1
|
Carvalho IA, Silva CF, da Cunha R, Borges KB. Polypyrrole as Adsorbent in Magnetic Solid Phase Extraction for Progesterone Determination from Human Plasma. ACS OMEGA 2024; 9:39904-39913. [PMID: 39346890 PMCID: PMC11425601 DOI: 10.1021/acsomega.4c05456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/17/2024] [Accepted: 08/30/2024] [Indexed: 10/01/2024]
Abstract
A straightforward and effective chromatographic method has been created for the analysis of progesterone from human plasma using a composite based on polypyrrole/magnetic nanoparticles in the sample preparation procedure. The quantification of progesterone is necessary due to its importance in human development and fertility. The employed conditions used acetonitrile:ultrapure water (70:30, v/v) as the mobile phase at 1.0 mL min-1 and an octadecyl silane column (Phenomenex Gemini, 250 mm × 4.6 mm, 5 μm) at a wavelength of 235 nm. The composite and its precursors were synthesized and properly characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy/energy dispersive spectroscopy, thermogravimetric analysis, and point of zero charge. The main factors affecting the extraction recovery of progesterone from pool human plasma samples employing magnetic solid phase extraction have been studied, such as sample pH (without adjustment), sample volume (1000 μL), washing solvent (ultrapure water), eluent (acetonitrile), eluent volume (1000 μL), and amount of adsorbent (10 mg). The extraction recoveries ranged from 98% to 102%, and linearity ranged from 5 to 3000 ng mL-1. The correlation coefficient (r) was ≥0.99, and acceptable relative standard deviation (precision), relative error (accuracy), and p-values (robustness) were observed. Lastly, the plasma samples from pregnant women were successfully analyzed by the validated method.
Collapse
Affiliation(s)
- Iara Amorim Carvalho
- Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio 74, Fábricas, 36301-160 São João del-Rei, Minas Gerais, Brazil
| | - Camilla Fonseca Silva
- Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio 74, Fábricas, 36301-160 São João del-Rei, Minas Gerais, Brazil
| | - Raíra da Cunha
- Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio 74, Fábricas, 36301-160 São João del-Rei, Minas Gerais, Brazil
| | - Keyller Bastos Borges
- Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio 74, Fábricas, 36301-160 São João del-Rei, Minas Gerais, Brazil
| |
Collapse
|
2
|
Zhang C, Zhang P, Zhu W, Li S, Gu Y, Wu J, Wen D, Hao W, Wang K, Ma L, Lian K. Preparation of magnetic cationic Schiff base polymeric material for highly selective enrichment of avermectins from surface water and milk samples. J Chromatogr A 2024; 1731:465169. [PMID: 39043101 DOI: 10.1016/j.chroma.2024.465169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/05/2024] [Accepted: 07/13/2024] [Indexed: 07/25/2024]
Abstract
Herein, a magnetic cationic Schiff base polymeric material (Fe3O4@SiO2-Schiff-TAPB-DA) was fabricated simply and rapidly, which was explored as a magnetic adsorbent for magnetic solid-phase extraction (MSPE) for enriching seven avermectins insecticides in surface water and milk matrices combined with ultra-high performance liquid chromatography mass spectrometry (UPLC-MS/MS). Under the optimized pretreatment and instrumental parameters, the analytes showed good linearity in the range of 0.5-200.0 ng·mL-1 with a correlation coefficient (R2) greater than 0.9990 and high precision. The limits of detection for the analytes were 0.004-0.047 μg·L-1 for surface water sample and 0.008-0.250 μg·kg-1 for milk samples. Satisfactory recoveries of spiked target compounds were in the range of 82.25- 100.87 % for surface water sample and 72.73- 119.62 % for milk samples. The results indicated powerfully Fe3O4@SiO2-Schiff-TAPB-DA was of significant potential as an MSPE adsorbent for the detection of avermectin insecticides in surface water and milk, which provides a quick and efficient idea for enriching avermectins insecticides in complicated matrices.
Collapse
Affiliation(s)
- Can Zhang
- School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China; Chengdu Center for Disease Control and Prevention, Chengdu 610041, PR China
| | - Pingping Zhang
- Department of Reproductive and Genetics, Hebei General Hospital, Shijiazhuang 050051, PR China
| | - Wenyuan Zhu
- School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Shuo Li
- Shijiazhuang Technology Innovation Center for Chemical Poison Detection and Risk Early Warning, Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang 050011, PR China
| | - Yue Gu
- Shijiazhuang Technology Innovation Center for Chemical Poison Detection and Risk Early Warning, Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang 050011, PR China
| | - Jing Wu
- School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Di Wen
- Hebei Key Laboratory of Forensic Medicine, Hebei Province, Shijiazhuang 050017, PR China
| | - Weili Hao
- School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Ke Wang
- Shijiazhuang Technology Innovation Center for Chemical Poison Detection and Risk Early Warning, Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang 050011, PR China.
| | - Ling Ma
- Shijiazhuang Technology Innovation Center for Chemical Poison Detection and Risk Early Warning, Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang 050011, PR China.
