1
|
Wei B, Dai L, Zhang K. Applications of hydrophilic interaction and mixed-mode liquid chromatography in pharmaceutical analysis. J Chromatogr A 2025; 1739:465524. [PMID: 39613506 DOI: 10.1016/j.chroma.2024.465524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 12/01/2024]
Abstract
Hydrophilic Interaction Liquid Chromatography (HILIC) and Mixed-Mode Chromatography (MMC) excel in separating polar, hydrophilic, and charged analytes due to unique hydrophilic or mixed-mode retention mechanisms. They represent a complementary approach to the widely used Reversed Phase Liquid Chromatography (RPLC). Often, where RPLC struggles, HILIC and MMC thrive. The applications of HILIC and MMC in pharmaceutical analysis are expanding rapidly across a variety of drug modalities. This article reviews advances in the applications of HILIC and MMC in seven major areas of pharmaceutical analysis: synthetic small molecules, counterions and salts, lipids and surfactants, carbohydrates, amino acids and peptides, proteins, and nucleic acids in the past two decades. We aim to provide comprehensive information and strategic guidance to facilitate future research, development and applications in these areas.
Collapse
Affiliation(s)
- Bingchuan Wei
- Synthetic Molecule Analytical Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Lulu Dai
- Synthetic Molecule Analytical Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Kelly Zhang
- Synthetic Molecule Analytical Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
2
|
Goumenou A, Chendo C, Combès A, Fournier T, Pichon V, Delaunay N. Evaluation of Jacalin lectin sorbents for the extraction of the human chorionic gonadotropin glycoforms prior to analysis by nano liquid chromatography-high resolution mass spectrometry. J Pharm Biomed Anal 2025; 252:116525. [PMID: 39447420 DOI: 10.1016/j.jpba.2024.116525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/26/2024] [Accepted: 10/13/2024] [Indexed: 10/26/2024]
Abstract
Human chorionic gonadotropin (hCG) is a dimeric, highly glycosylated hormone with a total of 4 N- and 4 O-glycosylation sites in its two subunits, hCGα and hCGβ. Recently, we developed a novel nano liquid chromatography coupled to high resolution mass spectrometry (nanoLC-HRMS) method for the analysis and thus the detection of the intact glycoforms of hCG. Here, a sorbent functionalized with the Jacalin lectin was evaluated in solid-phase extraction (SPE) for its potential to fractionate the hCG glycoforms prior to their nanoLC-HRMS analysis at the intact level, which may facilitate the detection of low-abundance glycoforms and may lead to a more detailed characterization of the hormone glycosylation. A commercial sorbent based on Jacalin immobilized on Sepharose and having a lectin density of 4.5 mg per ml of gel was selected to carry out SPE and its capacity was estimated to be of some tens of μg of hCG per ml of lectin sorbent. Next, the SPE protocol was modified to improve the extraction recoveries. Especially, it was noticed that an extensive pre-conditioning procedure prior to the first use of a cartridge was necessary to remove the residual non-grafted lectins. Indeed, if non-grafted lectins are not eliminated, they may bind a part of hCG glycoforms preventing their retention by the sorbent, leading to low extraction recoveries (around 10 %). With the extensive pre-conditioning procedure, the average extraction recoveries for both hCGα and hCGβ glycoforms were about 50 %, with either recombinant or urinary hCG. Qualitatively, the fractionation of hCG glycoforms between the washing and elution fractions was achieved with the urinary hCG sample by determining the number of glycoforms detected in each fraction. It appears that 12 hCGα glycoforms have a low affinity (detected only in the washing fraction), 1 a low-medium affinity (detected in washing and elution 1 fractions), 16 a medium affinity (detected in washing, elution 1 and 2 fractions), and 12 a high affinity (detected only in elution 1 and 2 fractions). For the hCGβ glycoforms, similarly, 3 have a low affinity and 12 a low-medium affinity. Additionally, the 3 hCGβ glycoforms were detected better. A different behavior was observed with the recombinant hCG sample, which indicates glycosylation differences between the two hCG samples. This shows the potential of lectin-based affinity fractionation before nanoLC-HRMS analysis to better characterize the glycosylation state of hCG at the intact level.
