1
|
Zhou Y, Lin JY, Bian Y, Ren CJ, Xiao-Li N, Yang CY, Xiao-Xue X, Feng XS. Non-steroidal anti-inflammatory drugs (NSAIDs) in the environment: Updates on pretreatment and determination methods. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115624. [PMID: 37890254 DOI: 10.1016/j.ecoenv.2023.115624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/09/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used in human and animal health care to reduce persistent inflammation, pain and fever because of their anti-inflammatory, analgesic and antipyretic effects. However, the improper discharge and disposal make it becomes a major contaminant in the environment, which poses a big threat to the ecosystem. For this reason, accurate, sensitive, effective, green, and economic techniques are urgently required and have been rapidly developed in recent years. This review summarizes the advancement of sample preparation technologies for NSAIDs involving solid-phase extraction, solid-phase microextraction, liquid-phase microextraction, QuEChERS, and matrix solid-phase dispersion. Meanwhile, we overview and compare analytical technologies for NSAIDs, including liquid chromatography-based methods, gas chromatography-based methods, capillary electrophoresis, and sensors, particularly the development of liquid chromatography-based methods. Furthermore, we focus on their progress and conduct a comparison between their advantages and disadvantages.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jia-Yuan Lin
- School of Pharmacy, China Medical University, Shenyang 110122, China; Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yu Bian
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Chen-Jie Ren
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Ni Xiao-Li
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, China
| | - Chun-Yu Yang
- Department of Pharmacy, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| | - Xu Xiao-Xue
- Department of Neurology, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
2
|
Liu YJ, Zhang Y, Bian Y, Sang Q, Ma J, Li PY, Zhang JH, Feng XS. The environmental sources of benzophenones: Distribution, pretreatment, analysis and removal techniques. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115650. [PMID: 37939555 DOI: 10.1016/j.ecoenv.2023.115650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/21/2023] [Accepted: 10/27/2023] [Indexed: 11/10/2023]
Abstract
Benzophenones (BPs) have wide practical applications in real human life due to its presence in personal care products, UV-filters, drugs, food packaging bags, etc. It enters the wastewater by daily routine activities such as showering, impacting the whole aquatic system, then posing a threat to human health. Due to this fact, the monitoring and removal of BPs in the environment is quite important. In the past decade, various novel analytical and removal techniques have been developed for the determination of BPs in environmental samples including wastewater, municipal landfill leachate, sewage sludge, and aquatic plants. This review provides a critical summary and comparison of the available cutting-edge pretreatment, determination and removal techniques of BPs in environment. It also focuses on novel materials and techniques in keeping with the concept of "green chemistry", and describes on challenges associated with the analysis of BPs, removal technologies, suggesting future development strategies.
Collapse
Affiliation(s)
- Ya-Jie Liu
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yu Bian
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Qi Sang
- Hematology Laboratory, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Jing Ma
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Peng-Yun Li
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology Institution, Beijing 100850, China
| | - Ji-Hong Zhang
- Hematology Laboratory, Shengjing Hospital of China Medical University, Shenyang 110022, China.
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
3
|
Alampanos V, Kabir A, Furton K, Panderi I, Samanidou V. Capsule phase microextraction of six bisphenols from human breast milk using a monolithic polyethylene glycol sorbent-based platform prior to high performance liquid chromatography-photo-diode array detection determination. J Chromatogr A 2022; 1685:463615. [DOI: 10.1016/j.chroma.2022.463615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
|
4
|
A monolithic capsule phase microextraction method combined with HPLC-DAD for the monitoring of benzoyl urea insecticides in apple juice samples. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Manousi N, Kabir A, Furton KG, Tzanavaras PD, Zacharis CK. In situ synthesis of monolithic sol–gel polyethylene glycol-based sorbent encapsulated in porous polypropylene microextraction capsules and its application for selective extraction of antifungal and anthelmintic drugs from human urine. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
6
|
Designing an "all-in-one" microextraction capsule device for the liquid chromatographic-fluorescence determination of doxorubicin and its metabolites in rat plasma. J Chromatogr A 2022; 1680:463432. [PMID: 36041251 DOI: 10.1016/j.chroma.2022.463432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/24/2022]
Abstract
In this study, an "all-in-one" microextraction device was designed and fabricated for the extraction of doxorubicin and its two metabolites from rat plasma prior to their determination by high performance liquid chromatography coupled to fluorescence detector. A sol-gel-based sorbent was synthesized in situ and incorporated within two conjoined porous polypropylene tubes together with a cylindrical magnetic bar in order to avoid the need of an external stirring bar. Among other sorbents investigated, the moderately polar sol-gel poly(tetrahydrofuran) was found to be advantageous due to its high affinity toward the target analytes. Systematic investigation of the critical parameters affecting the adsorption and the desorption step was carried out. Due to the "built-in" filtration mechanism of the porous microextraction capsules, the isolation of the analytes was performed directly in the plasma matrix without any previous sample pretreatment (i.e., protein precipitation, centrifugation, etc.). The proposed method was validated in terms of linearity, accuracy, precision, specificity, sensitivity, and stability according to the FDA guidelines. The limits of detection ranged between 1 - 2 ng mL-1 while the lower limits of quantitation of the analytes were calculated as 10 ng mL-1. The accuracy (% relative error) was found within -9.7 - 15.3% under both intra- and inter-day conditions. The precision was better than 13.4% in all cases. ComplexGAPI index was employed to present the green attributes of the developed protocol from the preparation of the microextraction device to the final determination of the analytes. Finally, the applicability of the fabricated stand-alone extraction device was demonstrated in the analysis of the target analytes in rat plasma after intravenous administration of doxorubicin in order to assess its pharmacokinetic profile.
