1
|
Favaretto R, Ardoino N, Pucker G, Bellotto N, Mancinelli M, Piccoli G, Bernard M, Vanzetti L, Potrich C, Lunelli L, Pederzolli C, Guardiani C, Pasquardini L. A ring resonators optical sensor for multiple biomarkers detection. Talanta 2024; 282:127035. [PMID: 39418982 DOI: 10.1016/j.talanta.2024.127035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/25/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
In the recent years, the number of Point-Of-Care-Tests (POCTs) available for clinical diagnostic has steadily increased. POCTs provide a near-patient testing with the potential to generate a result quickly so that appropriate treatment can be implemented, leading to improved clinical outcomes compared to traditional laboratory testing. Technological advances, such as miniaturization of sensors and improved instrumentation, have revolutionized POCTs, enabling the development of smaller and more accurate devices. In this context, it has also gained increasing importance the screening of various analytes simultaneously to increase specificity and improve the characterization of the disease. This study is aimed at developing and characterizing a photonic integrated circuit for multiple markers detection, which represents the functional core towards a full developed POCT device for clinical pathology applications. The photonic sensor, based on microring resonators (MRRs), is functionalized by immobilizing specific antibodies on a copolymer layer deposited on the MRR's surfaces. Surface chemical techniques were employed to analyse the surface chemical characteristics while fluorescence microscopy was involved to analyse the resulting bioreceptor surface density. The photonic sensor is characterized for the parallel detection of two biomarkers, the C-Reactive Protein (CRP) and the Creatine-Kinase-MB (CK-MB). The analyte-antibody binding curves were obtained both in buffer and in filtered un-diluted artificial saliva showing promising results both in terms of sensitivity, with limit of detection (LOD) of 103 pM for CRP and 140 pM for CK-MB, and in terms of specificity. These encouraging results let the assembly of a highly sensitive POC device for molecular diagnostics.
Collapse
Affiliation(s)
- Rachele Favaretto
- FTH srl, Via Sommarive 18, 38123, Trento, Italy; Department of Physics, University of Trento, Via Sommarive 14, 38123, Trento, Italy
| | | | - Georg Pucker
- Fondazione Bruno Kessler, Sensors and Devices Center, Via Sommarive 18, 38123, Trento, Italy
| | | | - Mattia Mancinelli
- Department of Physics, University of Trento, Via Sommarive 14, 38123, Trento, Italy
| | - Gioele Piccoli
- Fondazione Bruno Kessler, Sensors and Devices Center, Via Sommarive 18, 38123, Trento, Italy
| | - Martino Bernard
- Fondazione Bruno Kessler, Sensors and Devices Center, Via Sommarive 18, 38123, Trento, Italy
| | - Lia Vanzetti
- Fondazione Bruno Kessler, Sensors and Devices Center, Via Sommarive 18, 38123, Trento, Italy
| | - Cristina Potrich
- Fondazione Bruno Kessler, Sensors and Devices Center, Via Sommarive 18, 38123, Trento, Italy; CNR Institute of Biophysics, Via alla Cascata 56, Povo, 38123, Trento, Italy
| | - Lorenzo Lunelli
- Fondazione Bruno Kessler, Sensors and Devices Center, Via Sommarive 18, 38123, Trento, Italy; CNR Institute of Biophysics, Via alla Cascata 56, Povo, 38123, Trento, Italy
| | - Cecilia Pederzolli
- Fondazione Bruno Kessler, Sensors and Devices Center, Via Sommarive 18, 38123, Trento, Italy
| | | | - Laura Pasquardini
- Indivenire srl, Via Sommarive 18, 38123, Trento, Italy; Department of Engineering, University of Campania "Luigi Vanvitelli", Via Roma 29, 81031, Aversa, Italy.
