1
|
Martínez-Parra L, Piñol-Cancer M, Sanchez-Cano C, Miguel-Coello AB, Di Silvio D, Gomez AM, Uriel C, Plaza-García S, Gallego M, Pazos R, Groult H, Jeannin M, Geraki K, Fernández-Méndez L, Urkola-Arsuaga A, Sánchez-Guisado MJ, Carrillo-Romero J, Parak WJ, Prato M, Herranz F, Ruiz-Cabello J, Carregal-Romero S. A Comparative Study of Ultrasmall Calcium Carbonate Nanoparticles for Targeting and Imaging Atherosclerotic Plaque. ACS NANO 2023; 17:13811-13825. [PMID: 37399106 PMCID: PMC10900527 DOI: 10.1021/acsnano.3c03523] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Atherosclerosis is a complex disease that can lead to life-threatening events, such as myocardial infarction and ischemic stroke. Despite the severity of this disease, diagnosing plaque vulnerability remains challenging due to the lack of effective diagnostic tools. Conventional diagnostic protocols lack specificity and fail to predict the type of atherosclerotic lesion and the risk of plaque rupture. To address this issue, technologies are emerging, such as noninvasive medical imaging of atherosclerotic plaque with customized nanotechnological solutions. Modulating the biological interactions and contrast of nanoparticles in various imaging techniques, including magnetic resonance imaging, is possible through the careful design of their physicochemical properties. However, few examples of comparative studies between nanoparticles targeting different hallmarks of atherosclerosis exist to provide information about the plaque development stage. Our work demonstrates that Gd (III)-doped amorphous calcium carbonate nanoparticles are an effective tool for these comparative studies due to their high magnetic resonance contrast and physicochemical properties. In an animal model of atherosclerosis, we compare the imaging performance of three types of nanoparticles: bare amorphous calcium carbonate and those functionalized with the ligands alendronate (for microcalcification targeting) and trimannose (for inflammation targeting). Our study provides useful insights into ligand-mediated targeted imaging of atherosclerosis through a combination of in vivo imaging, ex vivo tissue analysis, and in vitro targeting experiments.
Collapse
Affiliation(s)
- Lydia Martínez-Parra
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia, Spain
- Euskal Herriko Unibertsitatea (UPV/EHU), 20018 Donostia, Spain
| | - Marina Piñol-Cancer
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia, Spain
- Euskal Herriko Unibertsitatea (UPV/EHU), 20018 Donostia, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Carlos Sanchez-Cano
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, Donostia, 20018, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), 20018 Donostia, Spain
| | - Ana B Miguel-Coello
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia, Spain
| | - Desirè Di Silvio
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia, Spain
| | - Ana M Gomez
- Instituto de Química Orgánica General, IQOG-CSIC, 28006 Madrid, Spain
| | - Clara Uriel
- Instituto de Química Orgánica General, IQOG-CSIC, 28006 Madrid, Spain
| | - Sandra Plaza-García
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia, Spain
| | - Marta Gallego
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia, Spain
| | - Raquel Pazos
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia, Spain
| | - Hugo Groult
- Biotechnologies et Chimie des Bioressources pour la Santé, Littoral Environment et Sociétés (LIENSs Laboratory), UMR CNRS 7266, 17000 La Rochelle, France
| | - Marc Jeannin
- Laboratoire des Sciences de l'Ingénieur pour l'Environnement (LaSIE), UMR-CNRS 7536, La Rochelle Université, 7356 La Rochelle, France
| | - Kalotina Geraki
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Laura Fernández-Méndez
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia, Spain
- Euskal Herriko Unibertsitatea (UPV/EHU), 20018 Donostia, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Ainhize Urkola-Arsuaga
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia, Spain
| | - María Jesús Sánchez-Guisado
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia, Spain
- Euskal Herriko Unibertsitatea (UPV/EHU), 20018 Donostia, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Juliana Carrillo-Romero
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia, Spain
