1
|
Jyothish L, Kazi S, Gokhale JS. Microfluidics for detection of food pathogens: recent trends and opportunities. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:2243-2262. [PMID: 39431185 PMCID: PMC11486885 DOI: 10.1007/s13197-024-06058-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 10/22/2024]
Abstract
Safe and healthy food is the fundamental right of every citizen. Problems caused by foodborne pathogens have always raised a threat to food safety and human health. Centers for Disease Control and Prevention (CDC) estimates that around 48 million people are affected by food intoxication, and 3000 people succumb to death. Hence, it is inevitable that an approach that is efficient, reliable, sensitive, and rapid approach that can replace the conventional analytical methods such as microbiological and biochemical methods, high throughput next-generation sequence (NGS), polymerase chain reaction (PCR), and enzyme-linked immunosorbent assay (ELISA), etc. Even though the accuracy of conventional methods is high, it is tedious; increased consumption of reagents/samples, false positives, and complex operations are the drawbacks of these methods. Microfluidic devices have shown remarkable advances in all branches of science. They serve as an alternative to conventional ways to overcome the abovementioned drawbacks. Furthermore, coupling microfluidics can improve the efficiency and accuracy of conventional methods such as surface plasma resonance, loop-mediated isothermal amplification, ELISA, and PCR. This article reviewed the progress of microfluidic devices in the last ten years in detecting foodborne pathogens. Microfluidic technology has opened the research gateway for developing low-cost, on-site, portable, and rapid assay devices. The article includes the application of microfluidic-based devices to identify critical food pathogens and briefly discusses the necessary research in this area.
Collapse
Affiliation(s)
- Lakshmi Jyothish
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai, 400019 India
| | - Sameera Kazi
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai, 400019 India
| | - Jyoti S. Gokhale
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai, 400019 India
| |
Collapse
|
2
|
Sun H, Zhang X, Ma H, Zhang L, Zhang Y, Sun R, Zheng H, Wang H, Guo J, Liu Y, Wang Y, Qi Y. A programmable sensitive platform for pathogen detection based on CRISPR/Cas12a -hybridization chain reaction-poly T-Cu. Anal Chim Acta 2024; 1317:342888. [PMID: 39030018 DOI: 10.1016/j.aca.2024.342888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/18/2024] [Accepted: 06/17/2024] [Indexed: 07/21/2024]
Abstract
Rapid and sensitive detection of pathogenic bacteria is crucial for disease prevention and control. The CRISPR/Cas12a system with the DNA cleavage capability holds promise in pathogenic bacteria diagnosis. However, the sensitivity of CRISPR-based assays remains a challenge. Herein, we report a versatile and sensitive pathogen sensing platform (HTCas12a) based on the CRISPR/Cas12a system, hybridization chain reaction (HCR) and Poly T-copper fluorescence nanoprobe. The sensitivity is improved by HCR and the Poly-T-Cu reporter probe reduces the overall experiment cost to less than one dollar per sample. Our results demonstrate the specific recognition of target nucleic acid fragments from other pathogens. Furthermore, a good linear correlation between fluorescence intensity and target quantities were achieved with detection limits of 23.36 fM for Target DNA and 4.17 CFU/mL for S.aureus, respectively. The HTCas12a system offers a universal platform for pathogen detection in various fields, including environmental monitoring, clinical diagnosis, and food safety.
Collapse
Affiliation(s)
- Haolin Sun
- School of Public Health, Jilin University, Changchun, Jilin, 130021, PR China
| | - Xiaoyu Zhang
- School of Public Health, Jilin University, Changchun, Jilin, 130021, PR China
| | - Hainan Ma
- School of Public Health, Jilin University, Changchun, Jilin, 130021, PR China
| | - Lina Zhang
- School of Public Health, Jilin University, Changchun, Jilin, 130021, PR China
| | - Yang Zhang
- School of Public Health, Jilin University, Changchun, Jilin, 130021, PR China
| | - Ruimeng Sun
- School of Public Health, Jilin University, Changchun, Jilin, 130021, PR China
| | - Haoran Zheng
- School of Public Health, Jilin University, Changchun, Jilin, 130021, PR China
| | - Han Wang
- School of Public Health, Jilin University, Changchun, Jilin, 130021, PR China
| | - Jiayu Guo
- School of Public Health, Jilin University, Changchun, Jilin, 130021, PR China
| | - Yanqi Liu
- School of Public Health, Jilin University, Changchun, Jilin, 130021, PR China
| | - Yurou Wang
- School of Public Health, Jilin University, Changchun, Jilin, 130021, PR China
| | - Yanfei Qi
- School of Public Health, Jilin University, Changchun, Jilin, 130021, PR China.
