827] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/01/2019] [Accepted: 08/03/2019] [Indexed: 02/07/2023] Open
Abstract
Cannabidiol (CBD), a natural phytocannabinoid without psychoactive effect, is a well-known anti-inflammatory and antioxidant compound. The possibility of its use in cytoprotection of cells from harmful factors, including ultraviolet (UV) radiation, is an area of ongoing investigation. Therefore, the aim of this study was to evaluate the effect of CBD on the regulatory mechanisms associated with the redox balance and inflammation in keratinocytes irradiated with UVA [30 J/cm2] and UVB [60 mJ/cm2]. Spectrophotometric results show that CBD significantly enhances the activity of antioxidant enzymes such as superoxide dismutase and thioredoxin reductase in UV irradiated keratinocytes. Furthermore, despite decreased glutathione peroxidase and reductase activities, CBD prevents lipid peroxidation, which was observed as a decreased level of 4-HNE and 15d-PGJ2 (measured using GC/MS and LC/MS). Moreover, Western blot analysis of protein levels shows that, under stress conditions, CBD influences interactions of transcription factors Nrf2- NFκB by inhibiting the NFκB pathway, increasing the expression of Nrf2 activators and stimulating the transcription activity of Nrf2. In conclusion, the antioxidant activity of CBD through Nrf2 activation as well as its anti-inflammatory properties as an inhibitor of NFκB should be considered during design of new protective treatments for the skin.
Collapse
Affiliation(s)
- Anna Jastrząb
- Department of Analytical Chemistry, Medical University of Bialystok, Bialystok 15-089, Poland.
| | - Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, Bialystok 15-089, Poland
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Bialystok 15-089, Poland.
| |
Collapse
|
11
|
Urban I, Turinsky M, Gehrmann S, Morgenstern J, Brune M, Milewski MR, Wagner AH, Rumig C, Fleming T, Leuschner F, Gleissner CA, Hecker M. 15-Deoxy-Δ12,14-Prostaglandin J
2
Reinforces the Anti-Inflammatory Capacity of Endothelial Cells With a Genetically Determined NO Deficit. Circ Res 2019; 125:282-294. [DOI: 10.1161/circresaha.118.313820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Rationale:
Fluid shear stress (FSS) maintains NOS-3 (endothelial NO synthase) expression. Homozygosity for the C variant of the T-786C single-nucleotide polymorphism of the
NOS3
gene, which solely exists in humans, renders the gene less sensitive to FSS, resulting in a reduced endothelial cell (EC) capacity to generate NO. Decreased bioavailability of NO in the arterial vessel wall facilitates atherosclerosis. Consequently, individuals homozygous for the C variant have an increased risk for coronary heart disease (CHD).
Objective:
At least 2 compensatory mechanisms seem to minimize the deleterious effects of this single-nucleotide polymorphism in affected individuals, one of which is characterized herein.
Methods and Results:
Human genotyped umbilical vein ECs and THP-1 monocytes were used to investigate the role of 15-deoxy-Δ12,14-prostaglandin J
2
(15d-PGJ
2
) in vitro. Its concentration in plasma samples from genotyped patients with CHD and age-matched CHD-free controls was determined using quantitative ultraperformance LC-MS/MS. Exposure of human ECs to FSS effectively reduced monocyte transmigration particularly through monolayers of CC-genotype ECs. Primarily in CC-genotype ECs, FSS elicited a marked rise in COX (cyclooxygenase)-2 and L-PGDS (lipocalin-type prostaglandin D synthase) expression, which appeared to be NO sensitive, and provoked a significant release of 15d-PGJ
2
over baseline. Exogenous 15d-PGJ
2
significantly reduced monocyte transmigration and exerted a pronounced anti-inflammatory effect on the transmigrated monocytes by downregulating, for example, transcription of the IL (interleukin)-1β gene (
IL1B
). Reporter gene analyses verified that this effect is due to binding of Nrf2 (nuclear factor [erythroid-derived 2]–like 2) to 2 AREs (antioxidant response elements) in the proximal
IL1B
promoter. In patients with CHD, 15d-PGJ
2
plasma levels were significantly upregulated compared with age-matched CHD-free controls, suggesting that this powerful anti-inflammatory prostanoid is part of an endogenous defence mechanism to counteract CHD.