Collapse
Affiliation(s)
- Anastasia Goumenou
- Laboratory of Analytical, Bioanalytical Sciences and Miniaturization, Chemistry, Biology and Innovation (CBI) UMR 8231, ESPCI Paris PSL, CNRS, PSL Research University, Paris, France
| | - Christophe Chendo
- Laboratory of Analytical, Bioanalytical Sciences and Miniaturization, Chemistry, Biology and Innovation (CBI) UMR 8231, ESPCI Paris PSL, CNRS, PSL Research University, Paris, France
| | - Audrey Combès
- Laboratory of Analytical, Bioanalytical Sciences and Miniaturization, Chemistry, Biology and Innovation (CBI) UMR 8231, ESPCI Paris PSL, CNRS, PSL Research University, Paris, France
| | - Thierry Fournier
- "Pathophysiology & Pharmacotoxicology of the Human Placenta, pre & postnatal Microbiota", UMR-S 1139, Université Paris Cité, INSERM, Paris, France
| | - Valérie Pichon
- Laboratory of Analytical, Bioanalytical Sciences and Miniaturization, Chemistry, Biology and Innovation (CBI) UMR 8231, ESPCI Paris PSL, CNRS, PSL Research University, Paris, France; Sorbonne Université, Paris, France
| | - Nathalie Delaunay
- Laboratory of Analytical, Bioanalytical Sciences and Miniaturization, Chemistry, Biology and Innovation (CBI) UMR 8231, ESPCI Paris PSL, CNRS, PSL Research University, Paris, France.
| |
Collapse
|
3
|
Silva V, Madeira R, Joaquim J, Matos C. Safety Implications of Off-Label Medication Use in Athletes: A Narrative Review. MEDICINES (BASEL, SWITZERLAND) 2024; 11:20. [PMID: 39584970 PMCID: PMC11627157 DOI: 10.3390/medicines11080020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/26/2024] [Accepted: 11/07/2024] [Indexed: 11/26/2024]
Abstract
In recent years, the off-label use of medications in sports has increased significantly, primarily driven by psychological and social factors. Athletes frequently misuse drugs without adequate medical supervision, relying on unreliable sources of information, which leads to improper usage and serious health risks. This narrative review analyzes literature from PubMed® (Medline), Scopus®, and Web of Science® databases, focusing on studies up to December 2023, to examine the safety concerns related to off-label drug use in sports. The review presents an overview of the off-label use of pharmacological substances by athletes, focusing on both hormonal and non-hormonal drugs. Hormonal substances such as anabolic steroids and growth hormones, and non-hormonal agents like diuretics and β2-agonists, are frequently abused. These practices are associated with severe side effects, including infections, cardiovascular complications, hormonal imbalances, psychological disorders, dependence, and even cases of death. The study emphasizes the need for stronger regulation, public awareness initiatives, and preventive strategies to mitigate the health risks associated with this growing trend.
Collapse
Affiliation(s)
- Vítor Silva
- Unidade Local de Saúde (ULS) de Coimbra, 3004-561 Coimbra, Portugal;
| | - Ricardo Madeira
- Polytechnic Institute of Coimbra, Coimbra Health School, Farmácia, 3046-854 Coimbra, Portugal; (R.M.); (J.J.)
| | - João Joaquim
- Polytechnic Institute of Coimbra, Coimbra Health School, Farmácia, 3046-854 Coimbra, Portugal; (R.M.); (J.J.)
| | - Cristiano Matos
- Polytechnic Institute of Coimbra, Coimbra Health School, Farmácia, 3046-854 Coimbra, Portugal; (R.M.); (J.J.)
