1
|
Lin S, Hunt CJ, Holck J, Brask J, Krogh KBRM, Meyer AS, Wilkens C, Agger JW. Fungal feruloyl esterases can catalyze release of diferulic acids from complex arabinoxylan. Int J Biol Macromol 2023; 232:123365. [PMID: 36690236 DOI: 10.1016/j.ijbiomac.2023.123365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Feruloyl esterases (FAEs, EC 3.1.1.73) catalyze the hydrolytic cleavage of ester bonds between feruloyl and arabinosyl moieties in arabinoxylans. Recently, we discovered that two bacterial FAEs could catalyze release of diferulic acids (diFAs) from highly substituted, cross-linked corn bran arabinoxylan. Here, we show that several fungal FAEs, notably AnFae1 (Aspergillus niger), AoFae1 (A. oryzae), and MgFae1 (Magnaporthe oryzae (also known as M. grisae)) also catalyze liberation of diFAs from complex arabinoxylan. By comparing the enzyme kinetics of diFA release to feruloyl esterase activity of the enzymes on methyl- and arabinosyl-ferulate substrates we demonstrate that the diFA release activity cannot be predicted from the activity of the enzymes on these synthetic substrates. A detailed structure-function analysis, based on AlphaFold2 modeled enzyme structures and docking with the relevant di-feruloyl ligands, reveal how distinct differences in the active site topology and surroundings may explain the diFA releasing action of the enzymes. Interestingly, the analysis also unveils that the carbohydrate binding module of the MgFae1 may play a key role in the diFA releasing ability of this enzyme. The findings contribute further understanding of the function of FAEs in the deconstruction of complex arabinoxylans and provide new opportunities for enzyme assisted upgrading of complex bran arabinoxylans.
Collapse
Affiliation(s)
- Shang Lin
- Section for Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, DK-2800 Kgs. Lyngby, Denmark
| | - Cameron J Hunt
- Section for Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, DK-2800 Kgs. Lyngby, Denmark
| | - Jesper Holck
- Section for Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, DK-2800 Kgs. Lyngby, Denmark
| | - Jesper Brask
- Novozymes A/S, Biologiens Vej 2, DK-2800 Kgs. Lyngby, Denmark
| | | | - Anne S Meyer
- Section for Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, DK-2800 Kgs. Lyngby, Denmark.
| | - Casper Wilkens
- Section for Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, DK-2800 Kgs. Lyngby, Denmark
| | - Jane W Agger
- Section for Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
2
|
Lin S, Xu X, Holck J, Wittrup Agger J, Wilkens C, Xie Z, Khakimov B, Nielsen DS, Meyer AS. Soluble, Diferuloylated Corn Bran Glucuronoarabinoxylans Modulate the Human Gut Microbiota In Vitro. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3885-3897. [PMID: 36787634 DOI: 10.1021/acs.jafc.2c08338] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Corn bran is exceptionally rich in substituted glucuronoarabinoxylan polysaccharides, which are monoferuloylated and cross-linked by diferulic acid moieties. Here, we assessed the potential prebiotic activity of three enzymatically solubilized corn bran glucuronoarabinoxylans: medium feruloylated (FGAX-M), laccase cross-linked FGAX-M (FGAX-H), and alkali-treated FGAX-M devoid of feruloyl substitutions (FGAX-B). We examined the influence of these soluble FGAX samples on the gut microbiome composition and functionality during in vitro simulated colon fermentations, determined by 16S rRNA gene amplicon sequencing and assessment of short-chain fatty acid (SCFAs) production. All FGAX samples induced changes in the relative composition of the microbiota and the SCFA levels after 24 h of in vitro fermentation. The changes induced by FGAX-M and FGAX-H tended to be more profound and more similar to the changes induced by inulin than changes conferred by FGAX-B. The microbiota changes induced by FGAX-M and FGAX-H correlated with an increase in the relative abundance of Anaerostipes and with increased butyric acid production, while the changes induced by the FGAX-B sample were less compelling. The results imply that solubilized, substituted diferuloylated corn bran glucuronoarabinoxylans may be potential prebiotic candidates and that both single feruloylations and diferuloyl cross-links influence the prebiotic potential of these arabinoxylan compounds.
