1
|
Bandyopadhyay D, Nag S, Das D, Banerjee Roy R. Electrochemical detection of folic acid in food extracts using molecularly imprinted polyacrylonitrile imbued graphite electrode. Anal Chim Acta 2024; 1325:343120. [PMID: 39244306 DOI: 10.1016/j.aca.2024.343120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/18/2024] [Accepted: 08/16/2024] [Indexed: 09/09/2024]
Abstract
The present study elucidates the effectiveness of a molecularly imprinted polyacrylonitrile-imbued graphite-base electrode (MAN@G) for the selective detection of folic acid (FA) in food samples. The prime objective of the recognition and quantification of vitamin compounds like FA is the overall quality assessment of vegetables and fruits. The cost-effective, reproducible, and durable MAN@G electrode has been fabricated using acrylonitrile (AN) as the monomer and FA as the template over graphite-base. The characterization of the synthesized MAN@G electrode material has been accomplished by utilizing UV-visible (UV-vis) spectroscopy and scanning electron microscopy (SEM). A tri-electrode system based on differential pulse voltammetry (DPV) and cyclic voltammetry (CV) techniques was employed to explore the analytical performance of the synthesized electrode. Rigorous analyses divulged that a widespread linearity window could be exhibited by the electrode under an optimized experimental environment, ranging from 20 μM to 400 μM concentrations with an acceptable lower limit of detection (LOD) and limit of quantification (LOQ) of 18 nM, and 60 nM respectively. Additionally, this electrode exhibits high reproducibility, good stability, and high repeatability, with RSD values of 1.72 %, 1.32 %, and 1.19 %, respectively. The detection efficacy of the proposed electrode has been further examined in food extracts, namely orange, spinach, papaya, soybean, and cooked rice, which endorsed high accuracy compared to the high-performance liquid chromatography (HPLC) method. Moreover, the statistical results obtained from the t-test analysis were also satisfactory for the FA concentrations present in those five samples.
Collapse
Affiliation(s)
- Dipan Bandyopadhyay
- Department of Instrumentation and Electronics Engineering, Jadavpur University, Kolkata, 700106, India
| | - Shreya Nag
- University of Engineering and Management, Kolkata, 700160, India
| | - Debangana Das
- Department of Electronics and Communication Engineering, Silicon Institute of Technology, Bhubaneswar, Odisha, 751024, India
| | - Runu Banerjee Roy
- Department of Instrumentation and Electronics Engineering, Jadavpur University, Kolkata, 700106, India.
| |
Collapse
|
2
|
Liu B, Wei S, Liu E, Zhang H, Lu P, Wang J, Sun G. Nitrogen-doped carbon dots as a fluorescent probe for folic acid detection and live cell imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 268:120661. [PMID: 34896678 DOI: 10.1016/j.saa.2021.120661] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
The folic acid (FA) level in human body can be used as an indicator for body's normal physiological activities and offer insight into the growth and reproduction of the body's cells. But the abnormal level of FA can cause some diseases. Herein, we designed a simple and convenient approach to prepare fluorescent N-doped carbon dots (N-CDs) for the FA detection. These N-CDs have excellent hydrophilicity, high photostability, and outstanding biocompatibility, as well as excitation-independent emission behavior with typical excitation/emission peaks at 295 nm/412 nm. Upon the existence of FA, the fluorescence emission spectrum of N-CDs was significantly quenched through the synergy of static quenching mechanism and internal filtering effect (IFE). Under optimal conditions, the limit of detection was 28.0 nM (S/N = 3) within the FA concentration range of 0-200.0 μM. In addition, N-CDs were successfully employed to detect FA in real samples such as urine and fetal bovine serum (FBS), with a recovery rate of 99.6%-100.7% for quantitative addition. Furthermore, cell experiments confirmed the low toxicity and the cell imaging performance of these N-CDs, indicating that the obtained N-CDs could be served as a credible quantitative probe for FA analysis in the field of biosensing.
Collapse
Affiliation(s)
- Baoqiang Liu
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China; Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Shanshan Wei
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Enqi Liu
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Hongyuan Zhang
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Pengju Lu
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Jiali Wang
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Guoying Sun
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China; Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China.
| |
Collapse
|
3
|
Kayani KF, Omer KM. A red luminescent europium metal organic framework (Eu-MOF) integrated with a paper strip using smartphone visual detection for determination of folic acid in pharmaceutical formulations. NEW J CHEM 2022. [DOI: 10.1039/d2nj00601d] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Integration of smartphone with visual-based paper strip as a low-cost, fast, and reliable probe for semi-quantitative analysis of folic acid.