- QLV Research Consulting, 3030-193 Coimbra, Portugal
| |
Collapse
|
4
|
Goumenou A, Chendo C, Combès A, Fournier T, Pichon V, Delaunay N. Characterization of Concanavalin A-based lectin sorbents for the extraction of the human chorionic gonadotropin glycoforms prior to analysis by nano liquid chromatography-high resolution mass spectrometry. J Pharm Biomed Anal 2024; 242:116022. [PMID: 38354538 DOI: 10.1016/j.jpba.2024.116022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/24/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Human chorionic gonadotropin (hCG) is constituted of the hCGα and hCGβ subunits and is a highly glycosylated protein. Affinity supports based on immobilized Concanavalin A (Con A) lectin were used in solid phase extraction (SPE) to fractionate the hCG glycoforms according to their glycosylation state. For the first time, the lectin SPE fractions were off-line analysed by a nano liquid chromatography - high-resolution mass spectrometry (nanoLC-HRMS) method keeping the glycoforms intact. For this, home-made Con A sorbents were prepared by immobilizing lectin on Sepharose with a mean grafting yield of 98.2% (relative standard deviation (RSD) of 3.5%, n = 15). A capacity of about 100 μg of purified urinary hCG (uhCG) per ml of sorbent, grafted with a density of 10 mg of Con A per ml, was estimated. Average extraction yields of around 60% for both hCGα and hCGβ glycoforms were obtained after optimization of the extraction protocol. Intra- and inter-assay evaluation led to average RSD values of around 10%, indicating a repeatable extraction procedure. Similar results were obtained with commercial Con A-based sorbents but only after their 3rd use or after an extensive pre-conditioning step. Finally, the Con A SPE led to the fractionation of some glycoforms of uhCG, allowing the detection of an hCGα glycoform with two tetra-antennary N-glycans that couldn't be detected by direct analysis in nanoLC-HRMS without Con A SPE. Regarding a recombinant hCG, a fractionation was also observed leading to the detection of unretained hCGα glycoforms with tri-antennary N-glycans. Therefore, the combination of lectin SPE with intact protein analysis by nanoLC-HRMS can contribute to a more detailed glycosylation characterization of the hCG protein.
Collapse
Affiliation(s)
- Anastasia Goumenou
- Laboratory of Analytical, Bioanalytical Sciences and Miniaturization, Chemistry, Biology and Innovation (CBI) UMR 8231, ESPCI Paris PSL, CNRS, PSL Research University, Paris, France
| | - Christophe Chendo
- Laboratory of Analytical, Bioanalytical Sciences and Miniaturization, Chemistry, Biology and Innovation (CBI) UMR 8231, ESPCI Paris PSL, CNRS, PSL Research University, Paris, France
| | - Audrey Combès
- Laboratory of Analytical, Bioanalytical Sciences and Miniaturization, Chemistry, Biology and Innovation (CBI) UMR 8231, ESPCI Paris PSL, CNRS, PSL Research University, Paris, France
| | - Thierry Fournier
- Université Paris Cité, INSERM, "Pathophysiology & Pharmacotoxicology of the Human Placenta, pre & postnatal Microbiota", 3PHM, F-75006 Paris, France
| | - Valérie Pichon
- Laboratory of Analytical, Bioanalytical Sciences and Miniaturization, Chemistry, Biology and Innovation (CBI) UMR 8231, ESPCI Paris PSL, CNRS, PSL Research University, Paris, France; Sorbonne Université, Paris, France
| | - Nathalie Delaunay
- Laboratory of Analytical, Bioanalytical Sciences and Miniaturization, Chemistry, Biology and Innovation (CBI) UMR 8231, ESPCI Paris PSL, CNRS, PSL Research University, Paris, France.
| |
Collapse
|
5
|
Di Marco F, Blümel G, Blöchl C, Wuhrer M, Huber CG. A semi-automated hybrid HPLC-MS approach for in-depth characterization of intact non-covalent heterodimer glycoforms of gonadotropin biopharmaceuticals. Anal Chim Acta 2023; 1274:341574. [PMID: 37455084 DOI: 10.1016/j.aca.2023.341574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/07/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Gonadotropins are a class of heavily glycosylated protein hormones, thus extremely challenging to characterize by mass spectrometry. As biopharmaceuticals, gonadotropins are prescribed for the treatment of infertility and are derived from different sources: either from pooled urine of pregnant women or upon production in genetically modified Chinese Hamster Ovary cells. Human chorionic gonadotropin (hCG) is sold as a biopharmaceutical under the name Pregnyl® (urinary hCG, u-hCG) and Ovitrelle® (recombinant hCG, r-hCG), and recombinant human follicle stimulating hormone (r-hFSH) is marketed as Gonal-f®. Recently, we reported the exhaustive characterization of r-hCG at different structural levels. RESULTS We implement size exclusion (SE) HPLC-MS to automatize the acquisition of native mass spectra of r-hCG dimer, but also u-hCG and r-hFSH, comparing the drug products up to intact heterodimer level. A hybrid HPLC-MS approach was employed for the characterization of r-hCG, u-hCG and r-hFSH drug products at different structural levels. Released glycans were analyzed by porous graphitized carbon (PGC)-HPLC-MS/MS, glycopeptides by reversed-phase (RP)-HPLC-MS/MS, subunits by RP-HPLC-MS and finally the intact native heterodimers by semi-automated online buffer exchange SE-HPLC-MS. The data were integrated using bioinformatic tools, to finally unravel the composition of 1481 co-existing dimeric glycoforms for r-hCG, 1167 glycoforms for u-hCG, and 1440 glycoforms for r-hFSH, and to compare critical quality attributes of the different drug products such as their degree of sialylation and O-glycosylation. SIGNIFICANCE AND NOVELTY The strong alliance of bioanalytics and bioinformatics data integration at the different structural levels allowed the identification of more than thousand different glycoforms of r-hCG, u-hCG, and r-hFSH. The results showed that these biopharmaceuticals differ considerably in their glycosylation patterns and highlight the importance of in-depth characterization of biopharmaceuticals for quality control. © 2017 Elsevier Inc. All rights reserved.