| |
Collapse
|
3
|
Zhu Z, Lv Z, Wang L, Tan H, Xu Y, Li S, Chen L. A pump-free paper/PDMS hybrid microfluidic chip for bacteria enrichment and fast detection. Talanta 2024; 275:126155. [PMID: 38678928 DOI: 10.1016/j.talanta.2024.126155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
Developing portable and sensitive biosensors for bacteria detection is highly demanded due to their association with environmental and food safety. Paper-based microfluidic chip is the suitable candidate for constructing pump-free biosensor since paper is hydrophilic, low-cost and easy to use. However, the contradiction between sensitivity and small sample volume seriously affects the application of paper-based chip for bacteria detection. Here, a new microfluidic biosensor, combining large PDMS reservoir for sample storage, hydrophilic paper substrate for pump-free water transport, coated microspheres for bacteria capture and super absorbent resin for water absorption, is designed for the detection of bacteria in aqueous samples. Once the sample solution is introduced in the reservoir, water will automatically flow through the gaps between microspheres and the target bacteria will be captured by the aptamer coated on the surface. To facilitate PDMS reservoir bonding and ensure water transport, the upper side of paper substrate is coated with Polyethylenimine modified PDMS and the bottom side is kept unchanged. After all the solution is filtrated, fluorescent dye strained bacteria are enriched on the microspheres. The fluorescent intensity representing the number of bacteria captured is then measured using a portable instrument. Through the designed microfluidic biosensor, the bacteria detection can be achieved with 2 mL sample solution in less than 15 min for water or 20 min for diluted milk. A linear range from 10 CFU/mL to 1000 CFU/mL is obtained. The paper-based 3D biosensor has the merits of low-cost, simple operation, pump-free and high sensitivity and it can be applied to the simultaneous detection of multiple bacteria via integrating different aptamers.
Collapse
Affiliation(s)
- Zhengshan Zhu
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education & Key Disciplines Laboratory of Novel Micro-Nano Devices and System Technology, College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, China; International R & D Center of Micro-nano Systems and New Materials Technology, Chongqing University, Chongqing, 400044, China
| | - Zilan Lv
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Li Wang
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education & Key Disciplines Laboratory of Novel Micro-Nano Devices and System Technology, College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, China; International R & D Center of Micro-nano Systems and New Materials Technology, Chongqing University, Chongqing, 400044, China
| | - Haolan Tan
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 4001331, China
| | - Yi Xu
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education & Key Disciplines Laboratory of Novel Micro-Nano Devices and System Technology, College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, China; International R & D Center of Micro-nano Systems and New Materials Technology, Chongqing University, Chongqing, 400044, China
| | - Shunbo Li
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education & Key Disciplines Laboratory of Novel Micro-Nano Devices and System Technology, College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, China; International R & D Center of Micro-nano Systems and New Materials Technology, Chongqing University, Chongqing, 400044, China.