| |
Collapse
|
2
|
Devianto LA, Sano D. Systematic review and meta-analysis of human health-related protein markers for realizing real-time wastewater-based epidemiology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165304. [PMID: 37419365 DOI: 10.1016/j.scitotenv.2023.165304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/07/2023] [Accepted: 07/02/2023] [Indexed: 07/09/2023]
Abstract
For effective implementation of the wastewater-based epidemiology (WBE) approach, real-time quantification of markers in wastewater is critical for data acquisition before data interpretation, dissemination, and decision-making. This can be achieved by using biosensor technology, but whether the quantification/detection limits of different types of biosensors comply with the concentration of WBE markers in wastewater is unclear. In the present study, we identified promising protein markers with relatively high concentrations in wastewater samples and analyzed biosensor technologies that are potentially available for real-time WBE. The concentrations of potential protein markers in stool and urine samples were obtained through systematic review and meta-analysis. We examined 231 peer-review papers to collect information regarding potential protein markers that can enable us to achieve real-time monitoring using biosensor technology. Fourteen markers in stool samples were identified at the ng/g level, presumably equivalent to ng/L of wastewater after dilution. Moreover, relatively high average concentrations of fecal inflammatory proteins were observed, e.g., fecal calprotectin, clusterin, and lactoferrin. Fecal calprotectin exhibited the highest average log concentration among the markers identified in stool samples with its mean value being 5.24 [95 % CI: 5.05, 5.42] ng/g. We identified 50 protein markers in urine samples at the ng/mL level. Uromodulin (4.48 [95 % CI: 4.20, 4.76] ng/mL) and plasmin (4.18 [95 % CI: 3.15, 5.21] ng/mL) had the top two highest log concentrations in urine samples. Furthermore, the quantification limit of some electrochemical- and optical-based biosensors was found to be around the femtogram/mL level, which is sufficiently low to detect protein markers in wastewater even after dilution in sewer pipes.
Collapse
Affiliation(s)
- Luhur Akbar Devianto
- Department of Frontier Science for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi 980-8579, Japan; Department of Environmental Engineering, Faculty of Agriculture Technology, Brawijaya University, Malang 65145, Indonesia.
| | - Daisuke Sano
- Department of Frontier Science for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi 980-8579, Japan; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan; Wastewater Information Research Center, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
3
|
Li Z, Zhai W, Wang L, Liu J, Li C, Xu L. Preparation and characterization of a homogeneous immunoassay for point-of-care testing (POCT) of procalcitonin (PCT). ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5002-5009. [PMID: 37728429 DOI: 10.1039/d3ay00890h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Procalcitonin (PCT) has been recognized as a specific and early marker for microbial infection and sepsis. Sensitive measuring interaction-triggered luminescence experiment (SMILE), a homogeneous immunoassay method, was established for point-of-care testing (POCT) of PCT. SMILE is achieved through the principle of double antibody sandwich, where two antibodies immobilized on the surface of polystyrene microspheres (donor and acceptor beads) bind to the PCT antigen. The donor bead contains phthalocyanine dye (luminol chemiluminescent substance) and the acceptor bead contains dimethylthiophene derivatives and Eu chelates. Therefore, singlet oxygen can be transferred when the distance between donor and acceptor beads is within 200 nm, generating detectable luminescent signals. Scanning electron microscopy (SEM) was used to detect the diameter and polymer dispersity index (PDI) of microspheres before and after binding with antibodies to characterize the immobilization of antibodies. The reaction conditions for antibody immobilization including pH, mass ratio and reaction time have also been optimized. The limit of quantitation (LOQ) of the SMILE method (0.01 ng mL-1) was lower than that of the LFI method (0.1 ng mL-1), the working range (0.01-500 ng mL-1) was wider than that of the LFI method (0.1-50 ng mL-1), and the assay time (10 min) was shorter than that of the LFI method (15 min). So, SMILE is more suitable for POCT of PCT compared with lateral flow immunochromatography (LFI), which is the most used measuring method, due to its advantages of simple operation, saving time, convenience, wide detection range, and high sensitivity and accuracy.
Collapse
Affiliation(s)
- Zhaoying Li
- Graduate School, Tianjin Medical University, Tianjin, 300070, China.
- Tianjin Chest Hospital, Tianjin, 300222, China
| | | | - Lu Wang
- Graduate School, Tianjin Medical University, Tianjin, 300070, China.