Collapse
Affiliation(s)
- Fiammetta Di Marco
- Department of Biosciences and Medical Biology, Bioanalytical Research Labs, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria
| | - Gabriele Blümel
- Department of Biosciences and Medical Biology, Bioanalytical Research Labs, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria
| | - Constantin Blöchl
- Department of Biosciences and Medical Biology, Bioanalytical Research Labs, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria; Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Christian G Huber
- Department of Biosciences and Medical Biology, Bioanalytical Research Labs, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria.
| |
Collapse
|
6
|
Mohamed RM, El-Sheikh SM, Kadi MW, Labib AA, Sheta SM. A novel test device and quantitative colorimetric method for the detection of human chorionic gonadotropin (hCG) based on Au@Zn-salen MOF for POCT applications. RSC Adv 2023; 13:11751-11761. [PMID: 37063717 PMCID: PMC10103075 DOI: 10.1039/d2ra07854f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/29/2023] [Indexed: 04/18/2023] Open
Abstract
The human chorionic gonadotropin (hCG) hormone is a biomarker that can predict tumors and early pregnancy; however, it is challenging to develop sensitive qualitative-quantitative procedures that are also effective, inventive, and unique. In this study, we used a novel easy in situ reaction of an organic nano-linker with Zn(NO3)2·6H2O and HAuCl4·3H2O to produce a gold-zinc-salen metal-organic framework composite known as Au-Zn-Sln-MOF. A wide variety of micro-analytical instruments and spectroscopic techniques were used in order to characterize the newly synthesized Au-Zn-Sln-MOF composite. Disclosure is provided for a novel swab test instrument and a straightforward colorimetric approach for detecting hCG hormone based on an Au-Zn-Sln-MOF composite. Both of these methods are easy. In order to validate a natural enzyme-free immunoassay, an Au-Zn-Sln-MOF composite was utilized in the role of an enzyme; a woman can use this gadget to determine whether or not she is pregnant in the early stages of the pregnancy or whether or not her hCG levels are excessively high, which is a symptom that she may have a tumor. This cotton swab test device is compatible with testing of various biological fluids, such as serum, plasma, or urine, and it can be easily transferred to the market to commercialize it as a costless kit, which will be 20-30% cheaper than what is available on the market. Additionally, it can be used easily at home and for near-patient testing (applications of point-of-care testing (POCT)).