| | - Li Chen
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education & Key Disciplines Laboratory of Novel Micro-Nano Devices and System Technology, College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, China; International R & D Center of Micro-nano Systems and New Materials Technology, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
4
|
Liu X, Yuan W, Xiao H. Recent progress on DNAzyme-based biosensors for pathogen detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4917-4937. [PMID: 38984495 DOI: 10.1039/d4ay00934g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Pathogens endanger food safety, agricultural productivity, and human health. Those pathogens are spread through direct/indirect contact, airborne transmission and food/waterborne transmission, and some cause severe health consequences. As the population grows and global connections intensify, the transmission of infectious diseases expands. Traditional detection methods for pathogens still have some shortcomings, such as time-consuming procedures and high operational costs. To fulfil the demands for simple and effective detection, numerous biosensors have been developed. DNAzyme, a unique DNA structure with catalytic activity, is gradually being applied in the field of pathogen detection owing to its ease of preparation and use. In this review, we concentrated on the two main types of DNAzyme, hemin/G-quadruplex DNAzyme (HGD) and RNA-cleaving DNAzyme (RCD), explaining their research progress in pathogen detection. Furthermore, we introduced two additional novel DNAzymes, CLICK 17 DNAzyme and Supernova DNAzyme, which showed promising potential in pathogen detection. Finally, we summarize the strengths and weaknesses of these four DNAzymes and offer feasible recommendations for the development of biosensors.
Collapse
Affiliation(s)
- Xingxing Liu
- Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Wenxu Yuan
- Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Heng Xiao
- Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| |
Collapse
|
5
|
Zhao J, Guo Y, Ma X, Liu S, Sun C, Cai M, Chi Y, Xu K. The Application of Hybridization Chain Reaction in the Detection of Foodborne Pathogens. Foods 2023; 12:4067. [PMID: 38002125 PMCID: PMC10670596 DOI: 10.3390/foods12224067] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 11/26/2023] Open
Abstract
Today, with the globalization of the food trade progressing, food safety continues to warrant widespread attention. Foodborne diseases caused by contaminated food, including foodborne pathogens, seriously threaten public health and the economy. This has led to the development of more sensitive and accurate methods for detecting pathogenic bacteria. Many signal amplification techniques have been used to improve the sensitivity of foodborne pathogen detection. Among them, hybridization chain reaction (HCR), an isothermal nucleic acid hybridization signal amplification technique, has received increasing attention due to its enzyme-free and isothermal characteristics, and pathogenic bacteria detection methods using HCR for signal amplification have experienced rapid development in the last five years. In this review, we first describe the development of detection technologies for food contaminants represented by pathogens and introduce the fundamental principles, classifications, and characteristics of HCR. Furthermore, we highlight the application of various biosensors based on HCR nucleic acid amplification technology in detecting foodborne pathogens. Lastly, we summarize and offer insights into the prospects of HCR technology and its application in pathogen detection.
Collapse
Affiliation(s)
- Jinbin Zhao
- School of Medicine, Hunan Normal University, Changsha 410013, China;
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun 130021, China
| | - Yulan Guo
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun 130021, China
| | - Xueer Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun 130021, China
| | - Shitong Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun 130021, China
| | - Chunmeng Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun 130021, China
| | - Ming Cai
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun 130021, China
| | - Yuyang Chi
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun 130021, China
| | - Kun Xu
- School of Medicine, Hunan Normal University, Changsha 410013, China;
- The Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha 410013, China
| |
Collapse
|
6
|
Liu CW, Tsutsui H. Sample-to-answer sensing technologies for nucleic acid preparation and detection in the field. SLAS Technol 2023; 28:302-323. [PMID: 37302751 DOI: 10.1016/j.slast.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/16/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Efficient sample preparation and accurate disease diagnosis under field conditions are of great importance for the early intervention of diseases in humans, animals, and plants. However, in-field preparation of high-quality nucleic acids from various specimens for downstream analyses, such as amplification and sequencing, is challenging. Thus, developing and adapting sample lysis and nucleic acid extraction protocols suitable for portable formats have drawn significant attention. Similarly, various nucleic acid amplification techniques and detection methods have also been explored. Combining these functions in an integrated platform has resulted in emergent sample-to-answer sensing systems that allow effective disease detection and analyses outside a laboratory. Such devices have a vast potential to improve healthcare in resource-limited settings, low-cost and distributed surveillance of diseases in food and agriculture industries, environmental monitoring, and defense against biological warfare and terrorism. This paper reviews recent advances in portable sample preparation technologies and facile detection methods that have been / or could be adopted into novel sample-to-answer devices. In addition, recent developments and challenges of commercial kits and devices targeting on-site diagnosis of various plant diseases are discussed.