- School of Pharmacy, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Jiyang Liu
- Epsilon Biotechnology Corporation, Zhejiang, 311199, China
| | - Chunjie Li
- Tianjin Chest Hospital, Tianjin, 300222, China
| | - Liang Xu
- Graduate School, Tianjin Medical University, Tianjin, 300070, China.
- Tianjin Medical College, Tianjin, 300222, China
- School of Pharmacy, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| |
Collapse
|
4
|
Kimura H, Asano R. Strategies to simplify operation procedures for applying labeled antibody-based immunosensors to point-of-care testing. Anal Biochem 2022; 654:114806. [PMID: 35835209 DOI: 10.1016/j.ab.2022.114806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/12/2022] [Accepted: 07/07/2022] [Indexed: 11/01/2022]
Abstract
Point-of-care testing (POCT) is an ideal testing format for the rapid and on-site detection of analytes in patients, and facilitates disease diagnosis and monitoring. Molecular recognition elements are required for the specific detection of analytes, and biosensors that use antibodies as the molecular recognition elements are called immunosensors. Traditional immunosensors such as sandwich enzyme-linked immunosorbent assay (ELISA) require complicated procedures to form immunocomplexes consisting of detection antibodies, analytes, and capture antibodies. They also require long incubation times, washing procedures, and large and expensive specialized equipment that must be operated by laboratory technicians. Immunosensors for POCT should be systems that use relatively small pieces of equipment and do not require special training. In this review, to help in the construction of immunosensors for POCT, we have summarized the recently reported strategies for simplifying the operation, incubation, and washing procedures. We focused on the optical and electrochemical detection principles of immunosensors, compared the strategies for operation, sensitivity, and detection devices and discussed the ideal system. Combining detection devices that can be fabricated inexpensively and strategies that enable simplification of operation procedures and enhance sensitivities will contribute to the development of immunosensors for POCT.
Collapse
Affiliation(s)
- Hayato Kimura
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan
| | - Ryutaro Asano
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan.
| |
Collapse
|
5
|
Kabay G, DeCastro J, Altay A, Smith K, Lu HW, Capossela AM, Moarefian M, Aran K, Dincer C. Emerging Biosensing Technologies for the Diagnostics of Viral Infectious Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201085. [PMID: 35288985 DOI: 10.1002/adma.202201085] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Several viral infectious diseases appear limitless since the beginning of the 21st century, expanding into pandemic lengths. Thus, there are extensive efforts to provide more efficient means of diagnosis, a better understanding of acquired immunity, and improved monitoring of inflammatory biomarkers, as these are all crucial for controlling the spread of infection while aiding in vaccine development and improving patient outcomes. In this regard, various biosensors have been developed recently to streamline pathogen and immune response detection by addressing the limitations of traditional methods, including isothermal amplification-based systems and lateral flow assays. This review explores state-of-the-art biosensors for detecting viral pathogens, serological assays, and inflammatory biomarkers from the material perspective, by discussing their advantages, limitations, and further potential regarding their analytical performance, clinical utility, and point-of-care adaptability. Additionally, next-generation biosensing technologies that offer better sensitivity and selectivity, and easy handling for end-users are highlighted. An emerging example of these next-generation biosensors are those powered by novel synthetic biology tools, such as clustered regularly interspaced short palindromic repeats (CRISPR) with CRISPR-associated proteins (Cas), in combination with integrated point-of-care devices. Lastly, the current challenges are discussed and a roadmap for furthering these advanced biosensing technologies to manage future pandemics is provided.
