1
|
Sheng X, Wu J, Wu X, Gong L, Su M, Tang J, Yang D, Wang W. Quantitative biochemical phenotypic heterogeneity of senescent macrophage at a single cell level by Synchrotron Radiation Fourier Transform Infrared Microspectroscopy. Mikrochim Acta 2023; 190:416. [PMID: 37768393 PMCID: PMC10539409 DOI: 10.1007/s00604-023-05980-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023]
Abstract
Macrophage senescence plays an important role in pathophysiological process of age-related diseases such as atherosclerosis, chronic obstructive pulmonary disease (COPD), pulmonary fibrosis, and lung cancer. After macrophage senescence, the biochemical phenotypes related to biological functions showed great heterogeneity. However, the biochemical phenotype and phenotypic heterogeneity of senescent macrophage has not been fully understood. Exploring the phenotype of biochemical substances in senescent macrophage will be helpful for understanding the function of senescent macrophage and finding out the potential mechanism between immune macrophage senescence and age-related diseases. In this study, we employed SR-FTIR microspectroscopy to detect the biochemical phenotype and phenotypic heterogeneity of single macrophage. The whole infrared spectra of senescent macrophages shifted, indicating biochemical substance changes within senescent macrophages. PCA and intercellular Euclidean distance statistical analysis based on specific spectra regions revealed dynamic changes of lipids and proteins during macrophage senescence. This proved that SR-FTIR microspectroscopy is an effective tool to detect the single cell biochemical phenotype transformation and phenotypic heterogeneity during macrophage senescence. It is of great significance to provide an evaluation method or clue for the study of cellular functions related to intracellular biochemical substances.
Collapse
Affiliation(s)
- Xiaolong Sheng
- The Second Department of Thoracic Surgery, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Hunan Clinical Medical Research Center of Accurate Diagnosis and Treatment for Esophageal Carcinoma, Changsha, China
| | - Jie Wu
- The Second Department of Thoracic Surgery, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Hunan Clinical Medical Research Center of Accurate Diagnosis and Treatment for Esophageal Carcinoma, Changsha, China
| | - Xun Wu
- The Second Department of Thoracic Surgery, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Hunan Clinical Medical Research Center of Accurate Diagnosis and Treatment for Esophageal Carcinoma, Changsha, China
| | - Lianghui Gong
- The Second Department of Thoracic Surgery, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Hunan Clinical Medical Research Center of Accurate Diagnosis and Treatment for Esophageal Carcinoma, Changsha, China
| | - Min Su
- The Second Department of Thoracic Surgery, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Hunan Clinical Medical Research Center of Accurate Diagnosis and Treatment for Esophageal Carcinoma, Changsha, China
| | - Jinming Tang
- The Second Department of Thoracic Surgery, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Hunan Clinical Medical Research Center of Accurate Diagnosis and Treatment for Esophageal Carcinoma, Changsha, China
| | - Desong Yang
- The Second Department of Thoracic Surgery, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.
- Hunan Clinical Medical Research Center of Accurate Diagnosis and Treatment for Esophageal Carcinoma, Changsha, China.
| | - Wenxiang Wang
- The Second Department of Thoracic Surgery, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.
- Hunan Clinical Medical Research Center of Accurate Diagnosis and Treatment for Esophageal Carcinoma, Changsha, China.
| |
Collapse
|
2
|
Hao J, Chen Y, Zhu M, Zhao Y, Zhang K, Xu X. Spatial-Temporal Heterogeneity in Large Three-Dimensional Nanofibrillar Cellulose Hydrogel for Human Pluripotent Stem Cell Culture. Gels 2023; 9:gels9040324. [PMID: 37102936 PMCID: PMC10138276 DOI: 10.3390/gels9040324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/28/2023] Open
Abstract
One approach to cell expansion is to use large hydrogel for growing a large number of cells. Nanofibrillar cellulose (NFC) hydrogel has been used for human induced pluripotent stem cell (hiPSCs) expansion. However, little is known about the status of hiPSCs at the single cell level inside large NFC hydrogel during culture. To understand the effect of NFC hydrogel property on temporal-spatial heterogeneity, hiPSCs were cultured in 0.8 wt% NFC hydrogel with different thicknesses with the top surface exposed to the culture medium. The prepared hydrogel exhibits less restriction in mass transfer due to the presence of macropores and micropores interconnecting the macropores. More than 85% of cells at different depths survive after 5 days of culture inside 3.5 mm thick hydrogel. Biological compositions at different zones inside the NFC gel were examined over time at a single-cell level. A dramatic concentration gradient of growth factors estimated in the simulation along 3.5 mm NFC hydrogel could be a reason for the spatial-temporal heterogeneity in protein secondary structure and protein glycosylation and pluripotency loss at the bottom zone. pH change caused by the lactic acid accumulation over time leads to changes in cellulose charge and growth factor potential, probably another reason for the heterogeneity in biochemical compositions. This study may help to develop optimal conditions for producing high-quality hiPSCs in large nanofibrillar cellulose hydrogel at scale.