Collapse
Affiliation(s)
- Reda M Mohamed
- Chemistry Department, Faculty of Science, King Abdul-Aziz University P.O. Box 80203 Jeddah 21589 Saudi Arabia
| | - Said M El-Sheikh
- Department of Nanomaterials and Nanotechnology, Central Metallurgical R & D Institute Cairo 11421 Egypt
| | - Mohammad W Kadi
- Chemistry Department, Faculty of Science, King Abdul-Aziz University P.O. Box 80203 Jeddah 21589 Saudi Arabia
| | - Ammar A Labib
- Department of Inorganic Chemistry, National Research Centre Cairo 12622 Egypt +201009697356
| | - Sheta M Sheta
- Department of Inorganic Chemistry, National Research Centre Cairo 12622 Egypt +201009697356
| |
Collapse
|
7
|
Yin H, Zhu J. Methods for quantification of glycopeptides by liquid separation and mass spectrometry. MASS SPECTROMETRY REVIEWS 2023; 42:887-917. [PMID: 35099083 PMCID: PMC9339036 DOI: 10.1002/mas.21771] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 11/14/2021] [Accepted: 01/13/2022] [Indexed: 05/05/2023]
Abstract
Recent advances in analytical techniques provide the opportunity to quantify even low-abundance glycopeptides derived from complex biological mixtures, allowing for the identification of glycosylation differences between healthy samples and those derived from disease states. Herein, we discuss the sample preparation procedures and the mass spectrometry (MS) strategies that have facilitated glycopeptide quantification, as well as the standards used for glycopeptide quantification. For sample preparation, various glycopeptide enrichment methods are summarized including the columns used for glycopeptide separation in liquid chromatography separation. For MS analysis strategies, MS1 level-based quantification and MS2 level-based quantification are described, either with or without labeling, where we have covered isotope labeling, TMT/iTRAQ labeling, data dependent acquisition, data independent acquisition, multiple reaction monitoring, and parallel reaction monitoring. The strengths and weaknesses of these methods are compared, particularly those associated with the figures of merit that are important for clinical biomarker studies and the pathological and functional studies of glycoproteins in various diseases. Possible future developments for glycopeptide quantification are discussed.
Collapse
Affiliation(s)
- Haidi Yin
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518132, China
- Correspondence to: Haidi Yin, Shenzhen Bay Laboratory, A1201, Shenzhen, Guangdong, 518132, China. Phone: 0755-26849276. , Jianhui Zhu, Department of Surgery, University of Michigan, 1150 West Medical Center Drive, Building MSRB1, Rm A500, Ann Arbor, MI 48109-0656, USA. Tel: 734-615-2567. Fax: 734-615-2088.
| | - Jianhui Zhu
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence to: Haidi Yin, Shenzhen Bay Laboratory, A1201, Shenzhen, Guangdong, 518132, China. Phone: 0755-26849276. , Jianhui Zhu, Department of Surgery, University of Michigan, 1150 West Medical Center Drive, Building MSRB1, Rm A500, Ann Arbor, MI 48109-0656, USA. Tel: 734-615-2567. Fax: 734-615-2088.
| |
Collapse
|
8
|
Wilson J, Bilbao A, Wang J, Liao YC, Velickovic D, Wojcik R, Passamonti M, Zhao R, Gargano AFG, Gerbasi VR, Pas̆a-Tolić L, Baker SE, Zhou M. Online Hydrophilic Interaction Chromatography (HILIC) Enhanced Top-Down Mass Spectrometry Characterization of the SARS-CoV-2 Spike Receptor-Binding Domain. Anal Chem 2022; 94:5909-5917. [PMID: 35380435 PMCID: PMC9003935 DOI: 10.1021/acs.analchem.2c00139] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/25/2022] [Indexed: 12/13/2022]
Abstract
SARS-CoV-2 cellular infection is mediated by the heavily glycosylated spike protein. Recombinant versions of the spike protein and the receptor-binding domain (RBD) are necessary for seropositivity assays and can potentially serve as vaccines against viral infection. RBD plays key roles in the spike protein's structure and function, and thus, comprehensive characterization of recombinant RBD is critically important for biopharmaceutical applications. Liquid chromatography coupled to mass spectrometry has been widely used to characterize post-translational modifications in proteins, including glycosylation. Most studies of RBDs were performed at the proteolytic peptide (bottom-up proteomics) or released glycan level because of the technical challenges in resolving highly heterogeneous glycans at the intact protein level. Herein, we evaluated several online separation techniques: (1) C2 reverse-phase liquid chromatography (RPLC), (2) capillary zone electrophoresis (CZE), and (3) acrylamide-based monolithic hydrophilic interaction chromatography (HILIC) to separate intact recombinant RBDs with varying combinations of glycosylations (glycoforms) for top-down mass spectrometry (MS). Within the conditions we explored, the HILIC method was superior to RPLC and CZE at separating RBD glycoforms, which differ significantly in neutral glycan groups. In addition, our top-down analysis readily captured unexpected modifications (e.g., cysteinylation and N-terminal sequence variation) and low abundance, heavily glycosylated proteoforms that may be missed by using glycopeptide data alone. The HILIC top-down MS platform holds great potential in resolving heterogeneous glycoproteins for facile comparison of biosimilars in quality control applications.
