1
|
Xia Z, Xu H, Huang A, Hao W, Wu D, Yin S, He H. Theoretical Investigations on the Sensing Mechanism of Dicyanoisophorone Fluorescent Probe for the Detection of Hydrogen Sulfide. J Fluoresc 2024:10.1007/s10895-024-03911-6. [PMID: 39298055 DOI: 10.1007/s10895-024-03911-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 08/07/2024] [Indexed: 09/21/2024]
Abstract
As one of the biomolecules, hydrogen sulfide (H2S) has received a lot of attention. Recent studies have shown that endogenous hydrogen sulfide plays different roles in different organs in biological systems. Fluorescent probe technology has been widely adopted due to its many advantages such as low cost, simple operation, and high sensitivity. Among many probes, dicyanoisophorone fluorophore is often used in probe design for real-time detection of endogenous H2S due to the large Stokes shift and long fluorescence emission wavelength. In this paper, the fluorescence sensing mechanism of dicyanoisophorone-like probe L and its product 3 with near-infrared fluorescence emission has been theoretically investigated by using theory methods. The analysis of infrared (IR) vibration spectra and reduced density gradient (RDG) showed that the hydrogen bond of the enolic structure of product 3 was significantly enhanced in the S1 state. The spectroscopic information revealed that the emission of NIR fluorescence originated from the keto structure of the product. Finally, potential energy curves and frontier molecular orbitals diagrams showed that the fluorescence quenching phenomenon of the probe L was attributed to the photoinduced electron transfer (PET) process, whereas the product 3 generated after the detection of H2S undergoes the excited state intramolecular proton transfer (ESIPT) process.
Collapse
Affiliation(s)
- Zhicheng Xia
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Honghong Xu
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Anran Huang
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Wenxuan Hao
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Dongxia Wu
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Shibin Yin
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, 530004, China
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, China
| | - Haixiang He
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China.
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, 530004, China.
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
2
|
Ilakiyalakshmi M, Dhanasekaran K, Napoleon AA. A Review on Recent Development of Phenothiazine-Based Chromogenic and Fluorogenic Sensors for the Detection of Cations, Anions, and Neutral Analytes. Top Curr Chem (Cham) 2024; 382:29. [PMID: 39237745 DOI: 10.1007/s41061-024-00474-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/22/2024] [Indexed: 09/07/2024]
Abstract
This review provides an in-depth examination of recent progress in the development of chemosensors, with a particular emphasis on colorimetric and fluorescent probes. It systematically explores various sensing mechanisms, including metal-to-ligand charge transfer (MLCT), ligand-to-metal charge transfer (LMCT), photoinduced electron transfer (PET), intramolecular charge transfer (ICT), and fluorescence resonance energy transfer (FRET), and elucidates the mechanism of action for cation and anion chemosensors. Special attention is given to phenothiazine-based fluorescence probes, highlighting their exceptional sensitivity and rapid detection abilities for a broad spectrum of analytes, including cations, anions, and small molecules. Phenothiazine chemosensors have emerged as versatile tools widely employed in a multitude of applications, spanning environmental and biomedical fields. Furthermore, it addresses existing challenges and offers insights into future research directions, aiming to facilitate the continued advancement of phenothiazine-based fluorescent probes.
Collapse
Affiliation(s)
- Mohan Ilakiyalakshmi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Kumudhavalli Dhanasekaran
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Ayyakannu Arumugam Napoleon
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
3
|
Li ZY, Xiao MM, Zheng Y, Zhao BX. A spectroscopic probe with FRET-ICT feature for thiophenol monitoring in real water samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121397. [PMID: 35598576 DOI: 10.1016/j.saa.2022.121397] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/06/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Thiophenol (PhSH) is widely used in industry, however, it is extremely harmful to the environment and human health due to its high toxicity. In this work, we developed a new FRET-ICT-based ratiometric fluorescent and colorimetric probe (DMNP) for detecting PhSH. DMNP had an ultrahigh energy transfer efficiency (99.7%) and clear spacing of two emission peaks (133 nm). DMNP achieved a fast response to PhSH and exhibited drastic enhancement (over 2100 folds) of the fluorescence intensity ratio upon addition of PhSH. DMNP showed good linear response in the PhSH concentration ranges of 0.5-13 μM and 17.0-22.0 μM. Meanwhile, DMNP could also be applied to monitor PhSH in a variety of real water samples.