Collapse
Affiliation(s)
- Chia-Wei Liu
- Department of Mechanical Engineering, University of California, Riverside, CA 92521, USA
| | - Hideaki Tsutsui
- Department of Mechanical Engineering, University of California, Riverside, CA 92521, USA; Department of Bioengineering, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
7
|
Kabiraz MP, Majumdar PR, Mahmud MC, Bhowmik S, Ali A. Conventional and advanced detection techniques of foodborne pathogens: A comprehensive review. Heliyon 2023; 9:e15482. [PMID: 37151686 PMCID: PMC10161726 DOI: 10.1016/j.heliyon.2023.e15482] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/13/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023] Open
Abstract
Foodborne pathogens are a major public health concern and have a significant economic impact globally. From harvesting to consumption stages, food is generally contaminated by viruses, parasites, and bacteria, which causes foodborne diseases such as hemorrhagic colitis, hemolytic uremic syndrome (HUS), typhoid, acute, gastroenteritis, diarrhea, and thrombotic thrombocytopenic purpura (TTP). Hence, early detection of foodborne pathogenic microbes is essential to ensure a safe food supply and to prevent foodborne diseases. The identification of foodborne pathogens is associated with conventional (e.g., culture-based, biochemical test-based, immunological-based, and nucleic acid-based methods) and advances (e.g., hybridization-based, array-based, spectroscopy-based, and biosensor-based process) techniques. For industrial food applications, detection methods could meet parameters such as accuracy level, efficiency, quickness, specificity, sensitivity, and non-labor intensive. This review provides an overview of conventional and advanced techniques used to detect foodborne pathogens over the years. Therefore, the scientific community, policymakers, and food and agriculture industries can choose an appropriate method for better results.
Collapse
Affiliation(s)
- Meera Probha Kabiraz
- Department of Biotechnology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Priyanka Rani Majumdar
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Kensington, NSW, 2052, Australia
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - M.M. Chayan Mahmud
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, VIC, 3125, Australia
| | - Shuva Bhowmik
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
- Centre for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, 9054, New Zealand
- Department of Food Science, University of Otago, Dunedin, 9054, New Zealand
- Corresponding author. Centre for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, 9054, New Zealand.
| | - Azam Ali
- Centre for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, 9054, New Zealand
- Corresponding author.
| |
Collapse
|
8
|
Wang W, Ge Q, Zhao X. Enzyme-free isothermal amplification strategy for the detection of tumor-associated biomarkers: A review. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Gao D, Ma Z, Jiang Y. Recent advances in microfluidic devices for foodborne pathogens detection. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Wang Y, Li R, Zhang Y, Zhang W, Hu S, Li Z. Visual and label-free ASFV and PCV2 detection by CRISPR-Cas12a combined with G-quadruplex. Front Vet Sci 2022; 9:1036744. [PMID: 36524221 PMCID: PMC9745048 DOI: 10.3389/fvets.2022.1036744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/07/2022] [Indexed: 09/29/2023] Open
Abstract
African swine fever (ASF) and postweaning multisystemic wasting syndrome (PMWS) are acute infectious diseases caused by the African swine fever virus (ASFV) and porcine circovirus type 2 (PCV2). At present, there are no effective vaccines for the prevention of ASFV. PMWS, which is harmful to the domestic and even the world pig industry, is difficult to cure and has a high mortality. So, developing simple, inexpensive, and accurate analytical methods to detect and effectively diagnose ASFV and PCV2 can be conducive to avoid ASFV and PCV2 infection. CRISPR has become a potentially rapid diagnostic tool due to recent discoveries of the trans-cleavage properties of CRISPR type V effectors. Herein, we report the visual detection based on CRISPR-Cas12a (cpf1), which is more convenient than fluorescence detection. Through in vitro cleavage target DNA activation, Cas12a can trans-cleavage ssDNA G-quadruplex. TMB/H2O2 and Hemin cannot be catalyzed by cleavaged G-DNA to produce green color products. This protocol is useful for the detection of ASFV and PCV2 with high sensitivity. This method can enable the development of visual and label-free ASFV and PCV2 detection and can be carried out in the field without relying on instruments or power. This method can complete nucleic acid detection at 37 °C without using other instruments or energy. Our research has expanded the application of Cas12a and laid the foundation for the field's rapid detection of viral nucleic acid in future.