Collapse
Affiliation(s)
- Kawan F. Kayani
- Center for Biomedical Analysis, Department of Chemistry, College of Science, University of Sulaimani, Qliasan St, 46002, Slemani City, Kurdistan Region, Iraq
| | - Khalid M. Omer
- Center for Biomedical Analysis, Department of Chemistry, College of Science, University of Sulaimani, Qliasan St, 46002, Slemani City, Kurdistan Region, Iraq
| |
Collapse
|
4
|
Raveendran V, Kizhakayil RN. Fluorescent Carbon Dots as Biosensor, Green Reductant, and Biomarker. ACS OMEGA 2021; 6:23475-23484. [PMID: 34549145 PMCID: PMC8444300 DOI: 10.1021/acsomega.1c03481] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Carbon dots, the celebrated green material among the nanocarbon family, are blessed with several interesting features like biocompatibility, solubility, tunable luminescence, and so forth. Herein, carbon dots derived from Mint leaf extract (M-CDs) via a green method are exploited for versatile applications as a biosensor, reductant, and biomarker. M-CDs are applied for fluorimetric sensing of biologically relevant folic acid through quenching response originating from the inner filter effect, with a limit of detection of 280 nM. The carbon dots were highly selective toward folic acid in a collection of 16 biomolecules. The specificity of carbon dots toward folic acid is explained based on the interaction between the two. Along with sensing, herein, we project M-CDs as a green reducing agent by demonstrating the reduction of Fe(III) and noble metal nanoparticle synthesis from their salt solutions. The particles are found to be significantly non-cytotoxic, as evident from the MTT assay performed on primary H8 cells. The application of M-CDs in multicolor imaging is also illustrated using HeLa cells.
Collapse
Affiliation(s)
- Varsha Raveendran
- Department of Chemistry, University
of Calicut, Malappuram, Kerala 673 635, India
| | | |
Collapse
|
5
|
Yellow-emitting Au/Ag bimetallic nanoclusters with high photostability for detection of folic acid. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116695] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Mi G, Yang M, Wang C, Zhang B, Hu X, Hao H, Fan J. A simple "turn off-on" ratio fluorescent probe for sensitive detection of dopamine and lysine/arginine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 253:119555. [PMID: 33607446 DOI: 10.1016/j.saa.2021.119555] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
Herein, a novel and unique "off-on" single-excited dual-emissive ratio fluorescence sensor for highly selective and sensitive detection of dopamine and lysine/arginine has been developed via covalently connecting the yellowish-green fluorescent carbon dots (CDs) with the orange-red fluorescent AgInSe2@ZnS quantum dots (AISe QDs). This ratiometric fluorescence sensor provided with two-emission peaks at 495 and 575 nm under a single-excitation wavelength of 395 nm. The fluorescence of AISe QDs (F575) is effective quenched by dopamine and only efficientlyrecovered by lysine/arginine; meanwhile, the light of CDs (F495) remains unchanged. The fluorescence intensity ratio (F495/F575) showed a linear relationship with the concentration of DA in the range of 0-100 μM, and the detection limit as low as 0.21 nM. lysine and arginine with the detection limit of 0.36 nM and 26 μM, respectively. Furthermore, the fluorescence probe is successfully used to detect DA in human serum. Therefore, the as-synthesized probe shows excellent potential application for the determination of DA in real samples.
Collapse
Affiliation(s)
- Guohua Mi
- School of Chemical Engineering, Northwest University, Xi'an 710069, PR China
| | - Min Yang
- School of Chemical Engineering, Northwest University, Xi'an 710069, PR China
| | - Cunjin Wang
- School of Chemical Engineering, Northwest University, Xi'an 710069, PR China
| | - Bin Zhang
- School of Chemical Engineering, Northwest University, Xi'an 710069, PR China
| | - Xiaoyun Hu
- School of Physics, Northwest University, Xi'an 710069, PR China
| | - Hong Hao
- School of Chemical Engineering, Northwest University, Xi'an 710069, PR China.
| | - Jun Fan
- College of Food Science and Engineering, Northwest University, Xi'an 710069, PR China.
| |
Collapse
|