Collapse
Affiliation(s)
- Gözde Kabay
- FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, 79110, Freiburg, Germany
- Department of Microsystems Engineering - IMTEK, University of Freiburg, 79110, Freiburg, Germany
- Institute of Functional Interfaces - IFG, Karlsruhe Institute of Technology, 76344, Karlsruhe, Germany
| | - Jonalyn DeCastro
- The Claremont Colleges, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Alara Altay
- FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, 79110, Freiburg, Germany
- Department of Microsystems Engineering - IMTEK, University of Freiburg, 79110, Freiburg, Germany
| | - Kasey Smith
- The Claremont Colleges, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Hsiang-Wei Lu
- The Claremont Colleges, Keck Graduate Institute, Claremont, CA, 91711, USA
| | | | - Maryam Moarefian
- The Claremont Colleges, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Kiana Aran
- The Claremont Colleges, Keck Graduate Institute, Claremont, CA, 91711, USA
- Cardea Bio Inc., San Diego, CA, 92121, USA
| | - Can Dincer
- FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, 79110, Freiburg, Germany
- Department of Microsystems Engineering - IMTEK, University of Freiburg, 79110, Freiburg, Germany
| |
Collapse
|
6
|
He Y, Gu D, Kong X, Feng Z, Lin W, Cai Y. A study of the moving rate of positive results for use in a patient-based real-time quality control program on a procalcitonin point-of-care testing analyzer. J Clin Lab Anal 2022; 36:e24320. [PMID: 35257410 PMCID: PMC8993656 DOI: 10.1002/jcla.24320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 11/08/2022] Open
Abstract
Objective To establish an applicable and highly sensitive patient‐based real‐time quality control (PBRTQC) program based on a data model constructed with patients’ results of a procalcitonin point‐of‐care testing (POCT) analyzer. Methods Patients’ results were retrospectively collected within one year. The Excel software was used to establish quality control (QC) programs of the moving average (MA) and the moving rate of positive results (MR). A Monte Carlo simulation was used to introduce positive and negative biases between 0.01 and 1 ng/ml at random points of the testing data set. Different parameters were used to detect the biases, and the detection efficiency was expressed using the median number of patient samples affected until error detection (MNPed). After comparing the MNPeds of different programs, MA and MR programs with appropriate parameters were selected, and validation plots were generated using MNPeds and maximum number of the patient samples affected (MAX). β curves were generated using the power function of the programs, the performances were compared with that of the conventional QC program. Results Neither the conventional QC nor MA program was sensitive to small bias, While MR program can detect the minimum positive bias of 0.06 ng/ml and negative of 0.4 ng/ml at an average daily run size of 10 specimens, with FRs < 1.0%, βs < 1%. Conclusion The MR program, which is more sensitive to small biases than conventional QC and MA programs, with low FR and β. As such, it can be used as a PBRTQC program with high performance.
Collapse
Affiliation(s)
- Yili He
- Clinical LaboratoryThe Fifth People's Hospital of PanyuGuangzhouChina
| | - Daqing Gu
- Clinical LaboratoryThe Fifth People's Hospital of PanyuGuangzhouChina
| | - Xiangzhi Kong
- Clinical LaboratoryThe Fifth People's Hospital of PanyuGuangzhouChina
| | - Zhiqiang Feng
- Clinical LaboratoryThe Fifth People's Hospital of PanyuGuangzhouChina
| | - Weishang Lin
- Clinical LaboratoryThe Fifth People's Hospital of PanyuGuangzhouChina
| | - Yunfeng Cai
- Clinical LaboratoryThe Fifth People's Hospital of PanyuGuangzhouChina
| |
Collapse
|
7
|
Alba-Patiño A, Vaquer A, Barón E, Russell SM, Borges M, de la Rica R. Micro- and nanosensors for detecting blood pathogens and biomarkers at different points of sepsis care. Mikrochim Acta 2022; 189:74. [PMID: 35080669 PMCID: PMC8790942 DOI: 10.1007/s00604-022-05171-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/26/2021] [Indexed: 12/29/2022]
Abstract
Severe infections can cause a dysregulated response leading to organ dysfunction known as sepsis. Sepsis can be lethal if not identified and treated right away. This requires measuring biomarkers and pathogens rapidly at the different points where sepsis care is provided. Current commercial approaches for sepsis diagnosis are not fast, sensitive, and/or specific enough for meeting this medical challenge. In this article, we review recent advances in the development of diagnostic tools for sepsis management based on micro- and nanostructured materials. We start with a brief introduction to the most popular biomarkers for sepsis diagnosis (lactate, procalcitonin, cytokines, C-reactive protein, and other emerging protein and non-protein biomarkers including miRNAs and cell-based assays) and methods for detecting bacteremia. We then highlight the role of nano- and microstructured materials in developing biosensors for detecting them taking into consideration the particular needs of every point of sepsis care (e.g., ultrafast detection of multiple protein biomarkers for diagnosing in triage, emergency room, ward, and intensive care unit; quantitative detection to de-escalate treatment; ultrasensitive and culture-independent detection of blood pathogens for personalized antimicrobial therapies; robust, portable, and web-connected biomarker tests outside the hospital). We conclude with an overview of the most utilized nano- and microstructured materials used thus far for solving issues related to sepsis diagnosis and point to new challenges for future development.