Collapse
Affiliation(s)
- Jin Hao
- Biochemical Engineering Research Center, Anhui University of Technology, Ma'anshan 243002, China
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243002, China
| | - Ying Chen
- Biochemical Engineering Research Center, Anhui University of Technology, Ma'anshan 243002, China
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243002, China
| | - Mingjian Zhu
- Biochemical Engineering Research Center, Anhui University of Technology, Ma'anshan 243002, China
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243002, China
| | - Yingqing Zhao
- Biochemical Engineering Research Center, Anhui University of Technology, Ma'anshan 243002, China
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243002, China
| | - Kai Zhang
- Biochemical Engineering Research Center, Anhui University of Technology, Ma'anshan 243002, China
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243002, China
| | - Xia Xu
- Biochemical Engineering Research Center, Anhui University of Technology, Ma'anshan 243002, China
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243002, China
| |
Collapse
|
3
|
Zhong J, Yu W, Tang Y, Zhou X. Synchrotron Radiation FTIR Microspectroscopy Study of Biomolecular Alterations in Vincristine-Treated WRL68 Cells at the Single-Cell Level. ACS OMEGA 2022; 7:47274-47284. [PMID: 36570260 PMCID: PMC9773350 DOI: 10.1021/acsomega.2c06622] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
The toxic effect of vincristine on hepatocytes has rarely been studied. Synchrotron radiation-based Fourier transform infrared (SR-FTIR) microspectroscopy is a novel technique for investigating drug-cell interaction systems. In this research, the biomolecular alterations in WRL68 cells induced by vincristine treatment were investigated by SR-FTIR microspectroscopy and were further analyzed by multivariate statistical analysis and semiquantitative methods, including principal component analysis (PCA), orthogonal partial least square-discriminant analysis (OPLS-DA), and the peak area ratios of several characteristic IR bands. In vincristine-treated WRL68 cells, alterations in lipid structures and the presence of more long-chain fatty acids were found. A decrease in protein α-helical content relative to β-sheet structures in vincristine-treated WRL68 cells was identified. The nucleic acid content was decreased relative to that of lipids and proteins in WRL68 cells treated with vincristine. These results provide important information about the toxic effect of vincristine on normal liver cells. This research also provides a new approach to reveal the biomolecular alterations in drug-treated hepatocytes by combining SR-FTIR with multivariate statistical analysis and semiquantitative methods.
Collapse
|
4
|
Zhou X, Zhong J, Yu W, Tang Y. Synchrotron radiation-based Fourier transform infrared microspectroscopy investigation of WRL68 cells treated with doxorubicin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 283:121773. [PMID: 36007348 DOI: 10.1016/j.saa.2022.121773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/22/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Doxorubicin is an effective chemotherapeutic agent applied in a wide variety of cancers. Despite its potent anticancer activity towards cancer cells, doxorubicin is also toxic to noncancerous cells. Therefore, doxorubicin can cause serious side effects in various organs, especially when dose escalation is required for patients with advanced disease. The liver is the major detoxification organ that metabolizes drugs, and hepatotoxicity is one of the most common adverse effects of doxorubicin administration. However, the exact mechanisms of doxorubicin-induced hepatotoxicity have not been clearly identified, and how doxorubicin treatment affects the biomolecular contents of normal human hepatocytes has rarely been studied. Synchrotron radiation-based Fourier transform infrared (SR-FTIR) microspectroscopy is a state-of-the-art analytical technique for characterizing the biomolecules present in cells. In this research, the biomolecular alterations of doxorubicin-treated normal human hepatocytes compared to untreated control cells were investigated at the single-cell level by combining SR-FTIR microspectroscopy with the Cell Counting Kit-8 (CCK-8) assay and flow cytometry. WRL68 human normal embryonic liver cells, which have been shown to be very promising for assessing the cytotoxicity of toxic compounds and investigating hepato-toxicology, were used in this research. Principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) were used to further analyse the biomolecular contents of WRL68 cells. The order of lipid acyl chains and protein α-helix structures in doxorubicin-treated WRL68 cells was found to be distinctly changed, while the nucleic acids were altered relatively less. No alteration in the carbohydrate content was distinguishable after doxorubicin treatment. These results provide more comprehensive information about the biomolecular changes in hepatocytes induced by doxorubicin treatment and help to elucidate the mechanism of doxorubicin-induced hepatotoxicity. This research also proves that SR-FTIR microspectroscopy, combined with PCA and OPLS-DA, is a promising approach for investigating drug-cell interaction systems.