- Basque Res & Technol Alliance BRTA, GAIKER, Technol Ctr, 48170 Zamudio, Spain
| | - Wolfgang J Parak
- Center for Hybrid Nanostructures (CHyN), Universität Hamburg, 22607 Hamburg, Germany
| | - Maurizio Prato
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Fernando Herranz
- NanoMedMol, Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Madrid 28006, Spain
| | - Jesús Ruiz-Cabello
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Susana Carregal-Romero
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
2
|
Limmer MA, Webb SM, Seyfferth AL. Evaluation of quantitative synchrotron radiation micro-X-ray fluorescence in rice grain. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:407-416. [PMID: 36891854 PMCID: PMC10000813 DOI: 10.1107/s1600577523000747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Concentrations of nutrients and contaminants in rice grain affect human health, specifically through the localization and chemical form of elements. Methods to spatially quantify the concentration and speciation of elements are needed to protect human health and characterize elemental homeostasis in plants. Here, an evaluation was carried out using quantitative synchrotron radiation microprobe X-ray fluorescence (SR-µXRF) imaging by comparing average rice grain concentrations of As, Cu, K, Mn, P, S and Zn measured with rice grain concentrations from acid digestion and ICP-MS analysis for 50 grain samples. Better agreement was found between the two methods for high-Z elements. Regression fits between the two methods allowed quantitative concentration maps of the measured elements. These maps revealed that most elements were concentrated in the bran, although S and Zn permeated into the endosperm. Arsenic was highest in the ovular vascular trace (OVT), with concentrations approaching 100 mg kg-1 in the OVT of a grain from a rice plant grown in As-contaminated soil. Quantitative SR-µXRF is a useful approach for comparison across multiple studies but requires careful consideration of sample preparation and beamline characteristics.
Collapse
Affiliation(s)
- Matt A. Limmer
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA
| | - Samuel M. Webb
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Angelia L. Seyfferth
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
3
|
Punshon T, Jackson BP, Donohue A, Hong C, Rothenberg SE. Distribution and accumulation of mercury in pot-grown African rice cultivars (Oryza glaberrima Steud. and Oryza sativa L.) determined via LA-ICP-MS. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:4077-4089. [PMID: 34981270 PMCID: PMC9376884 DOI: 10.1007/s10653-021-01169-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/18/2021] [Indexed: 06/14/2023]
Abstract
There is limited information concerning the distribution of mercury in rice, particularly in African rice. The objective was to compare the distribution of total mercury (THg) and methylmercury (MeHg) in African rice (Oryza glaberrima Steud.) and Asian rice (O. sativa L.). It is hypothesized that increased mineral accumulation and greater stress tolerance in O. glaberrima will affect the uptake and distribution of THg and MeHg, compared to O. sativa. Rice varieties from the Republic of Mali, including O. glaberrima (n =1) and O. sativa (n = 2), were cultivated in a greenhouse, in mercury-spiked soil (50 mg/kg) (n =3 replicates/variety). THg and MeHg concentrations were analyzed in the grain (brown rice), and the THg distribution was analyzed using laser ablation inductively coupled-plasma mass spectrometry (LA-ICP-MS). THg and MeHg concentrations did not differ between O. glaberrima and O. sativa grain. However, in both O. sativa varieties, THg was highly concentrated in the scutellum, which surrounds the embryo and is removed during polishing. Conversely, in O. glaberrima grain, THg was widely distributed throughout the endosperm, the edible portion of the grain. Differences in the THg distribution in O. glaberrima grain, compared to O. sativa, may elevate the risk of mercury exposure through ingestion of polished rice. The novelty of this study includes the investigation of a less-studied rice species (O. glaberrima), the use of a highly sensitive elemental imaging technique (LA-ICP-MS), and its finding of a different grain THg distribution in O. glaberrima than has been observed in O. sativa.