Conclusions:
Despite a reduced capacity to form NO, CC-genotype ECs maintain a robust anti-inflammatory phenotype through an enhanced FSS-dependent release of 15d-PGJ
2
.
Collapse
Affiliation(s)
- Ivelina Urban
- From the Department of Cardiovascular Physiology, Heidelberg University (I.U., M.T., S.G., M.R.M., A.H.W., C.R., M.H.)
| | - Martin Turinsky
- From the Department of Cardiovascular Physiology, Heidelberg University (I.U., M.T., S.G., M.R.M., A.H.W., C.R., M.H.)
| | - Sviatlana Gehrmann
- From the Department of Cardiovascular Physiology, Heidelberg University (I.U., M.T., S.G., M.R.M., A.H.W., C.R., M.H.)
| | - Jakob Morgenstern
- Department of Internal Medicine I and Clinical Chemistry (J.M., M.B., T.F.), Heidelberg University Hospital
| | - Maik Brune
- Department of Internal Medicine I and Clinical Chemistry (J.M., M.B., T.F.), Heidelberg University Hospital
| | - Moritz R. Milewski
- From the Department of Cardiovascular Physiology, Heidelberg University (I.U., M.T., S.G., M.R.M., A.H.W., C.R., M.H.)
| | - Andreas H. Wagner
- From the Department of Cardiovascular Physiology, Heidelberg University (I.U., M.T., S.G., M.R.M., A.H.W., C.R., M.H.)
| | - Cordula Rumig
- From the Department of Cardiovascular Physiology, Heidelberg University (I.U., M.T., S.G., M.R.M., A.H.W., C.R., M.H.)
| | - Thomas Fleming
- Department of Internal Medicine I and Clinical Chemistry (J.M., M.B., T.F.), Heidelberg University Hospital
| | - Florian Leuschner
- Department of Cardiology, Angiology and Pneumology (F.L., C.A.G.), Heidelberg University Hospital
- German Centre for Cardiovascular Research, Partner Site Heidelberg/Mannheim, Heidelberg, Germany (F.L., M.H.)
| | - Christian A. Gleissner
- Department of Cardiology, Angiology and Pneumology (F.L., C.A.G.), Heidelberg University Hospital
| | - Markus Hecker
- From the Department of Cardiovascular Physiology, Heidelberg University (I.U., M.T., S.G., M.R.M., A.H.W., C.R., M.H.)
- German Centre for Cardiovascular Research, Partner Site Heidelberg/Mannheim, Heidelberg, Germany (F.L., M.H.)
| |
Collapse
|
12
|
Bioanalytical insights into the association between eicosanoids and pathogenesis of hepatocellular carcinoma. Cancer Metastasis Rev 2019; 37:269-277. [PMID: 29934821 DOI: 10.1007/s10555-018-9747-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It has been noted that inflammatory were intimately associated with the development and progression of hepatocellular carcinoma (HCC). Eicosanoids derived from arachidonic acid play crucial roles in chronic inflammation. Accordingly, there is an intricate relationship between eicosanoids and HCC, being supported by the epidemiological, clinical, and basic science studies. Herein, we intend to provide bioanalytical insights into the role of eicosanoids in HCC progression, from cell proliferation, angiogenesis migration, to apoptosis. Also, the analytical methods and biochemistry of eicosanoids are described.
Collapse
|
13
|
Abstract
Tumor tissue is composed of tumor cells and surrounding non-tumor endothelial and immune cells, collectively known as the tumor microenvironment. Tumor cells manipulate tumor microenvironment to obtain sufficient oxygen and nutrient supply, and evade anti-tumor immunosurveillance. Various types of signaling molecules, including cytokines, chemokines, growth factors, and lipid mediators, are secreted, which co-operate to make up the complex tumor microenvironment. Prostaglandins, cyclooxygenase metabolites of arachidonic acid, are abundantly produced in tumor tissues. Ever since treatment with nonsteroidal anti-inflammatory drugs showed anti-tumor effect in mouse models and human patients by inhibiting whole prostaglandin production, investigators have focused on the importance of prostaglandins in tumor malignancies. However, most studies that followed focused on the role of an eminent prostaglandin, prostaglandin E2, in tumor onset, growth, and metastasis. It remained unclear how other prostaglandin species affected tumor malignancies. Recently, we identified prostaglandin D2, a well-known sleep-inducing prostaglandin, as a factor with strong anti-angiogenic and anti-tumor properties, in genetically modified mice. In this review, we summarize recent studies focusing on the importance of prostaglandins and their metabolites in the tumor microenvironment.