Collapse
|
7
|
Manousi N, Kabir A, Furton KG, Samanidou VF, Zacharis CK. Exploiting the capsule phase microextraction features in bioanalysis: Extraction of ibuprofen from urine samples. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106934] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Manousi N, Alampanos V, Priovolos I, Kabir A, Furton KG, Rosenberg E, Zachariadis GA, Samanidou VF. Designing a moderately hydrophobic sol-gel monolithic Carbowax 20 M sorbent for the capsule phase microextraction of triazine herbicides from water samples prior to HPLC analysis. Talanta 2021; 234:122710. [PMID: 34364502 DOI: 10.1016/j.talanta.2021.122710] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/30/2021] [Accepted: 07/09/2021] [Indexed: 01/23/2023]
Abstract
The determination of triazine herbicides in water samples is of utmost importance, due to their persistence and excessive use. However, since the concentration of triazine pesticides in real samples is low, an extraction/preconcentration step is typically required. Capsule phase microextraction (CPME) is a recently introduced sample preparation technique in which highly efficient sol-gel sorbents are encapsulated in a tubular polymer membrane. This particular design integrates the filtration and stirring mechanism into one extraction device, enabling the application of CPME for in situ sampling. In this study, CPME coupled to high performance liquid chromatography-diode array detection (HPLC-DAD) was employed for the first time for the determination of six triazine herbicides (i.e., simazine, cyanazine, atrazine, prometryn, terbuthylazine and propazine) in water samples. Microextraction capsules containing a moderately hydrophobic sol-gel Carbowax 20 M sorbent provided the highest extraction efficiency towards the examined pesticides. The main parameters affecting the adsorption and desorption steps of the CPME procedure were investigated and optimized. Under the selected conditions, limits of detection (signal/noise = 3.3) were 0.15 ng mL-1 for the target analytes. Moreover, the relative standard deviation for the within-day and between-days repeatability were less than 7.2% and 9.9%, respectively. The method was successfully applied to the analysis of mineral water, tap water, rainwater and lake water samples. The reported protocol could overcome the need for sample filtration prior to the sample preparation of the water samples, resulting in simplification of the overall sample handling, improved data quality with minimal loss of analytes and reduced sample preparation cost.
Collapse
Affiliation(s)
- Natalia Manousi
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Vasileios Alampanos
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Ioannis Priovolos
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Abuzar Kabir
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA
| | - Kenneth G Furton
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA
| | - Erwin Rosenberg
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, 1060, Vienna, Austria
| | - George A Zachariadis
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Victoria F Samanidou
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece.
| |
Collapse
|
9
|
Capsule phase microextraction of selected polycyclic aromatic hydrocarbons from water samples prior to their determination by gas chromatography-mass spectrometry. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106210] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
Nadal JC, Borrull F, Furton KG, Kabir A, Fontanals N, Marcé RM. Selective monitoring of acidic and basic compounds in environmental water by capsule phase microextraction using sol-gel mixed-mode sorbents followed by liquid chromatography-mass spectrometry in tandem. J Chromatogr A 2020; 1625:461295. [DOI: 10.1016/j.chroma.2020.461295] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 01/08/2023]
|
11
|
Determination of multiclass personal care products in continental waters by solid-phase microextraction followed by gas chromatography-tandem mass spectrometry. J Chromatogr A 2019; 1607:460398. [DOI: 10.1016/j.chroma.2019.460398] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 11/20/2022]
|
12
|
Portable stir membrane device for on-site environmental sampling and extraction. J Chromatogr A 2019; 1606:360359. [DOI: 10.1016/j.chroma.2019.07.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/05/2019] [Accepted: 07/06/2019] [Indexed: 01/12/2023]
|
13
|
Maciel EVS, de Toffoli AL, Neto ES, Nazario CED, Lanças FM. New materials in sample preparation: Recent advances and future trends. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115633] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
Georgiadis D, Tsalbouris A, Kabir A, Furton KG, Samanidou V. Novel capsule phase microextraction in combination with high performance liquid chromatography with diode array detection for rapid monitoring of sulfonamide drugs in milk. J Sep Sci 2019; 42:1440-1450. [DOI: 10.1002/jssc.201801283] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/09/2019] [Accepted: 01/19/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Doukas‐Evangelos Georgiadis
- Laboratory of Analytical ChemistryDepartment of ChemistryAristotle University of Thessaloniki Thessaloniki Greece
| | - Athanasios Tsalbouris
- Laboratory of Analytical ChemistryDepartment of ChemistryAristotle University of Thessaloniki Thessaloniki Greece
| | - Abuzar Kabir
- International Forensic Research InstituteDepartment of Chemistry and BiochemistryFlorida International University Miami FL USA
| | - Kenneth G. Furton
- International Forensic Research InstituteDepartment of Chemistry and BiochemistryFlorida International University Miami FL USA
| | - Victoria Samanidou
- Laboratory of Analytical ChemistryDepartment of ChemistryAristotle University of Thessaloniki Thessaloniki Greece
| |
Collapse
|