1
|
Feng T, Chen Z, Cheng X. ZnS:Mn Quantum Dots Coated with a Silica Molecularly Imprinted Polymer for Trace Teflubenzuron Detection in Vegetable Samples. J Fluoresc 2024:10.1007/s10895-024-03634-8. [PMID: 38460097 DOI: 10.1007/s10895-024-03634-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/26/2024] [Indexed: 03/11/2024]
Abstract
A novel nanocomposite fluorescent probe consisting of quantum dots and a silica molecularly imprinted polymer (MIPs-capped ZnS:Mn QDs) was synthesized and applied for the rapid detection of teflubenzuron (TBZ) based on the fluorescence quenching of a composite probe via TBZ. The fluorescence quenching efficiency of MIP@SiO2@ZnS:Mn QDs displayed a linear relationship over the concentration range of 0-26.24 μmol/L with a correlation coefficient of 0.9857 and the limit of detection was 2.4 μg/L. The selectivity test showed that the nanocomposite had good selectively rebind TBZ with higher imprinting factor of 3.06 compared with four structurally similar compounds. In addition, the probe was successfully applied to the detection of TBZ in vegetable samples with a recovery of 90.3~97.1% and with a relative standard deviation below 3.2%. This developed method has the advantages of simple preparation, fast response and low toxicity for trace TBZ detection.
Collapse
Affiliation(s)
- Tian Feng
- Key Laboratory Environment-Friendly Polymer Materials of Anhui Province, School of Chemistry and Chemical Engineering, Hefei, 230601, China
| | - Zhenkun Chen
- Key Laboratory Environment-Friendly Polymer Materials of Anhui Province, School of Chemistry and Chemical Engineering, Hefei, 230601, China
| | - Xiaomin Cheng
- Key Laboratory Environment-Friendly Polymer Materials of Anhui Province, School of Chemistry and Chemical Engineering, Hefei, 230601, China.
| |
Collapse
|
2
|
Wang C, Sun S, Wang P, Zhao H, Li W. Nanotechnology-based analytical techniques for the detection of contaminants in aquatic products. Talanta 2024; 269:125462. [PMID: 38039671 DOI: 10.1016/j.talanta.2023.125462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/26/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023]
Abstract
Food safety of aquatic products has attracted considerable attention worldwide. Although a series of conventional bioassays and instrumental methods have been developed for the detection of pathogenic bacteria, heavy metal residues, marine toxins, and biogenic amines during the production and storage of fish, shrimp, crabs et al., the nanotechnology-based analyses still have their advantages and are promising since they are cost-efficient, highly sensitive and selective, easy to conduct, facial design, often require no sophisticated instruments but with excellent detection performance. This review aims to summarize the advances of various biosensing strategies for bacteria, metal ions, and small molecule contaminants in aquatic products during the last five years, The review highlights the development in nanotechnologies applied for biorecognition process, signal transduction and amplification methods in each novel approach, the nuclease-mediated DNA amplification, nanomaterials (noble metal nanoparticle, metal-organic frameworks, carbon dots), lateral flow-based biosensor, surface-enhanced Raman scattering, microfluidic chip, and molecular imprinting technologies were especially emphasized. Moreover, this study provides a view of current accomplishments, challenges, and future development directions of nanotechnology in aquatic product safety evaluation.
Collapse
Affiliation(s)
- Chengke Wang
- College of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Ludong University, Yantai, 264025, PR China; Institute of Bio-Nanotechnology, Ludong University, Yantai, 264025, PR China.
| | - Shuyang Sun
- College of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Ludong University, Yantai, 264025, PR China; Institute of Bio-Nanotechnology, Ludong University, Yantai, 264025, PR China.
| | - Ping Wang
- College of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Ludong University, Yantai, 264025, PR China; Institute of Bio-Nanotechnology, Ludong University, Yantai, 264025, PR China
| | - Huawei Zhao
- College of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Ludong University, Yantai, 264025, PR China; Institute of Bio-Nanotechnology, Ludong University, Yantai, 264025, PR China
| | - Wenling Li
- College of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Ludong University, Yantai, 264025, PR China
| |
Collapse
|
3
|
Niu C, Yao Z, Jiang S. Synthesis and application of quantum dots in detection of environmental contaminants in food: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163565. [PMID: 37080319 DOI: 10.1016/j.scitotenv.2023.163565] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023]
Abstract
Environmental pollutants can accumulate in the human body through the food chain, which may seriously impact human health. Therefore, it is of vital importance to develop quick, simple, accurate and sensitive (respond quickly) technologies to evaluate the concentration of environmental pollutants in food. Quantum dots (QDs)-based fluorescence detection methods have great potential to overcome the shortcomings of traditional detection methods, such as long detection time, cumbersome detection procedures, and low sensitivity. This paper reviews the types and synthesis methods of QDs with a focus on green synthesis and the research progress on rapid detection of environmental pollutants (e.g., heavy metals, pesticides, and antibiotics) in food. Metal-based QDs, carbon-based QDs, and "top-down" and "bottom-up" synthesis methods are discussed in detail. In addition, research progress of QDs in detecting different environmental pollutants in food is discussed, especially, the practical application of these methods is analyzed. Finally, current challenges and future research directions of QDs-based detection technologies are critically discussed. Hydrothermal synthesis of carbon-based QDs with low toxicity from natural materials has a promising future. Research is needed on green synthesis of QDs, direct detection without pre-processing, and simultaneous detection of multiple contaminants. Finally, how to keep the mobile sensor stable, sensitive and easy to store is a hot topic in the future.