Collapse
Affiliation(s)
- Alejandra Alba-Patiño
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Department of Chemistry, University of the Balearic Islands, Palma, Spain
| | - Andreu Vaquer
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Department of Chemistry, University of the Balearic Islands, Palma, Spain
| | - Enrique Barón
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.
| | - Steven M Russell
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Marcio Borges
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Multidisciplinary Sepsis Unit, ICU, Son Llàtzer University Hospital, Palma, Spain
| | - Roberto de la Rica
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.
| |
Collapse
|
8
|
A photonic crystal fiber-based fluorescence sensor for simultaneous and sensitive detection of lactic acid enantiomers. Anal Bioanal Chem 2022; 414:1641-1649. [PMID: 35024916 PMCID: PMC8756416 DOI: 10.1007/s00216-021-03788-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 11/30/2022]
Abstract
A photonic crystal fiber (PCF)–based fluorescence sensor is developed for rapid and sensitive detection of lactic acid (LA) enantiomers in serum samples. The sensor is fabricated by chemical binding dual enzymes on the inner surface of the PCF with numerous pore structures and a large specific surface area, which is suitable to be utilized as an enzymatic reaction carrier. To achieve simultaneous detection of l-LA and d-LA, the PCF with an aldehyde-activated surface is cut into two separate pieces, one of which is coated with l-LDH/GPT enzymes and the other with d-LDH/GPT enzymes. By being connected and carefully aligned to each other by a suitable sleeve tube connector, the responses of both l-LA and d-LA sensors are determined by laser-induced flourescence (LIF) detection. With the aid of enzyme-linked catalytic reactions, the proposed PCF sensor can greatly improve the sensitivity and analysis speed for the detection of LA enantiomers. The PCF sensor exhibits a low limit of detection of 9.5 μM and 0.8 μM, and a wide linear range of 25–2000 μM and 2–400 μM for l-LA and d-LA, respectively. The sensor has been successfully applied to accurate determination of LA enantiomers in human serum with satisfactory reproducibility and stability. It is indicated that the present PCF sensors would be used as an attractive analytical platform for quantitative detection of trace-amount LA enantiomers in real biological samples, and thus would play a role in disease diagnosis and clinical monitoring in point-of-care testing.
Collapse
|
9
|
Soares MS, Vidal M, Santos NF, Costa FM, Marques C, Pereira SO, Leitão C. Immunosensing Based on Optical Fiber Technology: Recent Advances. BIOSENSORS-BASEL 2021; 11:bios11090305. [PMID: 34562895 PMCID: PMC8472567 DOI: 10.3390/bios11090305] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022]
Abstract
The evolution of optical fiber technology has revolutionized a variety of fields, from optical transmission to environmental monitoring and biomedicine, given their unique properties and versatility. For biosensing purposes, the light guided in the fiber core is exposed to the surrounding media where the analytes of interest are detected by different techniques, according to the optical fiber configuration and biofunctionalization strategy employed. These configurations differ in manufacturing complexity, cost and overall performance. The biofunctionalization strategies can be carried out directly on bare fibers or on coated fibers. The former relies on interactions between the evanescent wave (EW) of the fiber and the analyte of interest, whereas the latter can comprise plasmonic methods such as surface plasmon resonance (SPR) and localized SPR (LSPR), both originating from the interaction between light and metal surface electrons. This review presents the basics of optical fiber immunosensors for a broad audience as well as the more recent research trends on the topic. Several optical fiber configurations used for biosensing applications are highlighted, namely uncladded, U-shape, D-shape, tapered, end-face reflected, fiber gratings and special optical fibers, alongside practical application examples. Furthermore, EW, SPR, LSPR and biofunctionalization strategies, as well as the most recent advances and applications of immunosensors, are also covered. Finally, the main challenges and an outlook over the future direction of the field is presented.