Collapse
Affiliation(s)
- Tracy Punshon
- Dartmouth College, Hanover, New Hampshire, 03755, USA
| | | | - Alexis Donohue
- University of South Carolina, Arnold School of Public Health, Columbia, South Carolina, 29208, USA
| | - Chuan Hong
- University of South Carolina, Arnold School of Public Health, Columbia, South Carolina, 29208, USA
| | - Sarah E Rothenberg
- University of South Carolina, Arnold School of Public Health, Columbia, South Carolina, 29208, USA.
- College of Public Health and Human Sciences, Oregon State University, 103 Milam Hall, Corvallis, Oregon, 97331, USA.
| |
Collapse
|
4
|
Pushie MJ, Sylvain NJ, Hou H, Hackett MJ, Kelly ME, Webb SM. X-ray fluorescence microscopy methods for biological tissues. Metallomics 2022; 14:mfac032. [PMID: 35512669 PMCID: PMC9226457 DOI: 10.1093/mtomcs/mfac032] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 05/05/2022] [Indexed: 11/14/2022]
Abstract
Synchrotron-based X-ray fluorescence microscopy is a flexible tool for identifying the distribution of trace elements in biological specimens across a broad range of sample sizes. The technique is not particularly limited by sample type and can be performed on ancient fossils, fixed or fresh tissue specimens, and in some cases even live tissue and live cells can be studied. The technique can also be expanded to provide chemical specificity to elemental maps, either at individual points of interest in a map or across a large field of view. While virtually any sample type can be characterized with X-ray fluorescence microscopy, common biological sample preparation methods (often borrowed from other fields, such as histology) can lead to unforeseen pitfalls, resulting in altered element distributions and concentrations. A general overview of sample preparation and data-acquisition methods for X-ray fluorescence microscopy is presented, along with outlining the general approach for applying this technique to a new field of investigation for prospective new users. Considerations for improving data acquisition and quality are reviewed as well as the effects of sample preparation, with a particular focus on soft tissues. The effects of common sample pretreatment steps as well as the underlying factors that govern which, and to what extent, specific elements are likely to be altered are reviewed along with common artifacts observed in X-ray fluorescence microscopy data.
Collapse
Affiliation(s)
- M Jake Pushie
- Department of Surgery, Division of Neurosurgery, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E5 Canada
| | - Nicole J Sylvain
- Department of Surgery, Division of Neurosurgery, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E5 Canada
- Clinical Trial Support Unit, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 0W8 Canada
| | - Huishu Hou
- Department of Surgery, Division of Neurosurgery, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E5 Canada
| | - Mark J Hackett
- Curtin Health Innovation Research Institute, Curtin University, Perth, Western Austrailia 6102, Australia
- School of Molecular and Life Sciences, Curtin University, Perth, Western Austrailia 6845, Australia
| | - Michael E Kelly
- Department of Surgery, Division of Neurosurgery, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E5 Canada
| | - Samuel M Webb
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| |
Collapse
|
5
|
Yan M, Zuo T, Zhang J, Wang Y, Zhu Y, Wang L, Zhou Y, Sun Y. A bimodal probe for fluorescence and synchrotron X-ray fluorescence imaging of dopaminergic neurons in the brain. Chem Commun (Camb) 2022; 58:713-715. [PMID: 34981097 DOI: 10.1039/d1cc06475d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A bimodal probe, the erythrosine B (EB) conjugated immunoglobulin G complex (EB/IgG), has been developed for the fluorescence and synchrotron X-ray fluorescence (SXRF) imaging of dopaminergic neurons in the brain.