Collapse
Affiliation(s)
- Jesse
W. Wilson
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, 3335 Innovation Boulevard, Richland, Washington 99354, United States
| | - Aivett Bilbao
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, 3335 Innovation Boulevard, Richland, Washington 99354, United States
| | - Juan Wang
- Biological
Sciences Division, Pacific Northwest National
Laboratories, 902 Battelle
Boulevard, Richland, Washington 99354, United States
| | - Yen-Chen Liao
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, 3335 Innovation Boulevard, Richland, Washington 99354, United States
| | - Dusan Velickovic
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, 3335 Innovation Boulevard, Richland, Washington 99354, United States
| | - Roza Wojcik
- National
Security Directorate, Pacific Northwest
National Laboratories, 902 Battelle Boulevard, Richland, Washington 99354, United States
| | - Marta Passamonti
- Centre
for Analytical Sciences Amsterdam, Amsterdam 1098 XH, The
Netherlands
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Rui Zhao
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, 3335 Innovation Boulevard, Richland, Washington 99354, United States
| | - Andrea F. G. Gargano
- Centre
for Analytical Sciences Amsterdam, Amsterdam 1098 XH, The
Netherlands
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Vincent R. Gerbasi
- Biological
Sciences Division, Pacific Northwest National
Laboratories, 902 Battelle
Boulevard, Richland, Washington 99354, United States
| | - Ljiljana Pas̆a-Tolić
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, 3335 Innovation Boulevard, Richland, Washington 99354, United States
| | - Scott E. Baker
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, 3335 Innovation Boulevard, Richland, Washington 99354, United States
| | - Mowei Zhou
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, 3335 Innovation Boulevard, Richland, Washington 99354, United States
| |
Collapse
|
9
|
Ivanov DG, Yang Y, Pawlowski JW, Carrick IJ, Kaltashov IA. Rapid Evaluation of the Extent of Haptoglobin Glycosylation Using Orthogonal Intact-Mass MS Approaches and Multivariate Analysis. Anal Chem 2022; 94:5140-5148. [PMID: 35285615 PMCID: PMC11232314 DOI: 10.1021/acs.analchem.1c05585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Intact-mass measurements are becoming increasingly popular in mass spectrometry (MS) based protein characterization, as they allow the entire complement of proteoforms to be evaluated within a relatively short time. However, applications of this approach are currently limited to systems exhibiting relatively modest degrees of structural diversity, as the high extent of heterogeneity frequently prevents straightforward MS measurements. Incorporation of limited charge reduction into electrospray ionization (ESI) MS is an elegant way to obtain meaningful information on most heterogeneous systems, yielding not only the average mass of the protein but also the mass range populated by the entire complement of proteoforms. Application of this approach to characterization of two different phenotypes of haptoglobin (1-1 and 2-1) provides evidence of a significant difference in their extent of glycosylation (with the glycan load of phenotype 2-1 being notably lighter) despite a significant overlap of their ionic signals. More detailed characterization of their glycosylation patterns is enabled by the recently introduced technique of cross-path reactive chromatography (XP-RC) with online MS detection, which combines chromatographic separation with in-line reduction of disulfide bonds to generate metastable haptoglobin subunits. Application of XP-RC to both haptoglobin phenotypes confirms that no modifications are present within their light chains and provides a wealth of information on glycosylation patterns of the heavy chains. N-Glycosylation patterns of both haptoglobin phenotypes were found to be consistent with bi- and triantennary structures of complex type that exhibit significant level of fucosylation and sialylation. However, multivariate analysis of haptoglobin 1-1 reveals higher number of the triantennary structures, in comparison to haptoglobin 2-1, as well as a higher extent of fucosylation. The glycosylation patterns deduced from the XP-RC/MS measurements are in agreement with the conclusions of the intact-mass analysis supplemented by limited charge reduction, suggesting that the latter technique can be employed in situations when fast assessment of protein heterogeneity is needed (e.g., process analytical technology applications).