Collapse
Affiliation(s)
- Chenyue Niu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China.
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China.
| | - Shanxue Jiang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
4
|
Jinadasa KK, Peña-Vázquez E, Bermejo-Barrera P, Moreda-Piñeiro A. Smart materials for mercury and arsenic determination in food and beverages. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
5
|
Zhou H, Chen Q, Song X, He L, Liu R. Surface molecularly imprinted solid-phase extraction for the determination of vancomycin in plasma samples using HPLC-MS/MS. ANAL SCI 2022; 38:1171-1179. [PMID: 35841522 DOI: 10.1007/s44211-022-00143-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022]
Abstract
Vancomycin is a glycopeptide antibiotic used to treat infections caused by Gram-positive bacteria. Due to the narrow therapeutic index of vancomycin, it is necessary to develop a sensitive and reliable analytical method to monitor the drug concentration in plasma. A novel method based on surface molecularly imprinted solid-phase extraction combined with liquid chromatography-tandem mass spectrometry for the determination of vancomycin in plasma sample was developed. The plasma sample was cleaned up through the solid-phase extraction process before the analysis. The calibration standard of vancomycin in plasma ranged between 1 and 100 ng/mL, and the correlation coefficient (r) was 0.9993. The average recoveries were from 94.3 to 104.0%, and the precision was less than 10.5%. The limit of detection and limit of quantification were 0.5 ng/mL and 1 ng/mL, respectively. The method validated was successfully used for the detection of vancomycin in mice after oral administration.
Collapse
Affiliation(s)
- Hao Zhou
- National Reference Laboratory of Veterinary Drug Residues (SCAU), College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.,Pearl River Fisheries Research Institute, Chinese Academic of Fishery Science, Guangzhou, 510380, China
| | - Qianqian Chen
- National Reference Laboratory of Veterinary Drug Residues (SCAU), College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xuqin Song
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Limin He
- National Reference Laboratory of Veterinary Drug Residues (SCAU), College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Rong Liu
- National Reference Laboratory of Veterinary Drug Residues (SCAU), College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
6
|
MA J, LIAN Z, HE C, WANG J, YU R. [Application of novel quantum dot-based molecularly imprinted fluorescence sensor in rapid detection]. Se Pu 2021; 39:775-780. [PMID: 34212579 PMCID: PMC9404066 DOI: 10.3724/sp.j.1123.2021.02025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Indexed: 11/25/2022] Open
Abstract
A critical need in analytical chemistry is the efficient fabrication of selective and sensitive sensors to detect trace analytes in complicated samples. In recent years, fluorescence analysis has been widely used in environmental research and the life sciences due to its high sensitivity and simple operation. Quantum dots (QDs) are a new type of fluorescent nanomaterials. Owing to the quantum confinement effect, QDs possess excellent optical properties such as strong anti-bleaching ability, a narrow excitation and emission band, and tunable emission wavelength. As a hot labeling material, QDs are suitable for use in surface-modified analytical sensors employed in fields such as analytical chemistry, biology, and medicine. However, QD materials have a notable disadvantage, in that the actual sample matrix may contain some interferents with luminescent responses similar to those of the target; this decreases the selective ability of the fluorescence sensor. The surface modification of QDs via the molecular imprinting technique (MIT) is a promising solution to overcome this drawback. Molecularly imprinted polymers (MIPs) are a kind of "bionic" material that can carry out specific recognition and selective adsorption and hence, possess the unique properties of recognition specificity, structural predictability, good reproducibility, and excellent stability. Accordingly, MIPs have been widely employed in sensors as well as for drug delivery, catalysis, and solid phase extraction. Notably, QD-based molecularly imprinted fluorescence sensors combine the advantages of QDs and the MIT. Owing to their specific selectivity and high sensitivity, such sensors have been extensively developed for environmental monitoring, food detection, and biological analysis. However, there remain challenges associated with the preparation and application of the sensors: (i) single recognition: it is important to develop a composite sensor that can detect multiple target analytes from the actual samples at the same time during practical application; (ii) poor hydrophilicity: the actual sample is usually a liquid matrix; hence, it is imperative to determine an approach for improving the hydrophilicity of the sensor; (iii) the accuracy of fluorescence response and the resolution of visual detection need to be further improved; (iv) imprinting: it remains challenging to imprint biological macromolecules, viruses, and bacteria. Thus far, many researchers have made progress with regard to the preparation and application of the sensors. Accordingly, this work reviews approximately 20 papers published by the American Chemical Society, Elsevier, and other databases in the last five years to highlight progress in novel preparation methods and practical applications of QD-based molecularly imprinted fluorescence sensors for the sensitive analysis and rapid detection of trace substances. First, according to the different numbers of emission peaks in the fluorescence spectrum, three kinds of QD-based molecularly imprinted fluorescence sensors are introduced and the related recognition mechanisms are explained. Second, according to the different substances to be detected, this mini-review summarizes the latest research progress in sensors for the detection of ions, organic small molecules, biological macromolecules, as well as for the analysis of bacteria and viruses. Finally, existing challenges associated with the preparation and application of the sensors, as well as future development trends, are discussed.