Collapse
Affiliation(s)
- Ying Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Rong Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yang Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Weida Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Sishun Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
| | - Zili Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
| |
Collapse
|
11
|
Cossettini A, Vidic J, Maifreni M, Marino M, Pinamonti D, Manzano M. Rapid detection of Listeria monocytogenes, Salmonella, Campylobacter spp., and Escherichia coli in food using biosensors. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108962] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
The Loan Trinh K, Ri Chae W, Yoon Lee N. Recent advances in the fabrication strategies of paper-based microfluidic devices for rapid detection of bacteria and viruses. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107548] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Xu R, Cheng Y, Li X, Zhang Z, Zhu M, Qi X, Chen L, Han L. Aptamer-based signal amplification strategies coupled with microchips for high-sensitivity bioanalytical applications: A review. Anal Chim Acta 2022; 1209:339893. [DOI: 10.1016/j.aca.2022.339893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/19/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023]
|
14
|
Xing G, Zhang W, Li N, Pu Q, Lin JM. Recent progress on microfluidic biosensors for rapid detection of pathogenic bacteria. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.073] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
15
|
Mi F, Hu C, Wang Y, Wang L, Peng F, Geng P, Guan M. Recent advancements in microfluidic chip biosensor detection of foodborne pathogenic bacteria: a review. Anal Bioanal Chem 2022; 414:2883-2902. [PMID: 35064302 PMCID: PMC8782221 DOI: 10.1007/s00216-021-03872-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/16/2021] [Accepted: 12/28/2021] [Indexed: 12/19/2022]
Abstract
Foodborne diseases caused by pathogenic bacteria pose a serious threat to human health. Early and rapid detection of foodborne pathogens is an urgent task for preventing disease outbreaks. Microfluidic devices are simple, automatic, and portable miniaturized systems. Compared with traditional techniques, microfluidic devices have attracted much attention because of their high efficiency and convenience in the concentration and detection of foodborne pathogens. This article firstly reviews the bio-recognition elements integrated on microfluidic chips in recent years and the progress of microfluidic chip development for pathogen pretreatment. Furthermore, the research progress of microfluidic technology based on optical and electrochemical sensors for the detection of foodborne pathogenic bacteria is summarized and discussed. Finally, the future prospects for the application and challenges of microfluidic chips based on biosensors are presented.
Collapse
Affiliation(s)
- Fang Mi
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830017, China
- Department of Cuisine and Tourism, Xinjiang Bingtuan Xingxin Vocational and Technical College, Urumqi, 830074, China
| | - Cunming Hu
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830017, China
| | - Ying Wang
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830017, China
| | - Li Wang
- Department of Cuisine and Tourism, Xinjiang Bingtuan Xingxin Vocational and Technical College, Urumqi, 830074, China
| | - Fei Peng
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830017, China
| | - PengFei Geng
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830017, China
| | - Ming Guan
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830017, China.
