1
|
Li M, Wang J, Zhang C, Zhao X, Xiong Y, Cao Y, Wang D, Li X, Liang X, Qing G. Single-Molecule Identification and Quantification of Steviol Glycosides with a Deep Learning-Powered Nanopore Sensor. ACS NANO 2024; 18:25155-25169. [PMID: 39189792 DOI: 10.1021/acsnano.4c07038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Steviol glycosides (SGs) are a class of high-potency noncalorie natural sweeteners made up of a common diterpenoid core and varying glycans. Thus, the diversity of glycans in composition, linkage, and isomerism results in the tremendous structural complexity of the SG family, which poses challenges for the precise identification and leads to the fact that SGs are frequently used in mixtures and their variances in biological activity remain largely unexplored. Here we show that a wild-type aerolysin nanopore can detect and discriminate diverse SG species through the modulable electro-osmotic flow effect at varied applied voltages. At low voltages, the neutral SG molecule was drawn and stuck in the pore entrance due to an energy barrier around R220 sites. The ensuing binding events enable the identification of the majority of SG species. Increasing the voltage can break the barrier and cause translocation events, allowing for the unambiguous identification of several pairs of SGs differing by only one hydroxyl group through recognition accumulation from multiple sensing regions and sites. Based on nanopore data of 15 SGs, a deep learning-based artificial intelligence (AI) model was created to process the individual blockage events, achieving the rapid, automated, and precise single-molecule identification and quantification of SGs in real samples. This work highlights the value of nanopore sensing for precise structural analysis of complex glycans-containing glycosides, as well as the potential for sensitive and rapid quality assurance analysis of glycoside products with the use of AI.
Collapse
Affiliation(s)
- Minmin Li
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Jing Wang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chen Zhang
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, P. R. China
| | - Xinjia Zhao
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Yuting Xiong
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- Dalian Lingshui Bay Laboratory, Dalian 116023, P. R. China
| | - Yuchen Cao
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Dongdong Wang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Xiaonong Li
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, P. R. China
| | - Xinmiao Liang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guangyan Qing
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
2
|
Kizer ME, R. Dwyer J. Editors' Choice-Perspective-Deciphering the Glycan Kryptos by Solid-State Nanopore Single-Molecule Sensing: A Call for Integrated Advancements Across Glyco- and Nanopore Science. ECS SENSORS PLUS 2024; 3:020604. [PMID: 38799647 PMCID: PMC11125560 DOI: 10.1149/2754-2726/ad49b0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/07/2024] [Indexed: 05/29/2024]
Abstract
Glycans, or complex carbohydrates, are information-rich biopolymers critical to many biological processes and with considerable importance in pharmaceutical therapeutics. Our understanding, though, is limited compared to other biomolecules such as DNA and proteins. The greater complexity of glycan structure and the limitations of conventional chemical analysis methods hinder glycan studies. Auspiciously, nanopore single-molecule sensors-commercially available for DNA sequencing-hold great promise as a tool for enabling and advancing glycan analysis. We focus on two key areas to advance nanopore glycan characterization: molecular surface coatings to enhance nanopore performance including by molecular recognition, and high-quality glycan chemical standards for training.
Collapse
Affiliation(s)
- Megan E. Kizer
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States of America
| | - Jason R. Dwyer
- Department of Chemistry, University of Rhode Island, Kingston, Rhode Island, 02881, United States of America
| |
Collapse
|
3
|
Yao G, Ke W, Xia B, Gao Z. Nanopore-based glycan sequencing: state of the art and future prospects. Chem Sci 2024; 15:6229-6243. [PMID: 38699252 PMCID: PMC11062086 DOI: 10.1039/d4sc01466a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/02/2024] [Indexed: 05/05/2024] Open
Abstract
Sequencing of biomacromolecules is a crucial cornerstone in life sciences. Glycans, one of the fundamental biomolecules, derive their physiological and pathological functions from their structures. Glycan sequencing faces challenges due to its structural complexity and current detection technology limitations. As a highly sensitive sensor, nanopores can directly convert nucleic acid sequence information into electrical signals, spearheading the revolution of third-generation nucleic acid sequencing technologies. However, their potential for deciphering complex glycans remains untapped. Initial attempts demonstrated the significant sensitivity of nanopores in glycan sensing, which provided the theoretical basis and insights for the realization of nanopore-based glycan sequencing. Here, we present three potential technical routes to employ nanopore technology in glycan sequencing for the first time. The three novel technical routes include: strand sequencing, capturing glycan chains as they translocate through nanopores; sequential hydrolysis sequencing, capturing released monosaccharides one by one; splicing sequencing, mapping signals from hydrolyzed glycan fragments to an oligosaccharide database/library. Designing suitable nanopores, enzymes, and motors, and extracting characteristic signals pose major challenges, potentially aided by artificial intelligence. It would be highly desirable to design an all-in-one high-throughput glycan sequencer instrument by integrating a sample processing unit, nanopore array, and signal acquisition system into a microfluidic device. The nanopore sequencer invention calls for intensive multidisciplinary cooperation including electrochemistry, glycochemistry, engineering, materials, enzymology, etc. Advancing glycan sequencing will promote the development of basic research and facilitate the discovery of glycan-based drugs and disease markers, fostering progress in glycoscience and even life sciences.