Collapse
Affiliation(s)
- Meiling Yan
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingting Zuo
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jichao Zhang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yiyang Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Zhu
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Lihua Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yi Zhou
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yanhong Sun
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| |
Collapse
|
6
|
VanderSchee CR, Frier D, Kuter D, Mann KK, Jackson BP, Bohle DS. Quantification of local zinc and tungsten deposits in bone with LA-ICP-MS using novel hydroxyapatite-collagen calibration standards. JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY 2021; 36:2431-2438. [PMID: 35992610 PMCID: PMC9390078 DOI: 10.1039/d1ja00211b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Tungsten has recently emerged as a potential toxicant and is known to heterogeneously deposit in bone as reactive polytungstates. Zinc, which accumulates in regions of bone remodeling, also has a heterogenous distribution in bone. Determining the local concentrations of these metals will provide valuable information about their mechanisms of uptake and action. A series of bone (BN), 7:3 hydroxyapatite:collagen (HC), and hydroxyapatite (HA) standards were spiked with tungsten and zinc and used as calibration standards for laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analysis of bone tissue. The analytical performance of these standards was studied and validated at different step sizes using NIST SRM 1486 Bone Meal. The effect of matrix-matched calibration was assessed by comparing the calibration with BN and HC standards, which incorporate both inorganic and organic components of bone, to that of HA standards. HC standards were found to be more homogenous (RSD < 10%) and provide a linear calibration with better accuracy (R2 > 0.994) compared to other standards. The limits of detection for HC at a 15 μm step size were determined to be 0.24 and 0.012 μg g-1 for zinc and tungsten, respectively. Using this approach, we quantitatively measured zinc and tungsten deposits in the femoral bone of a mouse exposed to 15 μg mL-1 tungsten for four weeks. Localized concentrations of zinc (942 μg g-1) and tungsten (15.7 μg g-1) at selected regions of enrichment were substantially higher than indicated by bulk measurements of these metals.
Collapse
Affiliation(s)
- Cassidy R VanderSchee
- Department of Chemistry, McGill University, Montreal, H3A 0B8, Canada
- Department of Chemistry, The King's University, Edmonton, T6H 2H3, Canada
| | - David Frier
- Department of Chemistry, McGill University, Montreal, H3A 0B8, Canada
| | - David Kuter
- Department of Chemistry, McGill University, Montreal, H3A 0B8, Canada
| | - Koren K Mann
- Lady Davis Institute for Medical Research, Gerald Bronfman Department of Oncology, McGill University, 3755 Cote Ste Catherine Rd, Montreal, H3T 1E2 Canada
| | - Brian P Jackson
- Department of Earth Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - D Scott Bohle
- Department of Chemistry, McGill University, Montreal, H3A 0B8, Canada
| |
Collapse
|
7
|
Wang JT, Pei YY, Yan MY, Li YG, Yang GG, Qu CH, Luo W, Wang J, Li QF. A fast-response turn-on quinoline-based fluorescent probe for selective and sensitive detection of zinc (II) and its application. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105776] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
8
|
Hirschi KD. Genetically Modified Plants: Nutritious, Sustainable, yet Underrated. J Nutr 2020; 150:2628-2634. [PMID: 32725215 PMCID: PMC7549299 DOI: 10.1093/jn/nxaa220] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/11/2020] [Accepted: 07/07/2020] [Indexed: 12/16/2022] Open
Abstract
Combating malnutrition is one of the greatest global health challenges. Plant-based foods offer an assortment of nutrients that are essential for adequate nutrition and can promote good health. Unfortunately, the majority of widely consumed crops are deficient in some of these nutrients. Biofortification is the umbrella term for the process by which the nutritional quality of food crops is enhanced. Traditional agricultural breeding approaches for biofortification are time consuming but can enhance the nutritional value of some foods; however, advances in molecular biology are rapidly being exploited to biofortify various crops. Globally, genetically modified organisms are a controversial topic for consumers and governmental agencies, with a vast majority of people apprehensive about the technology. Golden Rice has been genetically modified to contain elevated β-carotene concentrations and is the bellwether for both the promise and angst of agricultural biotechnology. Although there are numerous other nutritional targets of genetically biofortified crops, here I briefly summarize the work to elevate iron and folate concentrations. In addition, the possibility of using modified foods to affect the gut microbiota is examined. For several decades, plant biotechnology has measured changes in nutrient concentrations; however, the bioavailability of nutrients from many biofortified crops has not been demonstrated.
Collapse
Affiliation(s)
- Kendal D Hirschi
- Department of Pediatrics, Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
- Department of Human and Molecular Genetics, Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|