Collapse
Affiliation(s)
- Zhang-Yi Li
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China.
| | - Meng-Min Xiao
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China.
| | - Yi Zheng
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China.
| | - Bao-Xiang Zhao
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China.
| |
Collapse
|
4
|
Lu X, Zhan Y, He W. Recent development of small-molecule fluorescent probes based on phenothiazine and its derivates. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 234:112528. [PMID: 35907277 DOI: 10.1016/j.jphotobiol.2022.112528] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 07/06/2022] [Accepted: 07/14/2022] [Indexed: 05/20/2023]
Abstract
Fluorescence probes, as analytical tools with the ability to perform rapid and sensitive detection of target analytes, have made outstanding contributions to environmental analysis and bioassays. Considering the expanding developments in these areas, fluorophores play a key role in the de-sign of fluorescence probes. Compared to classical fluorophores, phenothiazines with elec-tron-rich characteristics have been widely applied to construct electron donor-acceptor dyes, which exhibit outstanding performance in both fluorimetric and colorimetric analysis. In addition, these probes also exhibit the pronounced ability in both solution and solid-state, achieving portable detection for environmental analysis. In this review, we summarize recent advances in the performance of phenothiazine-based fluorescent probes for detecting various analytes, especially in cations, anions, ROS/RSS, enzyme and other small molecules. The general design rules, response mechanisms and practical applications of the probes are analyzed, followed by a discussion of exiting challenges and future research perspectives. It is hoped that this review will provide a few strategies for the development of phenothiazine-based fluorescent probes.
Collapse
Affiliation(s)
- Xianlin Lu
- School of Pharmacy, The Air Force Medical University, Xi'an 710032, PR China
| | - Yu Zhan
- School of Pharmacy, The Air Force Medical University, Xi'an 710032, PR China
| | - Wei He
- School of Pharmacy, The Air Force Medical University, Xi'an 710032, PR China.
| |
Collapse
|
5
|
Tong X, Hao L, Song X, Wu S, Zhang N, Li Z, Chen S, Hou P. A fast-responsive fluorescent probe based on a styrylcoumarin dye for visualizing hydrogen sulfide in living MCF-7 cells and zebrafish. RSC Adv 2022; 12:17846-17852. [PMID: 35765346 PMCID: PMC9201871 DOI: 10.1039/d2ra00997h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/02/2022] [Indexed: 12/22/2022] Open
Abstract
As a vital antioxidant molecule, H2S can make an important contribution to regulating blood vessels and inhibiting apoptosis when present at an appropriate concentration. Higher levels of H2S can interfere with the physiological responses of the respiratory system and central nervous system carried out by mammalian cells. This is associated with many illnesses, such as diabetes, mental decline, cardiovascular diseases, and cancer. Therefore, the accurate measurement of H2S in organisms and the environment is of great significance for in-depth studies of the pathogenesis of related diseases. In this contribution, a new coumarin-carbazole-based fluorescent probe, COZ-DNBS, showing a rapid response and large Stokes shift was rationally devised and applied to effectively sense H2S in vivo and in vitro. Upon using the probe COZ-DNBS, the established fluorescent platform could detect H2S with excellent selectivity, showing 62-fold fluorescence enhancement, a fast-response time (<1 min), high sensitivity (38.6 nM), a large Stokes shift (173 nm), and bright-yellow emission. Importantly, the probe COZ-DNBS works well for monitoring levels of H2S in realistic samples, living MCF-7 cells, and zebrafish, showing that COZ-DNBS is a promising signaling tool for H2S detection in biosystems. The probe COZ-DNBS displayed excellent selectivity, a fast response, high sensitivity, a large Stokes shift, and bright-yellow emission in response to H2S.![]()
Collapse
Affiliation(s)
- Xu Tong
- The Third Affiliated Hospital, Qiqihar Medical University Qiqihar 161006 China
| | - Liguo Hao
- College of Medical Technology, Qiqihar Medical University Qiqihar 161006 China
| | - Xue Song
- The Third Affiliated Hospital, Qiqihar Medical University Qiqihar 161006 China
| | - Shuang Wu
- The Third Affiliated Hospital, Qiqihar Medical University Qiqihar 161006 China
| | - Na Zhang
- The Third Affiliated Hospital, Qiqihar Medical University Qiqihar 161006 China
| | - Zhongtao Li