Collapse
Affiliation(s)
- Guangda Yao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 201203 Shanghai China
- School of Life Science and Technology, Shanghai Tech University 201210 Shanghai China
- Lingang Laboratory 200031 Shanghai China
| | - Wenjun Ke
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 201203 Shanghai China
- University of Chinese Academy of Sciences 100049 Beijing China
| | - Bingqing Xia
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 201203 Shanghai China
- University of Chinese Academy of Sciences 100049 Beijing China
| | - Zhaobing Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 201203 Shanghai China
- University of Chinese Academy of Sciences 100049 Beijing China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 528400 Zhongshan China
| |
Collapse
|
4
|
Zhang S, Cao Z, Fan P, Sun W, Xiao Y, Zhang P, Wang Y, Huang S. Discrimination of Disaccharide Isomers of Different Glycosidic Linkages Using a Modified MspA Nanopore. Angew Chem Int Ed Engl 2024; 63:e202316766. [PMID: 38116834 DOI: 10.1002/anie.202316766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 12/21/2023]
Abstract
Disaccharides are composed of two monosaccharide subunits joined by a glycosidic linkage in an α or β configuration. Different combinations of isomeric monosaccharide subunits and different glycosidic linkages result in different isomeric disaccharide products. Thus, direct discrimination of these disaccharide isomers from a mixture is extremely difficult. In this paper, a hetero-octameric Mycobacterium smegmatis porin A (MspA) nanopore conjugated with a phenylboronic acid (PBA) adapter was applied for disaccharide sensing, with which three most widely known disaccharides in nature, including sucrose, lactose and maltose, were clearly discriminated. Besides, all six isomeric α-D-glucopyranosyl-D-fructoses, differing only in their glycosidic linkages, were also well resolved. Assisted by a custom machine learning algorithm, a 0.99 discrimination accuracy is achieved. Nanopore discrimination of disaccharide isomers with different glycosidic linkages, which has never been previously demonstrated, is inspiring for nanopore saccharide sequencing. This sensing capacity was also applied in direct identification of isomaltulose additives in a commercial sucrose-free yogurt, from which isomaltulose, lactose and L-lactic acid were simultaneously detected.
Collapse
Affiliation(s)
- Shanyu Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Zhenyuan Cao
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Pingping Fan
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Wen Sun
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Yunqi Xiao
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Panke Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yuqin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
- Institute for the Environment and Health, Nanjing University Suzhou Campus, Suzhou, 215163, China
| | - Shuo Huang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| |
Collapse
|
5
|
Stuber A, Schlotter T, Hengsteler J, Nakatsuka N. Solid-State Nanopores for Biomolecular Analysis and Detection. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 187:283-316. [PMID: 38273209 DOI: 10.1007/10_2023_240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Advances in nanopore technology and data processing have rendered DNA sequencing highly accessible, unlocking a new realm of biotechnological opportunities. Commercially available nanopores for DNA sequencing are of biological origin and have certain disadvantages such as having specific environmental requirements to retain functionality. Solid-state nanopores have received increased attention as modular systems with controllable characteristics that enable deployment in non-physiological milieu. Thus, we focus our review on summarizing recent innovations in the field of solid-state nanopores to envision the future of this technology for biomolecular analysis and detection. We begin by introducing the physical aspects of nanopore measurements ranging from interfacial interactions at pore and electrode surfaces to mass transport of analytes and data analysis of recorded signals. Then, developments in nanopore fabrication and post-processing techniques with the pros and cons of different methodologies are examined. Subsequently, progress to facilitate DNA sequencing using solid-state nanopores is described to assess how this platform is evolving to tackle the more complex challenge of protein sequencing. Beyond sequencing, we highlight the recent developments in biosensing of nucleic acids, proteins, and sugars and conclude with an outlook on the frontiers of nanopore technologies.
Collapse
Affiliation(s)
- Annina Stuber
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich, Switzerland
| | - Tilman Schlotter
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich, Switzerland
| | - Julian Hengsteler
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich, Switzerland
| | - Nako Nakatsuka
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
6
|
Burden DL, Meyer JJ, Michael RD, Anderson SC, Burden HM, Peña SM, Leong-Fern KJ, Van Ye LA, Meyer EC, Keranen-Burden LM. Confirming Silent Translocation through Nanopores with Simultaneous Single-Molecule Fluorescence and Single-Channel Electrical Recordings. Anal Chem 2023; 95:18020-18028. [PMID: 37991877 PMCID: PMC10719886 DOI: 10.1021/acs.analchem.3c02329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/24/2023]
Abstract
Most of what is known concerning the luminal passage of materials through nanopores arises from electrical measurements. Whether nanopores are biological, solid-state, synthetic, hybrid, glass-capillary-based, or protein ion channels in cells and tissues, characteristic signatures embedded in the flow of ionic current are foundational to understanding functional behavior. In contrast, this work describes passage through a nanopore that occurs without producing an electrical signature. We refer to the phenomenon as "silent translocation." By definition, silent translocations are invisible to the standard tools of electrophysiology and fundamentally require a simultaneous ancillary measurement technique for positive identification. As a result, this phenomenon has been largely unexplored in the literature. Here, we report on a derivative of Cyanine 5 (sCy5a) that passes through the α-hemolysin (αHL) nanopore silently. Simultaneously acquired single-molecule fluorescence and single-channel electrical recordings from bilayers formed over a closed microcavity demonstrate that translocation does indeed take place, albeit infrequently. We report observations of silent translocation as a function of time, dye concentration, and nanopore population in the bilayer. Lastly, measurement of the translocation rate as a function of applied potential permits estimation of an effective energy barrier for transport through the pore as well as the effective charge on the dye, all in the absence of an information-containing electrical signature.
