1
|
Hassan M, Zhao Y, Zughaier SM. Recent Advances in Bacterial Detection Using Surface-Enhanced Raman Scattering. BIOSENSORS 2024; 14:375. [PMID: 39194603 DOI: 10.3390/bios14080375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024]
Abstract
Rapid identification of microorganisms with a high sensitivity and selectivity is of great interest in many fields, primarily in clinical diagnosis, environmental monitoring, and the food industry. For over the past decades, a surface-enhanced Raman scattering (SERS)-based detection platform has been extensively used for bacterial detection, and the effort has been extended to clinical, environmental, and food samples. In contrast to other approaches, such as enzyme-linked immunosorbent assays and polymerase chain reaction, SERS exhibits outstanding advantages of rapid detection, being culture-free, low cost, high sensitivity, and lack of water interference. This review aims to cover the development of SERS-based methods for bacterial detection with an emphasis on the source of the signal, techniques used to improve the limit of detection and specificity, and the application of SERS in high-throughput settings and complex samples. The challenges and advancements with the implementation of artificial intelligence (AI) are also discussed.
Collapse
Affiliation(s)
- Manal Hassan
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Yiping Zhao
- Department of Physics and Astronomy, University of Georgia, Athens, GA 30602, USA
| | - Susu M Zughaier
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
2
|
Huang Y, Doeven EH, Chen L, Yao Y, Wang Y, Lin B, Zeng Y, Li L, Qian Z, Guo L. Facial Preparation of Cyclometalated Iridium (III) Nanowires as Highly Efficient Electrochemiluminescence Luminophores for Biosensing. BIOSENSORS 2023; 13:bios13040459. [PMID: 37185534 PMCID: PMC10136454 DOI: 10.3390/bios13040459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/24/2023] [Accepted: 04/03/2023] [Indexed: 05/17/2023]
Abstract
In this study, highly efficient ECL luminophores composed of iridium complex-based nanowires (Ir-NCDs) were synthesized via covalently linking bis(2-phenylpyridine)-(4-carboxypropyl-2,2'-bipyridyl) iridium(III) hexafluorophosphate with nitrogen-doped carbon quantum dots (NCDs). The ECL intensity of the nanowires showed a five-fold increase in ECL intensity compared with the iridium complex monomer under the same experimental conditions. A label-free ECL biosensing platform based on Ir-NCDs was established for Salmonella enteritidis (SE) detection. The ECL signal was quenched linearly in the range of 102-108 CFU/mL for SE with a detection limit of 102 CFU/mL. Moreover, the relative standard deviations (RSD) of the stability within and between batches were 0.98% and 3.9%, respectively. In addition, the proposed sensor showed high sensitivity, selectivity and stability towards SE in sheep feces samples with satisfactory results. In summary, the excellent ECL efficiency of Ir-NCDs demonstrates the prospects for Ir(III) complexes in bioanalytical applications.
Collapse
Affiliation(s)
- Yueyue Huang
- College of Chemistry and Material Sciences, Zhejiang Normal University, Jinhua 321004, China
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Egan H Doeven
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Lifen Chen
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Yuanyuan Yao
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Yueliang Wang
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Bingyong Lin
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Yanbo Zeng
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Lei Li
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Zhaosheng Qian
- College of Chemistry and Material Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Longhua Guo
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| |
Collapse
|
3
|
Xiao L, Feng S, Lu X. Raman spectroscopy: Principles and recent applications in food safety. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 106:1-29. [PMID: 37722771 DOI: 10.1016/bs.afnr.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Food contaminant is a significant issue because of the adverse effects on human health and economy. Traditional detection methods such as liquid chromatography-mass spectroscopy for detecting food contaminants are expensive and time-consuming, and require highly-trained personnel and complicated sample pretreatment. Raman spectroscopy is an advanced analytical technique in a manner of non-destructive, rapid, cost-effective, and ultrasensitive sensing various hazards in agri-foods. In this chapter, we summarized the principle of Raman spectroscopy and surface enhanced Raman spectroscopy, the methods to process Raman spectra, the recent applications of Raman/SERS (surface-enhanced Raman spectroscopy) in detecting chemical contaminants (e.g., pesticides, antibiotics, mycotoxins, heavy metals, and food adulterants) and microbiological hazards (e.g., Salmonella, Campylobacter, Shiga toxigenic E. coli, Listeria, and Staphylococcus aureus) in foods.