- College of Medical Technology, Qiqihar Medical University Qiqihar 161006 China
| | - Song Chen
- College of Pharmacy, Qiqihar Medical University Qiqihar 161006 China
| | - Peng Hou
- College of Pharmacy, Qiqihar Medical University Qiqihar 161006 China
| |
Collapse
|
6
|
Lu J, Yang J, Gu J, Yang J, Gao Z, Su L, Tao X, Yuan M, Yang L. Mono-(6-diethylenetriamine-6-deoxy)- β-cyclodextrin Supramolecular Fluorescent Switch Constructed Based on Au 3+ and I –. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202111024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Yang X, Ou W, Zhao S, Wang L, Chen J, Kusko R, Hong H, Liu H. Human transthyretin binding affinity of halogenated thiophenols and halogenated phenols: An in vitro and in silico study. CHEMOSPHERE 2021; 280:130627. [PMID: 33964751 DOI: 10.1016/j.chemosphere.2021.130627] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 06/12/2023]
Abstract
Serious harmful effects have been reported for thiophenols, which are widely used industrial materials. To date, little information is available on whether such chemicals can elicit endocrine-related detrimental effects. Herein the potential binding affinity and underlying mechanism of action between human transthyretin (hTTR) and seven halogenated-thiophenols were examined experimentally and computationally. Experimental results indicated that the halogenated-thiophenols, except for pentafluorothiophenol, were powerful hTTR binders. The differentiated hTTR binding affinity of halogenated-thiophenols and halogenated-phenols were observed. The hTTR binding affinity of mono- and di-halo-thiophenols was higher than that of corresponding phenols; while the opposite relationship was observed for tri- and penta-halo-thiophenols and phenols. Our results also confirmed that the binding interactions were influenced by the degree of ligand dissociation. Molecular modeling results implied that the dominant noncovalent interactions in the molecular recognition processes between hTTR and halogenated-thiophenols were ionic pair, hydrogen bonds and hydrophobic interactions. Finally, a model with acceptable predictive ability was developed, which can be used to computationally predict the potential hTTR binding affinity of other halogenated-thiophenols and phenols. Taken together, our results highlighted that more research is needed to determine their potential endocrine-related harmful effects and appropriate management actions should be taken to promote their sustainable use.
Collapse
Affiliation(s)
- Xianhai Yang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Wang Ou
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Songshan Zhao
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Lianjun Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Rebeca Kusko
- Immuneering Corporation, Cambridge, MA, 02142, USA
| | - Huixiao Hong
- National Center for Toxicological Research US Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Huihui Liu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
8
|
Cui H, Hou P, Li Y, Sun J, Zhang H, Zheng Y, Liu Q, Chen S. Ratiometric fluorescence imaging of hypochlorous acid in living cells and zebrafish using a novel phenothiazine-fused HPQ probe. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113343] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Chao J, Wang Z, Zhang Y, Huo F, Yin C, Li M, Duan Y. A Pyrene-Based Fluorescent Probe for Specific Detection of Cysteine and its Application in Living Cell. J Fluoresc 2021; 31:727-732. [PMID: 33609214 DOI: 10.1007/s10895-021-02703-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/11/2021] [Indexed: 01/23/2023]
Abstract
Cysteine (Cys) is an essential amino acid in organism, which is transformed from methionine in vivo and participates in protein synthesis and cell redox process. Therefore, the detection of Cys is of great significance. In this work, a novel fluorescent probe, (E)-3-(2-chloroquinolin-3-yl)-1-(pyren-3-yl) prop-2-en-1-one (PAQ) was designed and synthesized to specifically detect Cys. The response mechanism of the reaction between PAQ and Cys was due to the addition reaction of Cys to α,β-unsaturated ketone of PAQ. Interestingly, the addition of Cys induced significant fluorescence intensity enhancement at 462 nm. PAQ exhibited favorable sensing properties towards Cys such as the low limit of detection (0.27 μM) and fast response speed (2 min). In addition, PAQ displayed high selectivity and anti-interference ability toward Cys among various analytes. Notably, PAQ has been successfully used to image exogenous and endogenous Cys in HeLa cells.