| |
Collapse
|
16
|
Zhang C, Luo Z, Wu M, Ning W, Tian Z, Duan Y, Li Y. A highly sensitive fluorescence biosensor for detection of Staphylococcus aureus based on HCR-mediated three-way DNA junction nicking enzyme assisted signal amplification. Analyst 2021; 146:6528-6536. [PMID: 34569562 DOI: 10.1039/d1an01335a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sensitive and efficient monitoring of food-borne bacteria is of great importance for food safety control. Herein, a novel biosensor for highly sensitive detection of Staphylococcus aureus (S. aureus) was constructed by combining hybridization chain reaction (HCR) and nicking enzyme. Different from the upstream-downstream based circuit, the proposed biosensor integrated HCR circuit and three-way DNA junction nicking enzyme assisted signal amplification (3WJ-NEASA) into a virtuous circle of promotion. In the HCR-mediated 3WJ-NEASA sensing strategy, target DNA of S. aureus initiated the self-assembly between HCR hairpins (H1 and H2), which exposed the gap to capture molecular beacon (MB) and construct the 3WJ structure. Meanwhile, MB increased the stability of HCR nanowires and enhanced the efficiency of the HCR circuit, and thus more 3WJ-NEASA circuits were generated in HCR nanowires. Benefiting from the synergistic amplification coupling HCR and 3WJ-NEASA, this isothermal biosensor can detect as low as 6.7 pM of target DNA in one step within only 30 min. Furthermore, the HCR-mediated 3WJ-NEASA assay has been applied in the detection of S. aureus with a limit of detection (LOD) as low as 1.2 × 101 cfu mL-1, and has exhibited reliable practicability in spiked milk. It is the first time that a DNA biosensor combining HCR and 3WJ-NEASA for dual signal amplification was developed and has been adopted to the sensitive analysis of food-borne bacteria. Additionally, this strategy can serve as a universal platform for monitoring other analytes, and therefore possesses broad application prospects in food safety and environmental monitoring.
Collapse
Affiliation(s)
- Chuyan Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China.
| | - Zewei Luo
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Mengfan Wu
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
| | - Wei Ning
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China.
| | - Ziyi Tian
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China.
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
| | - Yongxin Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
17
|
Ultrasensitive electrochemiluminescence sensor based on nitrogen-decorated carbon dots for Listeria monocytogenes determination using a screen-printed carbon electrode. Biosens Bioelectron 2021; 188:113323. [PMID: 34030099 DOI: 10.1016/j.bios.2021.113323] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/01/2021] [Accepted: 05/06/2021] [Indexed: 11/23/2022]
Abstract
Current method for identification of foodborne pathogens suffers from its relatively poor performance, consequently limiting its use. Herein, we first describe an ultrasensitive electrochemiluminescence (ECL) sensor based on nitrogen-decorated carbon dots (NCDs) for Listeria monocytogenes (L. monocytogenes) determination using a screen-printed carbon electrode (SPCE). Citric acid serves as carbon source, and ethylenediamine, a molecule containing nitrogen atom, is employed to synthesize CDs. Approximately 4 nm NCD with homogenous size distribution can be produced via a single step green microwave-assisted methodology. The construction of ECL sensor is initiated by the immobilization of capture antibody (Ab1) onto the carboxyl graphene (GOOH)-modified SPCE, where immunocomplexes (antigen and the NCD-labelled secondary antibody (Ab2-NCD)) are formed, resulting in a substantial increment in the ECL signal response in the presence of K2S2O8. The GOOH allows direct formation of the capture antibodies and enhances the electrochemical properties. Under optimal parameters, this sensor exhibits wide linearity (2 to 1.0 × 106 CFU mL-1), high sensitivity (0.104 or 1.0 × 10-1 CFU mL-1) and specificity over the nontargeting studied pathogens and is successfully applied to determine L. monocytogenes in food products. These promising results together with its performance suggest that this proposed platform may serve as an alternative device to effectively control the spread of foodborne diseases.
Collapse
|
18
|
Ng HY, Lee WC, Kung CT, Li LC, Lee CT, Fu LM. Recent Advances in Microfluidic Devices for Contamination Detection and Quality Inspection of Milk. MICROMACHINES 2021; 12:558. [PMID: 34068982 PMCID: PMC8156775 DOI: 10.3390/mi12050558] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 02/08/2023]
Abstract
Milk is a necessity for human life. However, it is susceptible to contamination and adulteration. Microfluidic analysis devices have attracted significant attention for the high-throughput quality inspection and contaminant analysis of milk samples in recent years. This review describes the major proposals presented in the literature for the pretreatment, contaminant detection, and quality inspection of milk samples using microfluidic lab-on-a-chip and lab-on-paper platforms in the past five years. The review focuses on the sample separation, sample extraction, and sample preconcentration/amplification steps of the pretreatment process and the determination of aflatoxins, antibiotics, drugs, melamine, and foodborne pathogens in the detection process. Recent proposals for the general quality inspection of milk samples, including the viscosity and presence of adulteration, are also discussed. The review concludes with a brief perspective on the challenges facing the future development of microfluidic devices for the analysis of milk samples in the coming years.