Collapse
Affiliation(s)
- Daniel L. Burden
- Chemistry Department, Wheaton College, Wheaton, Illinois 60187, United States
| | - Joshua J. Meyer
- Chemistry Department, Wheaton College, Wheaton, Illinois 60187, United States
| | - Richard D. Michael
- Chemistry Department, Wheaton College, Wheaton, Illinois 60187, United States
| | - Sophie C. Anderson
- Chemistry Department, Wheaton College, Wheaton, Illinois 60187, United States
| | - Hannah M. Burden
- Chemistry Department, Wheaton College, Wheaton, Illinois 60187, United States
| | - Sophia M. Peña
- Chemistry Department, Wheaton College, Wheaton, Illinois 60187, United States
| | | | - Lily Anne Van Ye
- Chemistry Department, Wheaton College, Wheaton, Illinois 60187, United States
| | - Elizabeth C. Meyer
- Chemistry Department, Wheaton College, Wheaton, Illinois 60187, United States
| | | |
Collapse
|
7
|
Sheetz BS, Dwyer JR. Probing nanopore surface chemistry through real-time measurements of nanopore conductance response to pH changes. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:104101. [PMID: 37812049 PMCID: PMC10568641 DOI: 10.1063/5.0155611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/05/2023] [Indexed: 10/10/2023]
Abstract
We developed a flow cell apparatus and method for streamlined, real-time measurements of nanopore conductance (G) in response to pH changes. By time-resolving the measurements of interfacial kinetics, we were able to probe nanopore surface coating presence and properties more thoroughly than in our previous work. Nanopores have emerged as a prominent tool for single-molecule sensing, characterization, and sequencing of DNA, proteins, and carbohydrates. Nanopore surface chemistry affects analyte passage, signal characteristics, and sensor lifetime through a range of electrostatic, electrokinetic, and chemical phenomena, and optimizing nanopore surface chemistry has become increasingly important. Our work makes nanopore surface chemistry characterizations more accessible as a complement to routine single-pH conductance measurements used to infer nanopore size. We detail the design and operation of the apparatus and discuss the trends in G and capacitance. Characteristic G vs pH curves matching those obtained in previous work could be obtained with the addition of time-resolved interfacial kinetic information. We characterized native and chemically functionalized (carboxylated) silicon nitride (SiNx) nanopores, illustrating how the method can inform of thin film compositions, interfacial kinetics, and nanoscale chemical phenomena.
Collapse
Affiliation(s)
- Brian S. Sheetz
- Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881, USA
| | - Jason R. Dwyer
- Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881, USA
| |
Collapse
|
8
|
Li M, Xiong Y, Qing G. Innovative Chemical Tools to Address Analytical Challenges of Protein Phosphorylation and Glycosylation. Acc Chem Res 2023; 56:2514-2525. [PMID: 37638729 DOI: 10.1021/acs.accounts.3c00397] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Affiliation(s)
- Minmin Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, P. R. China
| | - Yuting Xiong
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, P. R. China
- School of Chemistry and Materials Science, East China University of Technology, Nanchang, Jiangxi 330013, P. R. China
| | - Guangyan Qing
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, P. R. China
| |
Collapse
|
9
|
Xie W, He S, Fang S, Tian R, Liang L, Wang D. Phenylboronic acid-modified polyethyleneimine assisted neutral polysaccharide detection and weight-resolution analysis with a nanopipette. NANOSCALE 2023; 15:7147-7153. [PMID: 37009671 DOI: 10.1039/d2nr07280g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
In this work, an innovative method based on a nanopipette assisted with o-phenylboronic acid-modified polyethyleneimine (PEI-oBA) is proposed to detect neutral polysaccharides with different degrees of polymerization. Herein, dextran is used as the research target. Dextran, with its low molecular weight (104 < MW < 105 Da), has important applications in medicine and is one of the best plasma substitutes at present. Through the interaction between the boric acid group and a hydroxyl group, the synthesized high-charge polymer molecule PEI-oBA combines with dextran, increasing the electrophoretic force and exclusion volume of the target molecule to obtain a high signal-to-noise ratio for nanopore detection. These results show that the current amplitude increased significantly with the increase of dextran molecular weight. Furthermore, an aggregation-induced emission (AIE) molecule was introduced to adsorb onto PEI-oBA to verify that PEI-oBA combined with a polysaccharide entered the nanopipette together and was driven by electrophoresis. With the introduction of the modifiability of polymer molecules, the proposed method is conducive to improving the nanopore detection sensitivity of other important molecules with low charges and low molecular weights.