Collapse
Affiliation(s)
- Shang Lin
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, DK-2800 Kongens Lyngby, Denmark
| | - Xinming Xu
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, DK-2800 Kongens Lyngby, Denmark
| | - Jesper Holck
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, DK-2800 Kongens Lyngby, Denmark
| | - Jane Wittrup Agger
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, DK-2800 Kongens Lyngby, Denmark
| | - Casper Wilkens
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, DK-2800 Kongens Lyngby, Denmark
| | - Zhuqing Xie
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark
| | - Bekzod Khakimov
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark
| | - Dennis S Nielsen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark
| | - Anne S Meyer
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
3
|
Lin S, Brask J, Munk L, Holck J, Krogh KBRM, Meyer AS, Wittrup Agger J, Wilkens C. Enzymatic Cleavage of Diferuloyl Cross-Links in Corn Bran Arabinoxylan by Two Bacterial Feruloyl Esterases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13349-13357. [PMID: 36205442 DOI: 10.1021/acs.jafc.2c04455] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Corn bran is an abundant coprocessing stream of corn-starch processing, rich in highly substituted, diferuloyl-cross-linked glucurono-arabinoxylan. The diferuloyl cross-links make the glucurono-arabinoxylan recalcitrant to enzymatic conversion and constitute a hindrance for designing selective enzymatic upgrading of corn glucurono-arabinoxylan. Here, we show that two bacterial feruloyl esterases, wtsFae1A and wtsFae1B, each having a carbohydrate-binding module of family 48, are capable of cleaving the ester bonds of the cross-linkages and releasing 5-5', 8-5', 8-5' benzofuran, and 8-O-4' diferulate from soluble and insoluble corn bran glucurono-arabinoxylan. All four diferulic acids were released at similar efficiency, indicating nondiscriminatory enzymatic selectivity for the esterified dimer linkages, the only exception being that wtsFae1B had a surprisingly high propensity for releasing the dimers, especially 8-5' benzofuran diferulate, indicating a potential, unique catalytic selectivity. The data provide evidence of direct enzymatic release of diferulic acids from corn bran by newly discovered feruloyl esterases, i.e., a new enzyme activity. The findings yield new insight and create new opportunities for enzymatic opening of diferuloyl cross-linkages to pave the way for upgrading of recalcitrant arabinoxylans.
Collapse
Affiliation(s)
- Shang Lin
- Section for Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 224, DK-2800Kgs. Lyngby, Denmark
| | - Jesper Brask
- Novozymes A/S, Biologiens Vej 2, DK-2800Kgs. Lyngby, Denmark
| | - Line Munk
- Section for Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 224, DK-2800Kgs. Lyngby, Denmark
| | - Jesper Holck
- Section for Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 224, DK-2800Kgs. Lyngby, Denmark
| | | | - Anne S Meyer
- Section for Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 224, DK-2800Kgs. Lyngby, Denmark
| | - Jane Wittrup Agger
- Section for Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 224, DK-2800Kgs. Lyngby, Denmark
| | - Casper Wilkens
- Section for Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 224, DK-2800Kgs. Lyngby, Denmark
| |
Collapse
|
4
|
Bindereif B, Eichhöfer H, Bunzel M, Karbstein H, Wefers D, van der Schaaf U. Arabinan side-chains strongly affect the emulsifying properties of acid-extracted sugar beet pectins. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106968] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
5
|
Tian W, Wilson TL, Chen G, Guttieri MJ, Nelson NO, Fritz A, Smith G, Li Y. Effects of environment, nitrogen, and sulfur on total phenolic content and phenolic acid composition of winter wheat grain. Cereal Chem 2021. [DOI: 10.1002/cche.10432] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Wenfei Tian
- Department of Grain Science and Industry Kansas State University Manhattan KS USA
| | - Tara L. Wilson
- USDA Agricultural Research ServiceHard Winter Wheat Genetics Research Unit Manhattan KS USA
| | - Gengjun Chen
- Department of Grain Science and Industry Kansas State University Manhattan KS USA
| | - Mary J. Guttieri
- USDA Agricultural Research ServiceHard Winter Wheat Genetics Research Unit Manhattan KS USA
| | | | - Allan Fritz
- Department of Agronomy Kansas State University Manhattan KS USA
| | - Gordon Smith
- Department of Grain Science and Industry Kansas State University Manhattan KS USA
| | - Yonghui Li
- Department of Grain Science and Industry Kansas State University Manhattan KS USA
| |
Collapse
|
6
|
Ramírez K, Quintero-Soto MF, Rochín-Medina JJ. Enhancement of the antioxidant and antimicrobial activities of maize wastewater by an eco-friendly process. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00416-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|