Collapse
Affiliation(s)
- Jianbin Chao
- Scientific Instrument Center, Shanxi University, Taiyuan, 030006, China.
| | - Zhuo Wang
- Scientific Instrument Center, Shanxi University, Taiyuan, 030006, China
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Yongbin Zhang
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan, 030006, China
| | - Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan, 030006, China
| | - Caixia Yin
- Institute of Molecular Science, Shanxi University, Taiyuan, 030006, China
| | - Ming Li
- Scientific Instrument Center, Shanxi University, Taiyuan, 030006, China
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Yuexiang Duan
- Scientific Instrument Center, Shanxi University, Taiyuan, 030006, China
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| |
Collapse
|
10
|
A Phenothiazine-HPQ Based Fluorescent Probe with a Large Stokes Shift for Sensing Biothiols in Living Systems. Molecules 2021; 26:molecules26082337. [PMID: 33920567 PMCID: PMC8072808 DOI: 10.3390/molecules26082337] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 01/21/2023] Open
Abstract
Due to the redox properties closely related to numerous physiological and pathological processes, biothiols, including cysteine (Cys), homocysteine (Hcy) and glutathione (GSH), have received considerable attention in biological science. On account of the important physiological roles of these biothiols, it is of profound significance to develop sensitive and selective detection of biothiols to understand their biological profiles. In this work, we reported an efficient fluorescent probe, PHPQ-SH, for detecting biothiols in vitro and vivo, based on the phenothiazine-HPQ skeleton, with DNBS (2,4-dinitrobenzenesulfonate) as the response unit. Probe PHPQ-SH exhibited brilliant sensing performances toward thiols, including a large Stokes shift (138 nm), excellent sensitivity (for GSH, LOD = 18.3 nM), remarkable fluorescence enhancement (163-fold), low cytotoxicity, rapid response (8 min), and extraordinary selectivity. Finally, the probe PHPQ-SH illustrated herein was capable of responding and visualizing biothiols in MCF-7 cells and zebrafish.
Collapse
|
11
|
LU XL, HE W. Research Advances in Excited State Intramolecular Proton Transfer Fluorescent Probes Based on Combined Fluorescence Mechanism. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1016/s1872-2040(20)60078-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
N-Alkylation of 2-methoxy-10H-phenothiazine revisited. A facile entry to diversely N-substituted phenothiazine-coumarin hybrid dyes. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152582] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
13
|
Duan Y, Ding G, Yao M, Wang Q, Guo H, Wang X, Zhang Y, Li J, Li X, Qin X. Novel triphenylamine-based fluorescent chemo-sensors for fast detection of thiophenols in vitro and in vivo. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 236:118348. [PMID: 32334384 DOI: 10.1016/j.saa.2020.118348] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/15/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
A novel chemo-sensor based on triphenylamine derivative Probe-TPA for thiophenols (C6H5SH, p-NH2-C6H4SH, p-OH-C6H4SH) detection was presented in this work. The target dye Probe-TPA displayed high selectivity and extremely fast response toward thiophenols in DMSO/PBS buffer (5/5, v/v) solution in the presence of other competitive species (such as K+, Na+, Ni2+, Fe3+, S2-, HS-, SO42-, SO32-, NaClO, H2O2, GSH, Cys, Hcy, etc.). The sensing property for thiophenols was studied by UV-Visible, fluorescence spectrophotometric analyses and DFT/TD-DFT calculations, those results indicated that the sensor Probe-TPA possessed high anti-interference ability, excellent sensitivity, higher specifity, dramatically "naked-eye" fluorescence enhancement (almost 200-folds) under 365 nm UV lamp, especially immediate response speed (within 15 s). In extended application aspect, the fluorescent chemo-sensor Probe-TPA could provide a new method of analysis to detect of thiophenol in real water samples and visualize monitoring in live cells with remarkable fluorescence variation.