Collapse
Affiliation(s)
- Koji Kobayashi
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Keisuke Omori
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Takahisa Murata
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
14
|
Schmitt FCF, Manolov V, Morgenstern J, Fleming T, Heitmeier S, Uhle F, Al-Saeedi M, Hackert T, Bruckner T, Schöchl H, Weigand MA, Hofer S, Brenner T. Acute fibrinolysis shutdown occurs early in septic shock and is associated with increased morbidity and mortality: results of an observational pilot study. Ann Intensive Care 2019; 9:19. [PMID: 30701381 PMCID: PMC6353981 DOI: 10.1186/s13613-019-0499-6] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/22/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Septic coagulopathy represents a very dynamic disease entity, tilting from initial hypercoagulability towards a subsequent hypocoagulable disease state, entitled overt disseminated intravascular coagulation. Acute fibrinolysis shutdown has recently been described to be a crucial component of initial hypercoagulability in critically ill patients, although the underlying pathomechanisms, the specific temporal kinetics and its outcome relevance in patients with sepsis remain to be determined. METHODS In total, 90 patients (30 with septic shock, 30 surgical controls and 30 healthy volunteers) were enrolled. Blood samples were collected at sepsis onset or prior and immediately after the surgical procedure as well as 3 h, 6 h, 12 h, 24 h, 48 h and 7 d later, whereas blood samples from healthy volunteers were collected once. Besides viscoelastic and aggregometric point-of-care testing (POCT), enzyme-linked immunosorbent and thrombin generation assays and liquid chromatography-mass spectrometry-based measurements were performed. RESULTS As assessed by viscoelastic POCT, fibrinolysis shutdown occurred early in sepsis. Significant increases in tissue plasminogen activator had no effect on thromboelastometrical lysis indices (LIs). Contrariwise, plasminogen activator inhibitor-1 was already significantly increased at sepsis onset, which was paralleled by significantly increased LIs in patients suffering from septic shock in comparison with both control groups. This effect persisted throughout the 7-day observation period and was most pronounced in severely ill as well as non-surviving septic patients. Thromboelastometrical LI, therefore, proved to be suitable for early diagnosis [e.g. LI 45 min: area under the curve (AUC) up to 0.933] as well as prognosis (e.g. LI 60 min: AUC up to 1.000) of septic shock. CONCLUSIONS Early inhibition of plasminogen activation leads to acute fibrinolysis shutdown with improved clot stability and is associated with increased morbidity and mortality in septic patients. Trial registration This study was approved by the local ethics committee (Ethics Committee of the Medical Faculty of Heidelberg; Trial-Code No. S247-2014/German Clinical Trials Register (DRKS)-ID: DRKS00008090; retrospectively registered: 07.05.2015). All study patients or their legal representatives signed written informed consent.