| | - Kaoqi Lian
- School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Forensic Medicine, Hebei Province, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, PR China.
| |
Collapse
|
3
|
Silva CF, Nascimento CS, Borges KB. Restricted access polypyrrole employed in pipette-tip solid-phase extraction for determination of nimodipine and nicardipine in breast milk. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:2073-2081. [PMID: 37070706 DOI: 10.1039/d3ay00238a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A HPLC-UV method for the determination of nimodipine and nicardipine in breast milk using restricted access polypyrrole as an adsorbent in pipette-tip solid-phase extraction (PT-SPE) has been developed. The chromatographic conditions were a C18 column (150 mm × 4.60 mm, 5 μm) using methanol : acetonitrile : ultrapure water (55 : 30 : 15, v/v/v) at a flow rate of 1.0 mL min-1 and detection at 236 nm. The adsorbents have been synthesized and characterized by using Fourier-transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, surface analysis, wettability and point zero charge, and were then applied in sample preparation. The main parameters that affect analyte recovery from breast milk by PT-SPE were optimized and the analytical method showed recoveries around 100%, linearity from 3 to 3000 ng mL-1, and correlation coefficients (r) ≥ 0.99 for the two analytes, in addition to adequate precision, accuracy and robustness. Finally, the validated method has been successfully applied in analyses of breast milk from volunteers.
Collapse
Affiliation(s)
- Camilla F Silva
- Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio 74, Fábricas, 36301-160, São João del-Rei, Minas Gerais, Brazil.
| | - Clebio Soares Nascimento
- Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio 74, Fábricas, 36301-160, São João del-Rei, Minas Gerais, Brazil.
| | - Keyller Bastos Borges
- Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio 74, Fábricas, 36301-160, São João del-Rei, Minas Gerais, Brazil.
| |
Collapse
|
4
|
Qiao L, Xu J, Yang Z, Li X, Chen L, Sun H, Mu Y. Residual Risk of Avermectins in Food Products of Animal Origin and Their Research Progress on Toxicity and Determination. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2132402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Lu Qiao
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Sciences, Beijing, China
| | - Jinhua Xu
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Sciences, Beijing, China
| | - Zhen Yang
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Sciences, Beijing, China
| | - Xingyang Li
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Sciences, Beijing, China
- College of Food Science and Engineering, Bohai University, Jinzhou, China
| | - Lu Chen
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Sciences, Beijing, China
- College of Food Science and Engineering, Bohai University, Jinzhou, China
| | - Huiwu Sun
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Sciences, Beijing, China
| | - Yingchun Mu
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Sciences, Beijing, China
| |
Collapse
|
5
|
Wei W, Lu Z, Wu T, Wang H, Han Q, Liang Q. One-step fabrication of COF-coated melamine sponge for in-syringe solid-phase extraction of active ingredients from traditional Chinese medicine in serum samples. Anal Bioanal Chem 2022; 414:8071-8079. [PMID: 36169676 DOI: 10.1007/s00216-022-04340-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/23/2022] [Accepted: 09/09/2022] [Indexed: 11/24/2022]
Abstract
In this study, a covalent organic framework (COF)-TpBD-supported melamine sponge (MS) was fabricated through a one-step hydrothermal method. The obtained monolithic column was then applied in in-syringe solid-phase extraction (IS-SPE) for the separation of three volatile ingredients from serum samples. Given credit for the superior adsorption capacity of the COF and the homogeneous microporous property of MS, the developed column exhibited satisfactory separation of the targets. And the dominating adsorption mechanism was the hydrophobic interaction forces between TpBD and targets and the high mass transfer efficiency provided by the large pore structure of MS. The results of dynamic adsorption showed that the MS@TpBD column displayed much better adsorption performance than blank MS and TpBD. And it has featured great reusability up to 5 cycles and obtained satisfied recovery values (87.9 ~ 110.3%) in serum samples. As a result of sample clean-up, this column offers low limit of detections (LODs) down to 0.014, 0.010, and 0.020 μg/mL, respectively. In summary, we believe that this convenient separation column has prominent application promise in the fields of separating activity ingredients in biological samples.
Collapse
Affiliation(s)
- Wei Wei
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Tsinghua University, Beijing, 100084, China.,College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116000, China
| | - Zenghui Lu
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Ting Wu
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116000, China
| | - Haibo Wang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116000, China.