Collapse
Affiliation(s)
- Wanyi Xie
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
- Chongqing School, University of Chinese Academy of Science, Chongqing 400714, China
| | - Shixuan He
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
- Chongqing School, University of Chinese Academy of Science, Chongqing 400714, China
| | - Shaoxi Fang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
- Chongqing School, University of Chinese Academy of Science, Chongqing 400714, China
| | - Rong Tian
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
- Chongqing School, University of Chinese Academy of Science, Chongqing 400714, China
| | - Liyuan Liang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
- Chongqing School, University of Chinese Academy of Science, Chongqing 400714, China
| | - Deqiang Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
- Chongqing School, University of Chinese Academy of Science, Chongqing 400714, China
| |
Collapse
|
10
|
Xie W, He S, Fang S, Yin B, Tian R, Wang Y, Wang D. Analysis of starch dissolved in ionic liquid by glass nanopore at single molecular level. Int J Biol Macromol 2023; 239:124271. [PMID: 37019197 DOI: 10.1016/j.ijbiomac.2023.124271] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/06/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023]
Abstract
In this paper, the glass nanopore technology was proposed to detect a single molecule of starch dissolved in ionic liquid [1-butyl-3-methylimidazolium chloride (BmimCl)]. Firstly, the influence of BmimCl on nanopore detection is discussed. It is found that a certain amount of strong polar ionic liquids will disturb the charge distribution in nanopores and increase the detection noise. Then, by analysis of the characteristic current signal of the conical nanopore, the motion behaviour of starch near the entrance of the nanopore was studied and analysis the dominant ion of starch in the BmimCl dissolution process. Finally, based on nuclear magnetic resonance (NMR) and Fourier transform infrared (FTIR) spectroscopy simply discussed the mechanism of amylose and amylopectin dissolved in BmimCl. These results confirm that branched chain structure would affect the dissolution of polysaccharides in ionic liquids and the contribution of anions to the dissolution of polysaccharides are dominant. It is further proved that the current signal can be used to judge the charge and structure information of the analyte, and the dissolution mechanism can be assist analyzed at the single molecule level.
Collapse
|
11
|
Li M, Xiong Y, Cao Y, Zhang C, Li Y, Ning H, Liu F, Zhou H, Li X, Ye X, Pang Y, Zhang J, Liang X, Qing G. Identification of tagged glycans with a protein nanopore. Nat Commun 2023; 14:1737. [PMID: 36977665 PMCID: PMC10050315 DOI: 10.1038/s41467-023-37348-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Structural complexity of glycans derived from the diversities in composition, linage, configuration, and branching considerably complicates structural analysis. Nanopore-based single-molecule sensing offers the potential to elucidate glycan structure and even sequence glycan. However, the small molecular size and low charge density of glycans have restricted direct nanopore detection of glycan. Here we show that glycan sensing can be achieved using a wild-type aerolysin nanopore by introducing a facile glycan derivatization strategy. The glycan molecule can induce impressive current blockages when moving through the nanopore after being connected with an aromatic group-containing tag (plus a carrier group for the neutral glycan). The obtained nanopore data permit the identification of glycan regio- and stereoisomers, glycans with variable monosaccharide numbers, and distinct branched glycans, either independently or with the use of machine learning methods. The presented nanopore sensing strategy for glycans paves the way towards nanopore glycan profiling and potentially sequencing.
Collapse
Affiliation(s)
- Minmin Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang, 330013, China
| | - Yuting Xiong
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang, 330013, China
| | - Yuchen Cao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Chen Zhang
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| | - Yuting Li
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| | - Hanwen Ning
- Department of Statistics, Zhongnan University of Economics and Law, Wuhan, 430073, China
| | - Fan Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Han Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| | - Xiaonong Li
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| | - Xianlong Ye
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| | - Yue Pang
- College of Life Science, Liaoning Normal University, Dalian, 116081, China
| | - Jiaming Zhang
- Department of Statistics, Zhongnan University of Economics and Law, Wuhan, 430073, China
| | - Xinmiao Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China.
| | - Guangyan Qing
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| |
Collapse
|
12
|
Bayat P, Rambaud C, Priem B, Bourderioux M, Bilong M, Poyer S, Pastoriza-Gallego M, Oukhaled A, Mathé J, Daniel R. Comprehensive structural assignment of glycosaminoglycan oligo- and polysaccharides by protein nanopore. Nat Commun 2022; 13:5113. [PMID: 36042212 PMCID: PMC9427770 DOI: 10.1038/s41467-022-32800-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 08/15/2022] [Indexed: 12/02/2022] Open
Abstract
Glycosaminoglycans are highly anionic functional polysaccharides with information content in their structure that plays a major role in the communication between the cell and the extracellular environment. The study presented here reports the label-free detection and analysis of glycosaminoglycan molecules at the single molecule level using sensing by biological nanopore, thus addressing the need to decipher structural information in oligo- and polysaccharide sequences, which remains a major challenge for glycoscience. We demonstrate that a wild-type aerolysin nanopore can detect and characterize glycosaminoglycan oligosaccharides with various sulfate patterns, osidic bonds and epimers of uronic acid residues. Size discrimination of tetra- to icosasaccharides from heparin, chondroitin sulfate and dermatan sulfate was investigated and we show that different contents and distributions of sulfate groups can be detected. Remarkably, differences in α/β anomerization and 1,4/1,3 osidic linkages can also be detected in heparosan and hyaluronic acid, as well as the subtle difference between the glucuronic/iduronic epimers in chondroitin and dermatan sulfate. Although, at this stage, discrimination of each of the constituent units of GAGs is not yet achieved at the single-molecule level, the resolution reached in this study is an essential step toward this ultimate goal.