Collapse
Affiliation(s)
- Daniil G Ivanov
- Department of Chemistry, University of Massachusetts─Amherst, 240 Thatcher Road, Amherst, Massachusetts 01003, United States
| | - Yang Yang
- Department of Chemistry, University of Massachusetts─Amherst, 240 Thatcher Road, Amherst, Massachusetts 01003, United States
| | - Jake W Pawlowski
- Department of Chemistry, University of Massachusetts─Amherst, 240 Thatcher Road, Amherst, Massachusetts 01003, United States
| | - Ian J Carrick
- Department of Chemistry, University of Massachusetts─Amherst, 240 Thatcher Road, Amherst, Massachusetts 01003, United States
| | - Igor A Kaltashov
- Department of Chemistry, University of Massachusetts─Amherst, 240 Thatcher Road, Amherst, Massachusetts 01003, United States
| |
Collapse
|
10
|
Lebede M, Di Marco F, Esser-Skala W, Hennig R, Wohlschlager T, Huber CG. Exploring the Chemical Space of Protein Glycosylation in Noncovalent Protein Complexes: An Expedition along Different Structural Levels of Human Chorionic Gonadotropin by Employing Mass Spectrometry. Anal Chem 2021; 93:10424-10434. [PMID: 34288669 PMCID: PMC8340079 DOI: 10.1021/acs.analchem.1c02199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
![]()
Modern analytical
approaches employing high-resolution mass spectrometry
(MS) facilitate the generation of a vast amount of structural data
of highly complex glycoproteins. Nevertheless, systematic interpretation
of this data at different structural levels remains an analytical
challenge. The glycoprotein utilized as a model system in this study,
human chorionic gonadotropin (hCG), exists as a heterodimer composed
of two heavily glycosylated subunits. In order to unravel the multitude
of glycoforms of recombinant hCG (drug product Ovitrelle), we combine
established techniques, such as released glycan and glycopeptide analysis,
with novel approaches employing high-performance liquid chromatography-mass
spectrometry (HPLC-MS) to characterize protein subunits and native
MS to analyze the noncovalent hCG complex. Starting from the deconvoluted
mass spectrum of dimeric hCG comprising about 50 signals, it was possible
to explore the chemical space of hCG glycoforms and elucidate the
complexity that hides behind just 50 signals. Systematic, stepwise
integration of data obtained at the levels of released glycans, glycopeptides,
and subunits using a computational annotation tool allowed us to reveal
1031 underlying glycoforms. Additionally, critical quality attributes
such as sialylation and core fucosylation were compared for two batches
of Ovitrelle to assess the potential product variability.
Collapse
Affiliation(s)
- Maximilian Lebede
- Department of Biosciences, Bioanalytical Research Labs, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria.,Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| | - Fiammetta Di Marco
- Department of Biosciences, Bioanalytical Research Labs, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria.,Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| | - Wolfgang Esser-Skala
- Department of Biosciences, Bioanalytical Research Labs, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria.,Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria.,Department of Biosciences, Computational Systems Biology Group, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| | - René Hennig
- glyXera GmbH, Brenneckestraße 20 - ZENIT, 39120 Magdeburg, Germany.,Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany
| | - Therese Wohlschlager
- Department of Biosciences, Bioanalytical Research Labs, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria.,Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| | - Christian G Huber
- Department of Biosciences, Bioanalytical Research Labs, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria.,Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| |
Collapse
|
11
|
Kozlik P, Vaclova J, Kalikova K. Mixed-mode hydrophilic interaction/ion-exchange liquid chromatography – Separation potential in peptide analysis. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Al Matari A, Goumenou A, Combès A, Fournier T, Pichon V, Delaunay N. Identification and semi-relative quantification of intact glycoforms of human chorionic gonadotropin alpha and beta subunits by nano liquid chromatography-Orbitrap mass spectrometry. J Chromatogr A 2021; 1640:461945. [PMID: 33556683 DOI: 10.1016/j.chroma.2021.461945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/11/2021] [Accepted: 01/25/2021] [Indexed: 12/27/2022]
Abstract
The human chorionic gonadotropin (hCG) protein belongs to a family of glycoprotein hormones called gonadotropins. It is a heterodimer made of two non-covalently linked subunits. The α-subunit structure, hCGα, has 2 N-glycosylation sites, while the beta subunit, hCGβ, has 2 N- and 4 O-glycosylation sites. This leads to numerous glycoforms. A method based on the analysis of hCG glycoforms at the intact level by nano-reversed phase liquid chromatography coupled to high resolution mass spectrometry (nanoLC-HRMS) with an Orbitrap analyzer was previously developed using a recombinant hCG-based drug, Ovitrelle®, as standard. It allowed the detection of about 30 hCGα glycoforms, but didn't allow the detection of hCGβ glycoforms. This method was thus here significantly modified (addition of a pre-concentration step of the sample to increase the sample volume from 70 nl to 1 µl, optimization of the gradient slope and the nature and content of the acidic additive in the mobile phase). It led to an improvement of the separation of hCGα and hCGβ glycoforms, which allowed for the first time the detection of 33 hCGβ glycoforms at intact level. In addition, a higher number of hCGα glycoforms (42 in total, i.e. a 40% increase) was detected. The figures of merit of this new method were next assessed. The relative standard deviations (RSDs) of the retention time ranged between 0.02 and 0.95% (n = 3), with an average value of 0.36% for the alpha glycoforms and between 0.01 and 1.08% (n = 3) with an average value of 0.23% for the beta glycoforms. The RSDs of the relative peak area measured on the extracted ion chromatogram of each glycoform were below 20% (n = 3), with an average value of 9.8%, thus allowing semi-relative quantification. Therefore, this method has a high potential for rapid quality control aiming for the detection and comparison of glycoforms present in glycoprotein-based pharmaceutical preparations.