Collapse
Affiliation(s)
- Li Xiao
- Department of Food Science and Agricultural Chemistry, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Shaolong Feng
- Department of Food Science and Agricultural Chemistry, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Xiaonan Lu
- Department of Food Science and Agricultural Chemistry, McGill University, Sainte-Anne-de-Bellevue, QC, Canada.
| |
Collapse
|
4
|
Dayalan S, Gedda G, Li R, Zulfajri M, Huang GG. Vancomycin functionalization of gold nanostars for sensitive detection of foodborne pathogens through surface‐enhanced Raman scattering. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Sandhiya Dayalan
- Department of Medicinal and Applied Chemistry Kaohsiung Medical University Kaohsiung Taiwan
| | - Gangaraju Gedda
- Department of Chemistry, School of Engineering Presidency University Bangalore India
| | - Ruei–Nian Li
- Department of Biomedical Science and Environmental Biology Kaohsiung Medical University Kaohsiung Taiwan
| | - Muhammad Zulfajri
- Department of Chemistry Education Universitas Serambi Mekkah Banda Aceh Indonesia
| | - Genin Gary Huang
- Department of Medicinal and Applied Chemistry Kaohsiung Medical University Kaohsiung Taiwan
- Department of Medical Research Kaohsiung Medical University Hospital Kaohsiung Taiwan
- Department of Chemistry National Sun Yat‐sen University Kaohsiung Taiwan
| |
Collapse
|
5
|
Jin L, Wang S, Shao Q, Cheng Y. A rapid and facile analytical approach to detecting Salmonella Enteritidis with aptamer-based surface-enhanced Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120625. [PMID: 34840047 DOI: 10.1016/j.saa.2021.120625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/21/2021] [Accepted: 11/11/2021] [Indexed: 05/22/2023]
Abstract
Salmonella should be absence in pharmaceutical preparations and foods according to regulations in many countries. Up to now, rapidly detecting Salmonella at 1 CFU·[10 g (mL) ]-1 in pharmaceutical preparation or 1 CFU·[25 g (mL) ]-1 in food samples is still a challenge. Herein, we present an aptamer-based surface-enhanced Raman spectroscopy (SERS) method for rapidly detecting Salmonella Enteritidis by using a handheld Raman instrument. The aptamer could specifically recognize S. Enteritidis, and 4-MBA self-assembled on the surface of Au@Ag NPs was used as a Raman reporter molecule. The method was validated to be high specific with no interference from other five pathogenic bacteria. It could identify S. Enteritidis contaminant at ∼ 1 CFU·(10 g)-1 spiked level in a real sample (Wenxin granule, a botanical drug) after 6 h of enrichment. The detection time was much shorter than that of the methods (more than 54 ∼ 96 h) in the standards of pharmaceutical preparations and foods. In addition, the method could quantitatively determinate S. Enteritidis with satisfactory results. The SERS peak intensities of 4-MBA at 1072 cm-1 showed a good linear correlation (R2 = 0.9873) with the logarithms of S. Enteritidis concentrations ranging from 4.17 × 102 to 1.39 × 107 CFU·mL-1. T-test result (P = 0.425) revealed that there was no significant difference between the determination results obtained by the SERS method and the plate counting method. Therefore, the study indicated that the method was practical and reliable, and it could be a promising alternative for the on-site detection of S. Enteritidis.
Collapse
Affiliation(s)
- Lei Jin
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Shufang Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China.
| | - Qing Shao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yiyu Cheng
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
6
|
Bai Q, Luo H, Shi S, Liu S, Wang L, Du F, Yang Z, Zhu Z, Sui N. AuAg nanocages/graphdiyne for rapid elimination and detection of trace pathogenic bacteria. J Colloid Interface Sci 2022; 613:376-383. [PMID: 35042035 DOI: 10.1016/j.jcis.2022.01.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 12/21/2022]
Abstract
We prepared a biocompatible AuAg nanocages/graphdiyne @ polyethylene glycol (AuAg/GDY@PEG) composite. The combination of AuAg and GDY to obtain a synergistically enhanced photothermal effect, and the antibacterial effect of GDY and AuAg are used in combined anti-infective therapy. The in vitro antibacterial activity of AuAg/GDY@PEG was investigated, showing an impressive broad-spectrum antibacterial activity with the killing rate > 99.999%. Based on the photothermal conversion ability of AuAg/GDY@PEG, a simple photothermal immunoassay for pathogenic bacteria was successfully established. Sandwich immune response was performed on a microporous plate, the microplate containing the antibody binds specifically to the bacterium being tested, which then binds to the material with the antibody on its surface, and the signal was a change in temperature under 808 nm near-infrared light. The limit of detection (LOD) for S. typhimurium detection is 103 CFU mL-1, with a range of 103-107 CFU mL-1. This method is accurate, rapid and low-cost, which can be used for on-site detection of pathogenic bacteria in food.