Collapse
Affiliation(s)
- Parisa Bayat
- Université Paris-Saclay, Univ Evry, CNRS, LAMBE, Evry-Courcouronnes, France
| | - Charlotte Rambaud
- Université Paris-Saclay, Univ Evry, CNRS, LAMBE, Evry-Courcouronnes, France
| | - Bernard Priem
- CNRS, CERMAV, University Grenoble Alpes, Grenoble, France
| | | | - Mélanie Bilong
- Université Paris-Saclay, Univ Evry, CNRS, LAMBE, Evry-Courcouronnes, France
| | - Salomé Poyer
- Université Paris-Saclay, Univ Evry, CNRS, LAMBE, Evry-Courcouronnes, France
| | | | | | - Jérôme Mathé
- Université Paris-Saclay, Univ Evry, CNRS, LAMBE, Evry-Courcouronnes, France.
| | - Régis Daniel
- Université Paris-Saclay, Univ Evry, CNRS, LAMBE, Evry-Courcouronnes, France.
| |
Collapse
|
13
|
Ahmed YW, Alemu BA, Bekele SA, Gizaw ST, Zerihun MF, Wabalo EK, Teklemariam MD, Mihrete TK, Hanurry EY, Amogne TG, Gebrehiwot AD, Berga TN, Haile EA, Edo DO, Alemu BD. Epigenetic tumor heterogeneity in the era of single-cell profiling with nanopore sequencing. Clin Epigenetics 2022; 14:107. [PMID: 36030244 PMCID: PMC9419648 DOI: 10.1186/s13148-022-01323-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 08/12/2022] [Indexed: 11/29/2022] Open
Abstract
Nanopore sequencing has brought the technology to the next generation in the science of sequencing. This is achieved through research advancing on: pore efficiency, creating mechanisms to control DNA translocation, enhancing signal-to-noise ratio, and expanding to long-read ranges. Heterogeneity regarding epigenetics would be broad as mutations in the epigenome are sensitive to cause new challenges in cancer research. Epigenetic enzymes which catalyze DNA methylation and histone modification are dysregulated in cancer cells and cause numerous heterogeneous clones to evolve. Detection of this heterogeneity in these clones plays an indispensable role in the treatment of various cancer types. With single-cell profiling, the nanopore sequencing technology could provide a simple sequence at long reads and is expected to be used soon at the bedside or doctor's office. Here, we review the advancements of nanopore sequencing and its use in the detection of epigenetic heterogeneity in cancer.
Collapse
Affiliation(s)
- Yohannis Wondwosen Ahmed
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia.
| | - Berhan Ababaw Alemu
- Department of Medical Biochemistry, School of Medicine, St. Paul's Hospital, Millennium Medical College, Addis Ababa, Ethiopia
| | - Sisay Addisu Bekele
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Solomon Tebeje Gizaw
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Muluken Fekadie Zerihun
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Endriyas Kelta Wabalo
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Maria Degef Teklemariam
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Tsehayneh Kelemu Mihrete
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Endris Yibru Hanurry
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Tensae Gebru Amogne
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Assaye Desalegne Gebrehiwot
- Department of Medical Anatomy, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tamirat Nida Berga
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Ebsitu Abate Haile
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Dessiet Oma Edo
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Bizuwork Derebew Alemu
- Department of Statistics, College of Natural and Computational Sciences, Mizan Tepi University, Tepi, Ethiopia
| |
Collapse
|
14
|
Vikraman D, Satheesan R, Rajendran M, Kumar NA, Johnson JB, R SK, Mahendran KR. Selective Translocation of Cyclic Sugars through Dynamic Bacterial Transporter. ACS Sens 2022; 7:1766-1776. [PMID: 35671512 DOI: 10.1021/acssensors.2c00943] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The selective translocation of molecules through membrane pores is an integral process in cells. We present a bacterial sugar transporter, CymA of unusual structural conformation due to a dynamic N terminus segment in the pore, reducing its diameter. We quantified the translocation kinetics of various cyclic sugars of different charge, size, and symmetry across native and truncated CymA devoid of the N terminus using single-channel recordings. The chemically divergent cyclic hexasaccharides bind to the native and truncated pore with high affinity and translocate effectively. Specifically, these sugars bind and translocate rapidly through truncated CymA compared to native CymA. In contrast, larger cyclic heptasaccharides and octasaccharides do not translocate but bind to native and truncated CymA with distinct binding kinetics highlighting the importance of molecular charge, size and symmetry in translocation consistent with liposome assays. Based on the sugar-binding kinetics, we suggest that the N terminus most likely resides inside the native CymA barrel, regulating the transport rate of cyclic sugars. Finally, we present native CymA as a large nanopore sensor for the simultaneous single-molecule detection of various sugars at high resolution, establishing its functional versatility. This natural pore is expected to have several applications in nanobiotechnology and will help further our understanding of the fundamental mechanism of molecular transport.