Collapse
Affiliation(s)
- Xiaojie Zhou
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99, Haike Road, Zhangjiang Hi-Tech Park, Pudong, Shanghai 201210, PR China.
| | - Jiajia Zhong
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99, Haike Road, Zhangjiang Hi-Tech Park, Pudong, Shanghai 201210, PR China
| | - Wenjie Yu
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99, Haike Road, Zhangjiang Hi-Tech Park, Pudong, Shanghai 201210, PR China
| | - Yuzhao Tang
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99, Haike Road, Zhangjiang Hi-Tech Park, Pudong, Shanghai 201210, PR China.
| |
Collapse
|
5
|
Wang Y, Wang Y, Qian J, Pan X, Li X, Chen F, Hu J, Lü J. Single-cell infrared phenomics: phenotypic screening with infrared microspectroscopy. Chem Commun (Camb) 2020; 56:13237-13240. [PMID: 33030170 DOI: 10.1039/d0cc05721e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We conceptually demonstrate single-cell infrared phenomics as a novel strategy of phenotypic screening with infrared microspectroscopy. Based on this development, the cancer cell HepG2 glycocalyx was first identified as a potential target of protopanaxadiol, an herbal medicine. These findings provide a powerful tool to accurately evaluate the cell stress response and to largely expand the phenotypic screening toolkit for drug discovery.
Collapse
Affiliation(s)
- Yadi Wang
- College of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Wang Y, Dai W, Wang Y, Liu J, Liu Z, Li Y, Li X, Hu J, Lü J. How many cells are enough for single-cell infrared spectroscopy? Chem Commun (Camb) 2020; 56:3773-3776. [DOI: 10.1039/d0cc00067a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The similarity distance among single-cell infrared spectra reveals that at least 15 cells are required to achieve robust results with 95% confidence.
Collapse
Affiliation(s)
- Yadi Wang
- Key Laboratory of Interfacial Physics and Technology
- Shanghai Institute of Applied Physics
- Chinese Academy of Science
- Shanghai 201800
- China
| | - Wentao Dai
- Shanghai Key Laboratory of Gastric Neoplasms
- Shanghai Institute of Digestive Surgery
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai
| | - Yue Wang
- College of Pharmacy
- Binzhou Medical University
- Yantai 264003
- China
| | - Jixiang Liu
- Shanghai Center for Bioinformation Technology & Shanghai Engineering Research Center of Pharmaceutical Translation
- Shanghai Industrial Technology Institute
- Shanghai 201203
- China
| | - Zhixiao Liu
- Key Laboratory of Interfacial Physics and Technology
- Shanghai Institute of Applied Physics
- Chinese Academy of Science
- Shanghai 201800
- China
| | - Yuanyuan Li
- Shanghai Key Laboratory of Gastric Neoplasms
- Shanghai Institute of Digestive Surgery
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai
| | - Xueling Li
- Shanghai University of Medicine and Health Sciences
- National Engineering Research Center for Nanotechnology
- Shanghai 201318
- China
| | - Jun Hu
- Key Laboratory of Interfacial Physics and Technology
- Shanghai Institute of Applied Physics
- Chinese Academy of Science
- Shanghai 201800
- China
| | - Junhong Lü
- Key Laboratory of Interfacial Physics and Technology
- Shanghai Institute of Applied Physics
- Chinese Academy of Science
- Shanghai 201800
- China
| |
Collapse
|