Collapse
Affiliation(s)
- Yuanke Duan
- College of Pharmacy, Heze University, Heze, Shandong Province, China
| | - Ge Ding
- Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, Yongchuan 402160, China.
| | - Mengyu Yao
- College of Pharmacy, Heze University, Heze, Shandong Province, China
| | - Qi Wang
- College of Pharmacy, Heze University, Heze, Shandong Province, China
| | - Hui Guo
- College of Pharmacy, Heze University, Heze, Shandong Province, China
| | - Xinchao Wang
- College of Pharmacy, Heze University, Heze, Shandong Province, China.
| | - Yanfen Zhang
- College of Pharmacy, Heze University, Heze, Shandong Province, China.
| | - Junye Li
- College of Pharmacy, Heze University, Heze, Shandong Province, China.
| | - Xiujuan Li
- College of Pharmacy, Heze University, Heze, Shandong Province, China.
| | - Xiaozhuan Qin
- Zhengzhou Institute of Technology, School of Chemical Engineering & Food Science, Henan, Zhengzhou 450044, China.
| |
Collapse
|
14
|
Benzothiazole applications as fluorescent probes for analyte detection. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-01998-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
15
|
Gai J, Chen C, Huang J, Sheng J, Chen W, Song X. An acetophenothiazine-based fluorescence probe for multi-channel imaging of thiophenol with a large Stokes shift. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
16
|
Sun X, Kong C, Zhang H. Sensing mechanism of a fluorescent probe for thiophenols: Invalidity of excited-state intramolecular proton transfer mechanism. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 231:118129. [PMID: 32058919 DOI: 10.1016/j.saa.2020.118129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/30/2019] [Accepted: 02/03/2020] [Indexed: 05/14/2023]
Abstract
Simple and effective detection of thiophenols has attracted great attention. A fluorescent probe 1 with high selectivity and sensitivity is designed and synthesized based on the excited-state intramolecular proton transfer (ESIPT) in experiment. However, we conclude that the ESIPT process fails to happen actually based on the calculation results. In the present work, the density functional theory (DFT) and time-dependent density functional theory (TD-DFT) methods are employed to investigate the real sensing mechanism. The calculated absorption and emission spectra agree well with the experimental results. By comparing the energy of enol and keto configurations and the constructed potential energy surfaces (PESs) in the ground (S0) and excited (S1) states of 3-(benzo[d]thiazol-2-yl)-10-butyl-10H-phenothiazin-2-ol (dye 2), the ESIPT process is confirmed impossible because of the relatively high keto form energy and potential energy barrier. Besides, the transition state of dye 2 is optimized to offer the accurate potential energy barrier. The results of calculated frontier molecular orbitals (FMOs) and spectra indicate that it is the photoinduced electron transfer (PET) process that results in the fluorescence quenching of probe 1. After adding thiophenols, the thiolysis of 2,4-dinitrophenyl ether bond is triggered and dye 2, which emits strong fluorescence because of the absence of PET process, is obtained. Consequently, our study has demonstrated that probe 1 can act as a fluorescent probe to detect thiophenols through the off-on fluorescence variation based on the PET mechanism but not the ESIPT process.
Collapse
Affiliation(s)
- Xiaofei Sun
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, People's Republic of China
| | - Chuipeng Kong
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, People's Republic of China.
| | - Hongxing Zhang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, People's Republic of China.
| |
Collapse
|
17
|
Qiu XY, Liu SJ, Hao YQ, Sun JW, Chen S. Phenothiazine-based fluorescence probe for ratiometric imaging of hydrazine in living cells with remarkable Stokes shift. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 227:117675. [PMID: 31670047 DOI: 10.1016/j.saa.2019.117675] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/28/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
By modifying the 10-butyl-2-methoxy-10H-phenothiazine-3-carbaldehyde with malonontrile group, a new fluorescent sensor PBM for selective detection of hydrazine in ratiometric mode has been developed. Probe PBM owned the advantages of quick response (10 min), remarkable Stokes shift (168 nm for PBM, 161 nm for PBM-NH2), excellent selectivity, high sensitivity (detection limit of 63.2 nM was obtained from in vitro experiment), profound ratiometric change (82-fold) and low cytotoxicity in response to hydrazine. Additionally, it could be utilized to monitor hydrazine in gas state with various concentrations through vivid color changes and imaged hydrazine in living MCF-7 cells with excellent performance.