Collapse
Affiliation(s)
- Devika Vikraman
- Membrane Biology Laboratory, Transdisciplinary Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India.,Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Remya Satheesan
- Membrane Biology Laboratory, Transdisciplinary Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India.,Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Mangaiyarkarasi Rajendran
- Membrane Biology Laboratory, Transdisciplinary Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India
| | - Nisha Asok Kumar
- Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.,Pathogen Biology, Virology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala 695014, India
| | - John Bernet Johnson
- Pathogen Biology, Virology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala 695014, India
| | - Smrithi Krishnan R
- Membrane Biology Laboratory, Transdisciplinary Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India.,Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Kozhinjampara R Mahendran
- Membrane Biology Laboratory, Transdisciplinary Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India
| |
Collapse
|
15
|
Acharya A, Prajapati JD, Kleinekathöfer U. Atomistic Simulation of Molecules Interacting with Biological Nanopores: From Current Understanding to Future Directions. J Phys Chem B 2022; 126:3995-4008. [PMID: 35616602 DOI: 10.1021/acs.jpcb.2c01173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Biological nanopores have been at the focus of numerous studies due to their role in many biological processes as well as their (prospective) technological applications. Among many other topics, recent studies on nanopores have addressed two key areas: antibiotic permeation through bacterial channels and sensing of analytes. Although the two areas are quite far apart in terms of their objectives, in both cases atomistic simulations attempt to understand the solute dynamics and the solute-protein interactions within the channel lumen. While decades of studies on various channels have culminated in an improved understanding of the key molecular factors and led to practical applications in some cases, successful utilization is limited. In this Perspective we summarize recent progress in understanding key issues in molecular simulations of antibiotic translocation and in the development of nanopore sensors. Moreover, we comment on possible advancements in computational algorithms that can potentially resolve some of the issues.
Collapse
Affiliation(s)
- Abhishek Acharya
- Department of Physics and Earth Sciences, Jacobs University Bremen, 28759 Bremen, Germany
| | | | - Ulrich Kleinekathöfer
- Department of Physics and Earth Sciences, Jacobs University Bremen, 28759 Bremen, Germany
| |
Collapse
|
16
|
Hagan JT, Gonzalez A, Shi Y, Han GG, Dwyer JR. Photoswitchable Binary Nanopore Conductance and Selective Electronic Detection of Single Biomolecules under Wavelength and Voltage Polarity Control. ACS NANO 2022; 16:5537-5544. [PMID: 35286058 PMCID: PMC11659821 DOI: 10.1021/acsnano.1c10039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We fabricated photoregulated thin-film nanopores by covalently linking azobenzene photoswitches to silicon nitride pores with ∼10 nm diameters. The photoresponsive coatings could be repeatedly optically switched with deterministic ∼6 nm changes to the effective nanopore diameter and of ∼3× to the nanopore ionic conductance. The sensitivity to anionic DNA and a neutral complex carbohydrate biopolymer (maltodextrin) could be photoswitched "on" and "off" with an analyte selectivity set by applied voltage polarity. Photocontrol of nanopore state and mass transport characteristics is important for their use as ionic circuit elements (e.g., resistors and binary bits) and as chemically tuned filters. It expands single-molecule sensing capabilities in personalized medicine, genomics, glycomics, and, augmented by voltage polarity selectivity, especially in multiplexed biopolymer information storage schemes. We demonstrate repeatedly photocontrolled stable nanopore size, polarity, conductance, and sensing selectivity, by illumination wavelength and voltage polarity, with broad utility including single-molecule sensing of biologically and technologically important polymers.
Collapse
Affiliation(s)
- James T. Hagan
- Department of Chemistry, University of Rhode Island, 140
Flagg Rd., Kingston, RI, 02881
| | - Alejandra Gonzalez
- Department of Chemistry, Brandeis University, 415 South
Street, Waltham, Massachusetts 02453, United States
| | - Yuran Shi
- Department of Chemistry, Brandeis University, 415 South
Street, Waltham, Massachusetts 02453, United States
| | - Grace G.D. Han
- Department of Chemistry, Brandeis University, 415 South
Street, Waltham, Massachusetts 02453, United States
| | - Jason R. Dwyer
- Department of Chemistry, University of Rhode Island, 140
Flagg Rd., Kingston, RI, 02881
| |
Collapse
|
17
|
Saharia J, Bandara YMNDY, Kim MJ. Investigating protein translocation in the presence of an electrolyte concentration gradient across a solid-state nanopore. Electrophoresis 2022; 43:785-792. [PMID: 35020223 DOI: 10.1002/elps.202100346] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/19/2021] [Accepted: 12/22/2021] [Indexed: 12/21/2022]
Abstract
Electrolyte chemistry plays an important role in the transport properties of analytes through nanopores. Here, we report the translocation properties of the protein human serum transferrin (hSTf) in asymmetric LiCl salt concentrations with either positive (Ctrans /Ccis < 1) or negative chemical gradients (Ctrans /Ccis > 1). The cis side concentration was fixed at 4 M for positive chemical gradients and at 0.5 M LiCl for negative chemical gradients, while the trans side concentration varied between 0.5 to 4 M which resulted in six different configurations, respectively, for both positive and negative gradient types. For positive chemical gradient conditions, translocations were observed in all six configurations for at least one voltage polarity whereas with negative gradient conditions, dead concentrations where no events at either polarity were observed. The flux of Li+ and Cl- ions and their resultant cation or anion enrichment zones, as well as the interplay of electrophoretic and electroosmotic transport directions, would determine whether hSTf can traverse across the pore.