| | - Qiang Han
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| | - Qionglin Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
6
|
Development and Validation of a Multiresidue Method for the Determination of Macrocyclic Lactones, Monensin, and Fipronil in Bovine Liver by UHPLC-MS/MS Using a QuEChERS Extraction. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02354-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
7
|
Dutra FVA, Teixeira LS, Pires BC, Florez DHÂ, Teixeira RA, Borges KB. Development and validation of analytical methods by HPLC for quality control of avermectins and milbemycins in bulk samples. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e19587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
8
|
Sun H, Feng J, Han S, Ji X, Li C, Feng J, Sun M. Recent advances in micro- and nanomaterial-based adsorbents for pipette-tip solid-phase extraction. Mikrochim Acta 2021; 188:189. [PMID: 33991231 DOI: 10.1007/s00604-021-04806-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/21/2021] [Indexed: 11/30/2022]
Abstract
There are a lot of review papers of sample pretreatment, but the comprehensive review on pipette-tip solid-phase extraction (PT-SPE) is lacking. This review (133 references) is mainly devoted to the development of different types of micro- and nanosorbent-based PT-SPE, including silica materials, carbon materials, organic polymers, molecularly imprinted polymers, and metal-organic frameworks. Each section mainly introduces and discusses the preparation methods, advantages and limitations of adsorbents, and their applications to environmental, biological, and food samples. This review also demonstrates the advantages of PT-SPE like convenience, speed, less organic solvent, and low cost. Finally, the future application and development trend of PT-SPE are prospected.
Collapse
Affiliation(s)
- Haili Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Juanjuan Feng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Sen Han
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Xiangping Ji
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Chunying Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Jiaqing Feng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Min Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China.
| |
Collapse
|
9
|
Polythiophene as highly efficient sorbent for microextraction in packed sorbent for determination of steroids from bovine milk samples. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Dutra FVA, Pires BC, Coelho MM, Costa RA, Francisco CS, Lacerda V, Borges KB. Restricted access macroporous magnetic polyaniline for determination of coumarins in rat plasma. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Zhang C, Zhong Y, He Q, Shen D, Ye M, Lu M, Cui X, Zhao S. Positively Charged Nanogold Combined with Expanded Mesoporous Silica-Based Immunoassay for the Detection of Avermectin. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01732-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
12
|
Anacleto SDS, de Oliveira HL, da Silva ATM, do Nascimento TA, Borges MMC, Silva RCDS, Pereira AC, Borges KB. Assessment of the Performance of Solid Phase Extraction Based on Pipette Tip Employing a Hybrid Molecularly Imprinted Polymer as an Adsorbent for Enantioselective Determination of Albendazole Sulfoxide. J Chromatogr Sci 2019; 57:671-678. [DOI: 10.1093/chromsci/bmz036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 01/29/2019] [Accepted: 03/26/2019] [Indexed: 11/13/2022]
Abstract
Abstract
Herein, an organic–inorganic hybrid molecularly imprinted polymer (MIP) was successfully synthesized with albendazole sulfoxide (ABZSO) as a template and 3-(trimethoxysilyl)propyl methacrylate, a bifunctional group compound, as a single cross-linking agent. In this study, a simple method using HPLC–DAD was developed for the determination of ABZSO enantiomers in human urine using pipette tip-based molecularly imprinted polymer solid phase extraction (PT–MIP–SPE). Enantioseparation with satisfactory retention times (5.17 and 7.09 min), acceptable theoretical plates (N = 4,535 and 5,091) and strong resolution (Rs = 5.45) was performed with an Agilent® Eclipse Plus C18 (100 mm × 4.6 mm, 3.5 μm) coupled with a Chiralpak® IA column (100 mm × 4.6 mm, 3 μm), a mixture with ethanol:water (50:50, v/v) as the mobile phase, temperature at 40°C, flow rate at 0.9 mL min−1 and λ = 230 nm. Thereafter, certain parameters affecting the PT–MIP–SPE were investigated in detail and the better conditions were: 300 μL of water as washing solvent, 500 μL of ethanol:acetic acid (9:1, v/v) as eluting solvent, 20 mg of MIP, 500 μL of human urine at pH 9 and no addition of NaCl. Recoveries/relative standard deviation (RSD%) for (R)-(+)-ABZSO and (S)-(−)-ABZSO were 78.2 ± 0.2% and 69.7 ± 1.7%, respectively.
Collapse
Affiliation(s)
- Sara da Silva Anacleto
- Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio 74, Fábricas, 36301-160, São João del-Rei, Minas Gerais, Brazil
| | - Hanna Leijoto de Oliveira
- Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio 74, Fábricas, 36301-160, São João del-Rei, Minas Gerais, Brazil
| | - Anny Talita Maria da Silva
- Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio 74, Fábricas, 36301-160, São João del-Rei, Minas Gerais, Brazil
| | - Tienne Aparecida do Nascimento
- Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio 74, Fábricas, 36301-160, São João del-Rei, Minas Gerais, Brazil
| | - Marcella Matos Cordeiro Borges
- Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio 74, Fábricas, 36301-160, São João del-Rei, Minas Gerais, Brazil
| | - Ricky Cássio dos Santos Silva
- Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio 74, Fábricas, 36301-160, São João del-Rei, Minas Gerais, Brazil
| | - Arnaldo César Pereira
- Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio 74, Fábricas, 36301-160, São João del-Rei, Minas Gerais, Brazil
| | - Keyller Bastos Borges
- Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio 74, Fábricas, 36301-160, São João del-Rei, Minas Gerais, Brazil
| |
Collapse
|