Collapse
|
10
|
Morioka K, Sato H, Kuboyama M, Yanagida A, Shoji A. Quantification of CRP in human serum using a handheld fluorescence detection system for capillary-based ELISA. Talanta 2021; 224:121725. [PMID: 33379000 DOI: 10.1016/j.talanta.2020.121725] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022]
Abstract
We developed a handheld fluorescence detection system for capillary-based enzyme-linked immunosorbent assay (ELISA). The detection system implements both a long-pass filter and perpendicular optical arrangement, i.e., a power LED and a palm-sized spectrometer, to minimize background signals from the excitation light and optical scattering. The lower detection limit for resorufin was 0.13 μM. The detection system was applied to the quantification of C-reactive protein (CRP) in human serum with a capillary-based ELISA. The lower detection limit for CRP was 31 ng/ml, and the observed CRP levels in human serum were comparable to those obtained with a conventional ELISA system.
Collapse
Affiliation(s)
- Kazuhiro Morioka
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Hina Sato
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Minori Kuboyama
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Akio Yanagida
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Atsushi Shoji
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan.
| |
Collapse
|
11
|
Adrover-Jaume C, Alba-Patiño A, Clemente A, Santopolo G, Vaquer A, Russell SM, Barón E, González Del Campo MDM, Ferrer JM, Berman-Riu M, García-Gasalla M, Aranda M, Borges M, de la Rica R. Paper biosensors for detecting elevated IL-6 levels in blood and respiratory samples from COVID-19 patients. SENSORS AND ACTUATORS. B, CHEMICAL 2021; 330:129333. [PMID: 33519090 PMCID: PMC7833127 DOI: 10.1016/j.snb.2020.129333] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 05/05/2023]
Abstract
Decentralizing COVID-19 care reduces contagions and affords a better use of hospital resources. We introduce biosensors aimed at detecting severe cases of COVID-19 in decentralized healthcare settings. They consist of a paper immunosensor interfaced with a smartphone. The immunosensors have been designed to generate intense colorimetric signals when the sample contains ultralow concentrations of IL-6, which has been proposed as a prognosis biomarker of COVID-19. This is achieved by combining a paper-based signal amplification mechanism with polymer-filled reservoirs for dispensing antibody-decorated nanoparticles and a bespoken app for color quantification. With this design we achieved a low limit of detection (LOD) of 10-3 pg mL-1 and semi-quantitative measurements in a wide dynamic range between 10-3 and 102 pg mL-1 in PBS. The assay time is under 10 min. The low LOD allowed us to dilute blood samples and detect IL-6 with an LOD of 1.3 pg mL-1 and a dynamic range up to 102 pg mL-1. Following this protocol, we were able to stratify COVID-19 patients according to different blood levels of IL-6. We also report on the detection of IL-6 in respiratory samples (bronchial aspirate, BAS) from COVID-19 patients. The test could be easily adapted to detect other cytokines such as TNF-α and IL-8 by changing the antibodies decorating the nanoparticles accordingly. The ability of detecting cytokines in blood and respiratory samples paves the way for monitoring local inflammation in the lungs as well as systemic inflammation levels in the body.