Collapse
Affiliation(s)
- Xiao-Yang Qiu
- College of Science & Technology, Ningbo University, Ningbo, Zhejiang Province, 315212, PR China; State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, PR China.
| | - Shu-Juan Liu
- College of Science & Technology, Ningbo University, Ningbo, Zhejiang Province, 315212, PR China
| | - Yuan-Qiang Hao
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, PR China
| | - Jing-Wen Sun
- College of Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang Province, 161006, PR China
| | - Song Chen
- College of Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang Province, 161006, PR China.
| |
Collapse
|
18
|
Chen S, Hou P, Sun J, Wang H, Liu L. Imidazo[1,5-α]pyridine-based fluorescent probe with a large Stokes shift for specific recognition of sulfite. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 225:117508. [PMID: 31499393 DOI: 10.1016/j.saa.2019.117508] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/27/2019] [Accepted: 09/02/2019] [Indexed: 06/10/2023]
Abstract
By taking advantage of the intramolecular charge transfer (ICT) process, we presented a novel fluorescent probe IPY-SO2 based on imidazo[1,5-α]pyridine derivative for detecting SO32- with a low detection limit (70 nM). Combining its favorable turn-on fluorescence feature (75-fold), rapid response (5 min), high selectivity, large Stokes shift (174 nm) and low cytotoxicity, IPY-SO2 was successfully applied to imaging SO32 in living MCF-7 cells and zebrafish.
Collapse
Affiliation(s)
- Song Chen
- College of Pharmacy, Qiqihar Medical University, 333 Bukui Street, Qiqihar, Heilongjiang Province 161006, PR China,.
| | - Peng Hou
- College of Pharmacy, Qiqihar Medical University, 333 Bukui Street, Qiqihar, Heilongjiang Province 161006, PR China
| | - Jingwen Sun
- College of Pharmacy, Qiqihar Medical University, 333 Bukui Street, Qiqihar, Heilongjiang Province 161006, PR China
| | - Haijun Wang
- College of Pharmacy, Qiqihar Medical University, 333 Bukui Street, Qiqihar, Heilongjiang Province 161006, PR China
| | - Lei Liu
- College of Pharmacy, Qiqihar Medical University, 333 Bukui Street, Qiqihar, Heilongjiang Province 161006, PR China
| |
Collapse
|
19
|
Yang JL, Yang YH, Xun YP, Wei KK, Gu J, Chen M, Yang LJ. Novel Amino-pillar[5]arene as a Fluorescent Probe for Highly Selective Detection of Au 3+ Ions. ACS OMEGA 2019; 4:17903-17909. [PMID: 31681900 PMCID: PMC6822224 DOI: 10.1021/acsomega.9b02951] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
A novel fluorescent probe, amino-pillar[5]arene (APA), was prepared via a green, effective, and convenient synthetic method, which was characterized by nuclear magnetic resonance (NMR), infrared (IR), and high-resolution mass spectrometry. The fluorescence sensing behavior of the APA probe toward 22 metal ions in aqueous solutions were studied by fluorescence spectroscopy. The results showed that APA could be used as a selective fluorescent probe for the specificity detection of Au3+ ions. Moreover, the detection characteristics were investigated by fluorescence spectral titration, pH effect, fluorescence competitive experiments, Job's plot analysis, 1H NMR, and IR. The results indicated that detection of Au3+ ions by the APA probe could be achieved in the range of pH 1-13.5 and that other coexisting metal ions did not cause any marked interference. The titration analysis results indicated that the fluorescence intensity decreased as the concentration of Au3+ ions increased, with an excellent correlation (R 2 = 0.9942). The detection limit was as low as 7.59 × 10-8 mol·L-1, and the binding ratio of the APA probe with Au3+ ions was 2:1. Therefore, the APA probe has potential applications for detecting Au3+ ions in the environment and in living organisms.