Collapse
Affiliation(s)
- Amira Al Matari
- Laboratory of Analytical, Bioanalytical Sciences and Miniaturization, Chemistry, Biology and Innovation (CBI) UMR 8231, ESPCI Paris PSL, CNRS, PSL Research University, Paris, France
| | - Anastasia Goumenou
- Laboratory of Analytical, Bioanalytical Sciences and Miniaturization, Chemistry, Biology and Innovation (CBI) UMR 8231, ESPCI Paris PSL, CNRS, PSL Research University, Paris, France
| | - Audrey Combès
- Laboratory of Analytical, Bioanalytical Sciences and Miniaturization, Chemistry, Biology and Innovation (CBI) UMR 8231, ESPCI Paris PSL, CNRS, PSL Research University, Paris, France
| | - Thierry Fournier
- Université de Paris, INSERM, UMR-S1139, «Pathophysiology & Pharmacotoxicology of the Human Placenta, pre & postnatal Microbiota», 3PHM, F-75006 Paris, France
| | - Valérie Pichon
- Laboratory of Analytical, Bioanalytical Sciences and Miniaturization, Chemistry, Biology and Innovation (CBI) UMR 8231, ESPCI Paris PSL, CNRS, PSL Research University, Paris, France; Sorbonne Université, France
| | - Nathalie Delaunay
- Laboratory of Analytical, Bioanalytical Sciences and Miniaturization, Chemistry, Biology and Innovation (CBI) UMR 8231, ESPCI Paris PSL, CNRS, PSL Research University, Paris, France.
| |
Collapse
|
13
|
Camperi J, Goyon A, Guillarme D, Zhang K, Stella C. Multi-dimensional LC-MS: the next generation characterization of antibody-based therapeutics by unified online bottom-up, middle-up and intact approaches. Analyst 2021; 146:747-769. [DOI: 10.1039/d0an01963a] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review presents an overview of current analytical trends in antibody characterization by multidimensional LC-MS approaches.
Collapse
Affiliation(s)
- Julien Camperi
- Department of Protein Analytical Chemistry
- Genentech Inc
- South San Francisco
- USA
| | - Alexandre Goyon
- Department of Small Molecule Analytical Chemistry
- Genentech Inc
- South San Francisco
- USA
| | - Davy Guillarme
- School of Pharmaceutical Sciences
- University of Geneva
- 1206 Geneva
- Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO)
| | - Kelly Zhang
- Department of Small Molecule Analytical Chemistry
- Genentech Inc
- South San Francisco
- USA
| | - Cinzia Stella
- Department of Protein Analytical Chemistry
- Genentech Inc
- South San Francisco
- USA
| |
Collapse
|
14
|
Al Matari A, Combès A, Camperi J, Fournier T, Pichon V, Delaunay N. Identification and semi-relative quantification of intact glycoforms by nano-LC–(Orbitrap)MS: application to the α-subunit of human chorionic gonadotropin and follicle-stimulating hormone. Anal Bioanal Chem 2020; 412:5729-5741. [DOI: 10.1007/s00216-020-02794-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/16/2020] [Accepted: 06/26/2020] [Indexed: 12/29/2022]
|