Collapse
Affiliation(s)
- Jugal Saharia
- Department of Mechanical Engineering, Southern Methodist University, Dallas, TX, USA
| | - Y M Nuwan D Y Bandara
- Department of Mechanical Engineering, Southern Methodist University, Dallas, TX, USA.,Department of Bioengineering, University of California, Riverside, CA, USA
| | - Min Jun Kim
- Department of Mechanical Engineering, Southern Methodist University, Dallas, TX, USA
| |
Collapse
|
18
|
Xia Z, Lin CY, Drndić M. Protein-enabled detection of ibuprofen and sulfamethoxazole using solid-state nanopores. Proteomics 2022; 22:e2100071. [PMID: 34974637 DOI: 10.1002/pmic.202100071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 02/01/2023]
Abstract
Enabled by proteins, we present an all-electrical method for rapid detection of small pharmaceuticals (ibuprofen and sulfamethoxazole [SMZ]) in aqueous media using silicon nitride pores. Specifically, we use carrier proteins, bovine serum albumin (BSA), and take advantage of their interactions with two small drug molecules to form BSA-drug complexes which can be detected by nm-diameter pores, thereby confirming the presence of small pharmaceuticals. We demonstrate detection of ibuprofen and SMZ at concentrations down to 100 nM (∼21 μg/L) and 48.5 nM (12 μg/L), respectively. We observe changes in electrical signal characteristics (reflected in event durations, rates, current magnitudes, and estimated particle diameters) of BSA-drug complexes compared to BSA-only, and differences between these two small pharmaceuticals, possibly paving a path toward developing selective sensors by identifying "electrical fingerprints" of these molecules in the future. These distinct electrical signals are likely a combined result of diffusion, electrophoretic and electroosmotic effects, interactions between the pore and particles, which depend on pore diameters, pH, and the resulting surface charges. The use of single-molecule-counting nanopores allows sensing of small pharmaceuticals, studies of protein conformational changes, and may aid in efforts to evaluate the impact of small drug molecules on aquatic and human life.
Collapse
Affiliation(s)
- Zehui Xia
- Goeppert LLC, Philadelphia, Pennsylvania, USA
| | - Chih-Yuan Lin
- Department of Physics and Astronomy, David Rittenhouse Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marija Drndić
- Department of Physics and Astronomy, David Rittenhouse Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
19
|
Suginta W, Sanram S, Aunkham A, Winterhalter M, Schulte A. The C2 entity of chitosugars is crucial in molecular selectivity of the Vibrio campbellii chitoporin. J Biol Chem 2021; 297:101350. [PMID: 34715124 PMCID: PMC8608610 DOI: 10.1016/j.jbc.2021.101350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/14/2022] Open
Abstract
The marine bacterium Vibrio campbellii expresses a chitooligosaccharide-specific outer-membrane channel (chitoporin) for the efficient uptake of nutritional chitosugars that are externally produced through enzymic degradation of environmental host shell chitin. However, the principles behind the distinct substrate selectivity of chitoporins are unclear. Here, we employed black lipid membrane (BLM) electrophysiology, which handles the measurement of the flow of ionic current through porins in phospholipid bilayers for the assessment of porin conductivities, to investigate the pH dependency of chitosugar-chitoporin interactions for the bacterium's natural substrate chitohexaose and its deacetylated form, chitosan hexaose. We show that efficient passage of the N-acetylated chitohexaose through the chitoporin is facilitated by its strong affinity for the pore. In contrast, the deacetylated chitosan hexaose is impermeant; however, protonation of the C2 amino entities of chitosan hexaose allows it to be pulled through the channel in the presence of a transmembrane electric field. We concluded from this the crucial role of C2-substitution as the determining factor for chitoporin entry. A change from N-acetylamino- to amino-substitution effectively abolished the ability of approaching molecules to enter the chitoporin, with deacetylation leading to loss of the distinctive structural features of nanopore opening and pore access of chitosugars. These findings provide further understanding of the multistep pathway of chitin utilization by marine Vibrio bacteria and may guide the development of solid-state or genetically engineered biological nanopores for relevant technological applications.