Collapse
Affiliation(s)
- Cristina Adrover-Jaume
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), Son Espases University Hospital, 07120, Palma de Mallorca, Spain
- University of the Balearic Islands, Chemistry Department, Cra. de Valldemossa km 7.5, 07122, Palma de Mallorca, Spain
| | - Alejandra Alba-Patiño
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), Son Espases University Hospital, 07120, Palma de Mallorca, Spain
- University of the Balearic Islands, Chemistry Department, Cra. de Valldemossa km 7.5, 07122, Palma de Mallorca, Spain
| | - Antonio Clemente
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), Son Espases University Hospital, 07120, Palma de Mallorca, Spain
| | - Giulia Santopolo
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), Son Espases University Hospital, 07120, Palma de Mallorca, Spain
- University of the Balearic Islands, Chemistry Department, Cra. de Valldemossa km 7.5, 07122, Palma de Mallorca, Spain
| | - Andreu Vaquer
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), Son Espases University Hospital, 07120, Palma de Mallorca, Spain
| | - Steven M Russell
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), Son Espases University Hospital, 07120, Palma de Mallorca, Spain
| | - Enrique Barón
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), Son Espases University Hospital, 07120, Palma de Mallorca, Spain
| | - María Del Mar González Del Campo
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), Son Espases University Hospital, 07120, Palma de Mallorca, Spain
| | - Joana M Ferrer
- Immune Response in Human Pathology Group, Health Research Institute of the Balearic Islands (IdISBa), Spain
- Immunology Department, Son Espases University Hospital, Spain Son Espases University Hospital, 07120, Palma de Mallorca, Spain
| | - María Berman-Riu
- Immune Response in Human Pathology Group, Health Research Institute of the Balearic Islands (IdISBa), Spain
| | - Mercedes García-Gasalla
- Infectious Diseases-HIV Group, Health Research Institute of the Balearic Islands (IdISBa), Son Espases University Hospital, 07120, Palma de Mallorca, Spain
| | - María Aranda
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), Son Espases University Hospital, 07120, Palma de Mallorca, Spain
- Multidisciplinary Sepsis Unit, ICU, Son Llàtzer University Hospital, 07198, Palma de Mallorca, Spain
| | - Marcio Borges
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), Son Espases University Hospital, 07120, Palma de Mallorca, Spain
- Multidisciplinary Sepsis Unit, ICU, Son Llàtzer University Hospital, 07198, Palma de Mallorca, Spain
| | - Roberto de la Rica
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), Son Espases University Hospital, 07120, Palma de Mallorca, Spain
- University of the Balearic Islands, Chemistry Department, Cra. de Valldemossa km 7.5, 07122, Palma de Mallorca, Spain
| |
Collapse
|
12
|
Kumar S, Nehra M, Khurana S, Dilbaghi N, Kumar V, Kaushik A, Kim KH. Aspects of Point-of-Care Diagnostics for Personalized Health Wellness. Int J Nanomedicine 2021; 16:383-402. [PMID: 33488077 PMCID: PMC7814661 DOI: 10.2147/ijn.s267212] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/24/2020] [Indexed: 12/24/2022] Open
Abstract
Advancements in analytical diagnostic systems for point-of-care (POC) application have gained considerable attention because of their rapid operation at the site required to manage severe diseases, even in a personalized manner. The POC diagnostic devices offer easy operation, fast analytical outcome, and affordable cost, which promote their advanced research and versatile adoptability. Keeping advantages in view, considerable efforts are being made to design and develop smart sensing components such as miniaturized transduction, interdigitated electrodes-based sensing chips, selective detection at low level, portable packaging, and sustainable durability to promote POC diagnostics according to the needs of patient care. Such effective diagnostics systems are in demand, which creates the challenge to make them more efficient in every aspect to generate a desired bio-informatic needed for better health access and management. Keeping advantages and scope in view, this mini review focuses on practical scenarios associated with miniaturized analytical diagnostic devices at POC application for targeted disease diagnostics smartly and efficiently. Moreover, advancements in technologies, such as smartphone-based operation, paper-based sensing assays, and lab-on-a-chip (LOC) which made POC more sensitive, informative, and suitable for major infectious disease diagnosis, are the main focus here. Besides, POC diagnostics based on automated patient sample integration with a sensing platform is continuously improving therapeutics interventions against specific infectious disease. This review also discussed challenges associated with state-of-the-art technology along with future research opportunities to design and develop next generation POC diagnostic systems needed to manage infectious diseases in a personalized manner.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India
| | - Monika Nehra
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India
| | - Sakina Khurana
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India
| | - Neeraj Dilbaghi
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India
| | - Vanish Kumar
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Natural Sciences, Division of Sciences, Art, & Mathematics, Florida Polytechnic University, Lakeland, FL, 33805-8531, USA
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
13
|
Emerging evidence for serum procalcitonin estimation at point-of-care and advancement in quantitative sensing strategies over the past decade. SENSORS INTERNATIONAL 2021. [DOI: 10.1016/j.sintl.2021.100107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|