Collapse
Affiliation(s)
- Qiang Bai
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Rd., Qingdao, Shandong 266042, China
| | - Hongyang Luo
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Rd., Qingdao, Shandong 266042, China
| | - Shugao Shi
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Rd., Qingdao, Shandong 266042, China
| | - Shen Liu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Rd., Qingdao, Shandong 266042, China
| | - Lina Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Rd., Qingdao, Shandong 266042, China.
| | - Fanglin Du
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Rd., Qingdao, Shandong 266042, China
| | - Zhugen Yang
- Cranfield Water Science Institute, Cranfield University, Milton Keynes MK43 0AL, UK
| | - Zhiling Zhu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Rd., Qingdao, Shandong 266042, China.
| | - Ning Sui
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Rd., Qingdao, Shandong 266042, China.
| |
Collapse
|
7
|
Chuesiang P, Ryu V, Siripatrawan U, McLandsborough L, He L. Investigation of factors that impact the label-free surface-enhanced Raman scattering (SERS) for the detection and discrimination of Salmonella Enteritidis. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Aptamer-based surface enhanced Raman spectroscopy (SERS) for the rapid detection of Salmonella Enteritidis contaminated in ground beef. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Sheikhzadeh E, Beni V, Zourob M. Nanomaterial application in bio/sensors for the detection of infectious diseases. Talanta 2021; 230:122026. [PMID: 33934756 PMCID: PMC7854185 DOI: 10.1016/j.talanta.2020.122026] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023]
Abstract
Infectious diseases are a potential risk for public health and the global economy. Fast and accurate detection of the pathogens that cause these infections is important to avoid the transmission of the diseases. Conventional methods for the detection of these microorganisms are time-consuming, costly, and not applicable for on-site monitoring. Biosensors can provide a fast, reliable, and point of care diagnostic. Nanomaterials, due to their outstanding electrical, chemical, and optical features, have become key players in the area of biosensors. This review will cover different nanomaterials that employed in electrochemical, optical, and instrumental biosensors for infectious disease diagnosis and how these contributed to enhancing the sensitivity and rapidity of the various sensing platforms. Examples of nanomaterial synthesis methods as well as a comprehensive description of their properties are explained. Moreover, when available, comparative data, in the presence and absence of the nanomaterials, have been reported to further highlight how the usage of nanomaterials enhances the performances of the sensor.
Collapse
Affiliation(s)
- Elham Sheikhzadeh
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran,Corresponding author
| | - Valerio Beni
- Digital Systems, Department Smart Hardware, Unit Bio–& Organic Electronics, RISE Acreo, Research Institutes of Sweden, Norrkoping, 60221, Sweden
| | - Mohammed Zourob
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Road, Riyadh, 11533, Saudi Arabia,King Faisal Specialist Hospital and Research Center, Zahrawi Street, Al Maather, Riyadh, 12713, Saudi Arabia,Corresponding author. Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Road, Riyadh, 11533, Saudi Arabia
| |
Collapse
|
10
|
Qu LL, Ying YL, Yu RJ, Long YT. In situ food-borne pathogen sensors in a nanoconfined space by surface enhanced Raman scattering. Mikrochim Acta 2021; 188:201. [PMID: 34041602 PMCID: PMC8154335 DOI: 10.1007/s00604-021-04864-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/13/2021] [Indexed: 01/04/2023]
Abstract
The incidence of disease arising from food-borne pathogens is increasing continuously and has become a global public health problem. Rapid and accurate identification of food-borne pathogens is essential for adopting disease intervention strategies and controlling the spread of epidemics. Surface-enhanced Raman spectroscopy (SERS) has attracted increasing interest due to the attractive features including simplicity, rapid measurement, and high sensitivity. It can be used for rapid in situ sensing of single and multicomponent samples within the nanostructure-based confined space by providing molecular fingerprint information and has been demonstrated to be an effective detection strategy for pathogens. This article aims to review the application of SERS to the rapid sensing of food-borne pathogens in food matrices. The mechanisms and advantages of SERS, and detection strategies are briefly discussed. The latest progress on the use of SERS for rapid detection of food-borne bacteria and viruses is considered, including both the labeled and label-free detection strategies. In closing, according to the current situation regarding detection of food-borne pathogens, the review highlights the challenges faced by SERS and the prospects for new applications in food safety. In this review, the advances on the SERS detection of pathogens over the past decades have been reviewed, focusing on the improvements in sensitivity, reproducibility, specificity, and the performance of the SERS-based assay in complex analytical scenarios. ![]()
Collapse
Affiliation(s)
- Lu-Lu Qu
- School of Chemistry and Materials Science, Jiangsu Normal University, 221116, Xuzhou, People's Republic of China.
| | - Yi-Lun Ying
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Ru-Jia Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, People's Republic of China.