Collapse
Affiliation(s)
- Wipa Suginta
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand.
| | - Surapoj Sanram
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Anuwat Aunkham
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Mathias Winterhalter
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Albert Schulte
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand.
| |
Collapse
|
20
|
Sharma V, Freedman KJ. Pressure-Biased Nanopores for Excluded Volume Metrology, Lipid Biomechanics, and Cell-Adhesion Rupturing. ACS NANO 2021; 15:17947-17958. [PMID: 34739757 DOI: 10.1021/acsnano.1c06393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanopore sensing has been widely used in applications ranging from DNA sequencing to disease diagnosis. To improve these capabilities, pressure-biased nanopores have been explored in the past to-primarily-increase the residence time of the analyte inside the pore. Here, we studied the effect of pressure on the ability to accurately quantify the excluded volume which depends on the current drop magnitude produced by a single entity. Using the calibration standard, the inverse current drop (1/ΔI) decreases linearly with increasing pressure, while the dwell drop reduces exponentially. We therefore had to derive a pressure-corrected excluded volume equation to accurately assess the volume of translocating species under applied pressure. Moreover, a method to probe deformation in nanoliposomes and a single cell is developed as a result. We show that the soft nanoliposomes and even cells deform significantly under applied pressure which can be probed in terms of the shape factor which was introduced in the excluded volume equation. The proposed work has practical applications in mechanobiology, namely, assessing the stiffness and mechanical rigidity of liposomal drug carriers. Pressure-biased pores also enabled multiple observations of cell-cell aggregates as well as their subsequent rupture, potentially allowing for the study of microbial symbioses or pathogen recognition by the human immune system.
Collapse
Affiliation(s)
- Vinay Sharma
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
- Department of Materials Engineering, Indian Institute of Technology Jammu, Jammu 181221, Jammu and Kashmir, India
| | - Kevin J Freedman
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| |
Collapse
|
21
|
Saharia J, Bandara YMNDY, Karawdeniya BI, Alexandrakis G, Kim MJ. Assessment of 1/f noise associated with nanopores fabricated through chemically tuned controlled dielectric breakdown. Electrophoresis 2021; 42:899-909. [PMID: 33340118 DOI: 10.1002/elps.202000285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/21/2020] [Accepted: 12/14/2020] [Indexed: 02/01/2023]
Abstract
Recently, we developed a fabrication method-chemically-tuned controlled dielectric breakdown (CT-CDB)-that produces nanopores (through thin silicon nitride membranes) surpassing legacy drawbacks associated with solid-state nanopores (SSNs). However, the noise characteristics of CT-CDB nanopores are largely unexplored. In this work, we investigated the 1/f noise of CT-CDB nanopores of varying solution pH, electrolyte type, electrolyte concentration, applied voltage, and pore diameter. Our findings indicate that the bulk Hooge parameter (αb ) is about an order of magnitude greater than SSNs fabricated by transmission electron microscopy (TEM) while the surface Hooge parameter (αs ) is ∼3 order magnitude greater. Theαs of CT-CDB nanopores was ∼5 orders of magnitude greater than theirαb , which suggests that the surface contribution plays a dominant role in 1/f noise. Experiments with DNA exhibited increasing capture rates with pH up to pH ∼8 followed by a drop at pH ∼9 perhaps due to the onset of electroosmotic force acting against the electrophoretic force. The1/f noise was also measured for several electrolytes and LiCl was found to outperform NaCl, KCl, RbCl, and CsCl. The 1/f noise was found to increase with the increasing electrolyte concentration and pore diameter. Taken together, the findings of this work suggest the pH approximate 7-8 range to be optimal for DNA sensing with CT-CDB nanopores.
Collapse
Affiliation(s)
- Jugal Saharia
- Department of Mechanical Engineering, Southern Methodist University, Dallas, TX, USA
| | - Y M Nuwan D Y Bandara
- Department of Mechanical Engineering, Southern Methodist University, Dallas, TX, USA
| | - Buddini I Karawdeniya
- Department of Mechanical Engineering, Southern Methodist University, Dallas, TX, USA
| | | | - Min Jun Kim
- Department of Mechanical Engineering, Southern Methodist University, Dallas, TX, USA
| |
Collapse
|
22
|
Qiao L, Ignacio M, Slater GW. An efficient kinetic Monte Carlo to study analyte capture by a nanopore: transients, boundary conditions and time-dependent fields. Phys Chem Chem Phys 2021; 23:1489-1499. [PMID: 33400742 DOI: 10.1039/d0cp03638b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
To better understand the capture process by a nanopore, we introduce an efficient Kinetic Monte Carlo (KMC) algorithm that can simulate long times and large system sizes by mapping the dynamic of a point-like particle in a 3D spherically symmetric system onto the 1D biased random walk. Our algorithm recovers the steady-state analytical solution and allows us to study time-dependent processes such as transients. Simulation results show that the steady-state depletion zone near pore is barely larger than the pore radius and narrows at higher field intensities; as a result, the time to reach steady-state is much smaller than the time required to empty a zone of the size of the capture radius λe. When the sample reservoir has a finite size, a second depletion region propagates inward from the outer wall, and the capture rate starts decreasing when it reaches the capture radius λe. We also note that the flatness of the electric field near the pore, which is often neglected, induces a traffic jam that can increase the transient time by several orders of magnitude. Finally, we propose a new proof-of-concept scheme to separate two analytes of the same mobility but different diffusion coefficients using time-varying fields.
Collapse
Affiliation(s)
- Le Qiao
- Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
| | - Maxime Ignacio
- Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
| | - Gary W Slater
- Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
| |
Collapse
|
23
|
ABC Spotlight on single-molecule detection. Anal Bioanal Chem 2020; 412:7043-7045. [PMID: 32856109 PMCID: PMC7497507 DOI: 10.1007/s00216-020-02838-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/27/2022]
|