Collapse
|
7
|
Färkkilä SMA, Kiers ET, Jaaniso R, Mäeorg U, Leblanc RM, Treseder KK, Kang Z, Tedersoo L. Fluorescent nanoparticles as tools in ecology and physiology. Biol Rev Camb Philos Soc 2021; 96:2392-2424. [PMID: 34142416 DOI: 10.1111/brv.12758] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/21/2022]
Abstract
Fluorescent nanoparticles (FNPs) have been widely used in chemistry and medicine for decades, but their employment in biology is relatively recent. Past reviews on FNPs have focused on chemical, physical or medical uses, making the extrapolation to biological applications difficult. In biology, FNPs have largely been used for biosensing and molecular tracking. However, concerns over toxicity in early types of FNPs, such as cadmium-containing quantum dots (QDs), may have prevented wide adoption. Recent developments, especially in non-Cd-containing FNPs, have alleviated toxicity problems, facilitating the use of FNPs for addressing ecological, physiological and molecule-level processes in biological research. Standardised protocols from synthesis to application and interdisciplinary approaches are critical for establishing FNPs in the biologists' tool kit. Here, we present an introduction to FNPs, summarise their use in biological applications, and discuss technical issues such as data reliability and biocompatibility. We assess whether biological research can benefit from FNPs and suggest ways in which FNPs can be applied to answer questions in biology. We conclude that FNPs have a great potential for studying various biological processes, especially tracking, sensing and imaging in physiology and ecology.
Collapse
Affiliation(s)
- Sanni M A Färkkilä
- Institute of Ecology and Earth Sciences, University of Tartu, Ravila 14a, 50411, Tartu, Estonia
| | - E Toby Kiers
- Department of Ecological Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, NL-1081 HV, Amsterdam, Noord-Holland, The Netherlands
| | - Raivo Jaaniso
- Institute of Physics, University of Tartu, W. Ostwaldi Str 1, 50411, Tartu, Tartumaa, Estonia
| | - Uno Mäeorg
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411, Tartu, Estonia
| | - Roger M Leblanc
- Department of Chemistry, Cox Science Center, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33124, U.S.A
| | - Kathleen K Treseder
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California, Irvine, 3106 Biological Sciences III, Mail Code: 2525, 92697, Irvine, CA, U.S.A
| | - Zhenhui Kang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Leho Tedersoo
- Institute of Ecology and Earth Sciences, University of Tartu, Ravila 14a, 50411, Tartu, Estonia
| |
Collapse
|
8
|
Kazemifard N, Ensafi AA, Dehkordi ZS. A review of the incorporation of QDs and imprinting technology in optical sensors – imprinting methods and sensing responses. NEW J CHEM 2021. [DOI: 10.1039/d1nj01104a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review aims to cover the simultaneous method of using molecularly imprinted technology and quantum dots (QDs) as well as its application in the field of optical sensors.
Collapse
Affiliation(s)
- Nafiseh Kazemifard
- Department of Chemistry
- Isfahan University of Technology
- Isfahan 84156-83111
- Iran
| | - Ali A. Ensafi
- Department of Chemistry
- Isfahan University of Technology
- Isfahan 84156-83111
- Iran
| | | |
Collapse
|
9
|
Jinadasa KK, Peña-Vázquez E, Bermejo-Barrera P, Moreda-Piñeiro A. New adsorbents based on imprinted polymers and composite nanomaterials for arsenic and mercury screening/speciation: A review. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104886] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|