Collapse
Affiliation(s)
- Jun-Li Yang
- School of Chemistry & Environment,
Key Laboratory of Intelligent Supramolecular Chemistry at the University
of Yunnan Province, National and Local Joint Engineering Research
Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Yun-Han Yang
- School of Chemistry & Environment,
Key Laboratory of Intelligent Supramolecular Chemistry at the University
of Yunnan Province, National and Local Joint Engineering Research
Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Yu-Peng Xun
- School of Chemistry & Environment,
Key Laboratory of Intelligent Supramolecular Chemistry at the University
of Yunnan Province, National and Local Joint Engineering Research
Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Ke-Ke Wei
- School of Chemistry & Environment,
Key Laboratory of Intelligent Supramolecular Chemistry at the University
of Yunnan Province, National and Local Joint Engineering Research
Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Jie Gu
- School of Chemistry & Environment,
Key Laboratory of Intelligent Supramolecular Chemistry at the University
of Yunnan Province, National and Local Joint Engineering Research
Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Mei Chen
- School of Chemistry & Environment,
Key Laboratory of Intelligent Supramolecular Chemistry at the University
of Yunnan Province, National and Local Joint Engineering Research
Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Li-Juan Yang
- School of Chemistry & Environment,
Key Laboratory of Intelligent Supramolecular Chemistry at the University
of Yunnan Province, National and Local Joint Engineering Research
Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, P. R. China
| |
Collapse
|
20
|
Hao Y, Yin Q, Zhang Y, Xu M, Chen S. Recent Progress in the Development of Fluorescent Probes for Thiophenol. Molecules 2019; 24:E3716. [PMID: 31623065 PMCID: PMC6832550 DOI: 10.3390/molecules24203716] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/14/2019] [Accepted: 10/14/2019] [Indexed: 02/07/2023] Open
Abstract
Thiophenol (PhSH) belongs to a class of highly reactive and toxic aromatic thiols with widespread applications in the chemical industry for preparing pesticides, polymers, and pharmaceuticals. In this review, we comprehensively summarize recent progress in the development of fluorescent probes for detecting and imaging PhSH. These probes are classified according to recognition moieties and are detailed on the basis of their structures and sensing performances. In addition, prospects for future research are also discussed.
Collapse
Affiliation(s)
- Yuanqiang Hao
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, China.
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China.
| | - Qianye Yin
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China.
| | - Yintang Zhang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, China.
| | - Maotian Xu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, China.
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Shu Chen
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China.
| |
Collapse
|
21
|
Zhang Y, Li H, Gao W, Pu S. Dual recognition of Al 3+ and Zn 2+ ions by a novel probe based on diarylethene and its application. RSC Adv 2019; 9:27476-27483. [PMID: 35529243 PMCID: PMC9070649 DOI: 10.1039/c9ra05652a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 08/20/2019] [Indexed: 11/23/2022] Open
Abstract
We synthesized a new fluorescent probe 1O by attaching a diarylethene molecule to a functional group. The probe can be used to detect Al3+ and Zn2+ at the same time with high selectivity, and its detection limit is very low. When Al3+ was added, the fluorescence intensity was increased 310 folds, and was accompanied by a fluorescent color change from black to grass-green. Similarly, after the addition of Zn2+, the fluorescence intensity was enhanced 110 folds, with a concomitant color change from black to yellow-green. Moreover, based on the properties of 1O, we designed a logic circuit, and that also can be used for water sample testing.
Collapse
Affiliation(s)
- Yaping Zhang
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University Nanchang 330013 P. R. China +86-791-83831996 +86-791-83831996
| | - Hui Li
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University Nanchang 330013 P. R. China +86-791-83831996 +86-791-83831996
| | - Wendan Gao
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University Nanchang 330013 P. R. China +86-791-83831996 +86-791-83831996
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University Nanchang 330013 P. R. China +86-791-83831996 +86-791-83831996
| |
Collapse
|
22
|
Jin X, Zhao S, Wang T, Si L, Liu Y, Zhao C, Zhou H, Leng X, Zhang X. Near-infrared fluorescent probe for selective detection of H2S and its application in living animals. Anal Bioanal Chem 2019; 411:5985-5992. [DOI: 10.1007/s00216-019-01973-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/06/2019] [Accepted: 06/11/2019] [Indexed: 10/26/2022]
|