| | - Yi-Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, People's Republic of China
| |
Collapse
|
11
|
Li D, Liu L, Huang Q, Tong T, Zhou Y, Li Z, Bai Q, Liang H, Chen L. Recent advances on aptamer-based biosensors for detection of pathogenic bacteria. World J Microbiol Biotechnol 2021; 37:45. [PMID: 33554321 DOI: 10.1007/s11274-021-03002-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/08/2021] [Indexed: 01/10/2023]
Abstract
As a significant constituent in biosphere, bacteria have a great influence on human activity. The detection of pathogen bacteria is closely related to the human health. However, the traditional methods for detection of pathogenic bacteria are time-consuming and difficult for quantification, although they are practical and reliable. Therefore, novel strategies for rapid, sensitive, and cost-effective detection are in great demand. Aptamer is a kind of oligonucleotide that selected by repeated screening in vitro or systematic evolution of ligands by exponential enrichment (SELEX) technology. Over the past years, owing to high affinity and specificity of aptamers, a variety of aptamer-based biosensors have been designed and applied for pathogen detection. In this review, we have discussed the recent advances on the applications of aptamer-based biosensors in detection of pathogenic bacteria. In addition, we also point out some problems in current methods and look forward to the further development of aptamer-based biosensors for pathogen detection.
Collapse
Affiliation(s)
- Danliang Li
- Department of health inspection and quarantine, College of Public Health, University of South China, Hengyang, China.,Key Laboratory of Hengyang for Health Hazard Factors Inspection and Quarantine, Hengyang, China
| | - Luyao Liu
- Department of health inspection and quarantine, College of Public Health, University of South China, Hengyang, China.,Key Laboratory of Hengyang for Health Hazard Factors Inspection and Quarantine, Hengyang, China
| | - Qiaoling Huang
- Department of health inspection and quarantine, College of Public Health, University of South China, Hengyang, China.,Key Laboratory of Hengyang for Health Hazard Factors Inspection and Quarantine, Hengyang, China
| | - Ting Tong
- Department of health inspection and quarantine, College of Public Health, University of South China, Hengyang, China.,Key Laboratory of Hengyang for Health Hazard Factors Inspection and Quarantine, Hengyang, China
| | - You Zhou
- Department of health inspection and quarantine, College of Public Health, University of South China, Hengyang, China.,Key Laboratory of Hengyang for Health Hazard Factors Inspection and Quarantine, Hengyang, China
| | - Zhongyu Li
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China
| | - Qinqin Bai
- Department of health inspection and quarantine, College of Public Health, University of South China, Hengyang, China
| | - Hao Liang
- Department of health inspection and quarantine, College of Public Health, University of South China, Hengyang, China. .,Key Laboratory of Hengyang for Health Hazard Factors Inspection and Quarantine, Hengyang, China.
| | - Lili Chen
- Department of health inspection and quarantine, College of Public Health, University of South China, Hengyang, China. .,Key Laboratory of Hengyang for Health Hazard Factors Inspection and Quarantine, Hengyang, China. .,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Hunan, China.
| |
Collapse
|
12
|
Shen Y, Xu L, Li Y. Biosensors for rapid detection of Salmonella in food: A review. Compr Rev Food Sci Food Saf 2020; 20:149-197. [PMID: 33443806 DOI: 10.1111/1541-4337.12662] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 09/04/2020] [Accepted: 10/01/2020] [Indexed: 12/13/2022]
Abstract
Salmonella is one of the main causes of foodborne infectious diseases, posing a serious threat to public health. It can enter the food supply chain at various stages of production, processing, distribution, and marketing. High prevalence of Salmonella necessitates efficient and effective approaches for its identification, detection, and monitoring at an early stage. Because conventional methods based on plate counting and real-time polymerase chain reaction are time-consuming and laborious, novel rapid detection methods are urgently needed for in-field and on-line applications. Biosensors provide many advantages over conventional laboratory assays in terms of sensitivity, specificity, and accuracy, and show superiority in rapid response and potential portability. They are now recognized as promising alternative tools and one of the most on-site applicable and end user-accessible methods for rapid detection. In recent years, we have witnessed a flourishing of studies in the development of robust and elaborate biosensors for detection of Salmonella in food. This review aims to provide a comprehensive overview on Salmonella biosensors by highlighting different signal-transducing mechanisms (optical, electrochemical, piezoelectric, etc.) and critically analyzing its recent trends, particularly in combination with nanomaterials, microfluidics, portable instruments, and smartphones. Furthermore, current challenges are emphasized and future perspectives are discussed.
Collapse
Affiliation(s)
- Yafang Shen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.,Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, Arkansas
| | - Lizhou Xu
- Department of Materials, Imperial College London, London, UK
| | - Yanbin Li
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, Arkansas
| |
Collapse
|