Collapse
Affiliation(s)
- Hwee-Yeong Ng
- Division of Nephrology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan; (H.-Y.N.); (W.-C.L.); (L.-C.L.); (C.-T.L.)
| | - Wen-Chin Lee
- Division of Nephrology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan; (H.-Y.N.); (W.-C.L.); (L.-C.L.); (C.-T.L.)
| | - Chia-Te Kung
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan;
| | - Lung-Chih Li
- Division of Nephrology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan; (H.-Y.N.); (W.-C.L.); (L.-C.L.); (C.-T.L.)
| | - Chien-Te Lee
- Division of Nephrology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan; (H.-Y.N.); (W.-C.L.); (L.-C.L.); (C.-T.L.)
| | - Lung-Ming Fu
- Department of Engineering Science, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
19
|
Microfluidic cloth-based analytical devices: Emerging technologies and applications. Biosens Bioelectron 2020; 168:112391. [PMID: 32862091 DOI: 10.1016/j.bios.2020.112391] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 12/12/2022]
Abstract
Cloth (or fabric) is an omnipresent material that has various applications in everyday life, and has become one of the things people are most familiar with. It has some attractive properties such as low cost, ability to transport fluid by capillary force, high tensile strength and durability, good wet strength, and great biocompatibility and biodegradability. Hence, cloth is an ideal material for the development of economical and user-friendly diagnostic devices for many applications including food detection, environmental monitoring, disease diagnosis and public health. Microfluidic cloth-based analytical devices (μCADs) (or microfluidic fabric-based analytical devices (μFADs)) first emerged in 2011 as a low-cost alternative to conventional laboratory testing, with the goal of improving point of care testing and disease screening in the developing world. In this review, we examine the advances in the development of μCADs from 2011 to 2020, especially highlighting emerging technologies and applications related to the μCADs. First, different fabrication methods for μCADs are introduced and compared. Second, a series of cloth-based microfluidic functional components are discussed, including microvalves, fluid velocity control elements, micromixers, and microfilters. Then, electroanalytical μCADs are described, especially focusing on the use of cloth-based electrodes. Next, various detection methods for μCADs, together with their corresponding applications, are compared and categorized. In addition, the current development of wearable μCADs is also demonstrated. Finally, the future outlook and trends in this field are discussed.
Collapse
|
20
|
Ali AA, Altemimi AB, Alhelfi N, Ibrahim SA. Application of Biosensors for Detection of Pathogenic Food Bacteria: A Review. BIOSENSORS 2020; 10:E58. [PMID: 32486225 PMCID: PMC7344754 DOI: 10.3390/bios10060058] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 12/14/2022]
Abstract
The use of biosensors is considered a novel approach for the rapid detection of foodborne pathogens in food products. Biosensors, which can convert biological, chemical, or biochemical signals into measurable electrical signals, are systems containing a biological detection material combined with a chemical or physical transducer. The objective of this review was to present the effectiveness of various forms of sensing technologies for the detection of foodborne pathogens in food products, as well as the criteria for industrial use of this technology. In this article, the principle components and requirements for an ideal biosensor, types, and their applications in the food industry are summarized. This review also focuses in detail on the application of the most widely used biosensor types in food safety.
Collapse
Affiliation(s)
- Athmar A. Ali
- Department of Food Science, College of Agriculture, University of Basrah, Basrah 61001, Iraq; (A.A.A.); (A.B.A.); (N.A.)
| | - Ammar B. Altemimi
- Department of Food Science, College of Agriculture, University of Basrah, Basrah 61001, Iraq; (A.A.A.); (A.B.A.); (N.A.)
| | - Nawfal Alhelfi
- Department of Food Science, College of Agriculture, University of Basrah, Basrah 61001, Iraq; (A.A.A.); (A.B.A.); (N.A.)
| | - Salam A. Ibrahim
- Food and Nutritional Science Program, North Carolina A & T State University, Greensboro, NC 27411, USA
| |
Collapse
|