Collapse
Affiliation(s)
- Felix Carl Fabian Schmitt
- Department of Anesthesiology, Heidelberg University Hospital, 110, Im Neuenheimer Feld, 69120, Heidelberg, Germany
| | - Vasil Manolov
- Department of Anesthesiology, Heidelberg University Hospital, 110, Im Neuenheimer Feld, 69120, Heidelberg, Germany
| | - Jakob Morgenstern
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Fleming
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, Heidelberg, Germany.,German Centre for Diabetes Research (DZD), Neuherberg, Germany
| | | | - Florian Uhle
- Department of Anesthesiology, Heidelberg University Hospital, 110, Im Neuenheimer Feld, 69120, Heidelberg, Germany
| | - Mohammed Al-Saeedi
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Thilo Hackert
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Bruckner
- Institute of Medical Biometry and Informatics, University of Heidelberg, Heidelberg, Germany
| | - Herbert Schöchl
- Department of Anesthesiology and Intensive Care Medicine, AUVA Trauma Centre Salzburg, Academic Teaching Hospital of the Paracelsus Medical University, Salzburg, Austria.,Institute for Experimental and Clinical Traumatology, AUVA Research Centre, Vienna, Austria
| | - Markus Alexander Weigand
- Department of Anesthesiology, Heidelberg University Hospital, 110, Im Neuenheimer Feld, 69120, Heidelberg, Germany
| | - Stefan Hofer
- Clinic for Anesthesiology, Intensive Care and Emergency Medicine I, Westpfalz Hospital, Kaiserslautern, Germany
| | - Thorsten Brenner
- Department of Anesthesiology, Heidelberg University Hospital, 110, Im Neuenheimer Feld, 69120, Heidelberg, Germany.
| |
Collapse
|
15
|
Reddy AT, Lakshmi SP, Banno A, Reddy RC. Identification and Molecular Characterization of Peroxisome Proliferator-Activated Receptor δ as a Novel Target for Covalent Modification by 15-Deoxy-Δ 12,14-prostaglandin J 2. ACS Chem Biol 2018; 13:3269-3278. [PMID: 30398845 PMCID: PMC6470001 DOI: 10.1021/acschembio.8b00584] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PPARδ belongs to the peroxisome proliferator-activated receptor (PPAR) family of nuclear receptors. Upon activation by an agonist, PPARδ controls a variety of physiological processes via regulation of its target genes. 15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) is a cyclopentenone prostaglandin that features an electrophilic, α,β-unsaturated ketone (an enone) in the cyclopentenone ring. Many of 15d-PGJ2's biological effects result from covalent interaction between C9 and the thiol group of a catalytic cysteine (Cys) in target proteins. In this study, we investigated whether 15d-PGJ2 activates PPARδ by forming a covalent adduct. Our data show that 15d-PGJ2 activates PPARδ's transcriptional activity through formation of a covalent adduct between its endocyclic enone at C9 and Cys249 in the receptor's ligand-binding domain. As expected, no adduct formation was seen following a Cys-to-Ser mutation at residue 249 (C249S) of PPARδ or with a PGD2/PGJ2 analogue that lacks the electrophilic C9. Furthermore, the PPARδ C249S mutation weakened induction of the receptor's DNA binding activity by 15d-PGJ2, which highlights the biological significance of our findings. Calculated chemical properties as well as data from molecular orbital calculations, reactive molecular dynamics simulations, and intrinsic reaction coordinate modeling also supported the selectivity of 15d-PGJ2's C9 toward PPARδ's Cys thiol. In summary, our results provide the molecular, chemical, and structural basis of 15d-PGJ2-mediated PPARδ activation, designating 15d-PGJ2 as the first covalent PPARδ ligand to be identified.
Collapse
Affiliation(s)
- Aravind T. Reddy
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15240
| | - Sowmya P. Lakshmi
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15240
| | - Asoka Banno
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Raju C. Reddy
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15240
| |
Collapse
|
16
|
Quantification of eicosanoids and their metabolites in biological matrices: a review. Bioanalysis 2018; 10:2027-2046. [PMID: 30412686 DOI: 10.4155/bio-2018-0173] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The quantification of eicosanoids and their metabolites in biological samples remain an analytical challenge, even though a number of methodologies/techniques have been developed. The major difficulties encountered are related to the oxidation of eicosanoids and their low quantities in biological matrices. Among the known methodologies, liquid chromatography-mass spectrometry (LC-MS/MS) is the standard method for eicosanoid quantification in biological samples. Recently advances have improved the ability to identify and simultaneous quantitate eicosanoids in biological matrices. The present article reviews the quantitative analysis of eicosanoids in different biological matrices by LC and ultra performance liquid chromatography (UPLC)-MS/MS and discusses important aspects to be considered during the collection, sample preparation and the generation of calibration curves required for eicosanoid analysis.
Collapse
|