1
|
Ghosh S, Lai JY. Recent advances in the design of intracellular pH sensing nanoprobes based on organic and inorganic materials. ENVIRONMENTAL RESEARCH 2023; 237:117089. [PMID: 37683789 DOI: 10.1016/j.envres.2023.117089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/16/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
In the biological system, the intracellular pH (pHi) plays an important role in regulating diverse physiological activities, including enzymatic action, ion transport, cell proliferation, metabolism, and programmed cell death. The monitoring of pH inside living cells is also crucial for studying cellular events such as phagocytosis, endocytosis, and receptor-ligand internalization. Furthermore, some organelles, viz., endosomes and lysosomes, have intracompartmental pH, which is critical for maintaining the stability of protein structure and function. The dysfunction and abnormal pH regulation can result in terminal diseases such as cancer, Alzheimer, and so forth. Therefore, the accuracy of intracellular pH measurement is always the top priority and demands cutting-edge research and analysis. Such techniques, such as Raman spectroscopy and fluorescence imaging, preferably use nanotechnology due to their remarkable advantages, such as a non-invasive approach and providing accuracy, repeatability, and reproducibility. In the past decades, there have been numerous attempts to design and construct non-invasive organic and inorganic materials-based nanoprobes for pHi sensing. For Raman-based techniques, metal nanostructures such as Au/Ag/Cu nanoparticles are utilized to enhance the signal intensity. As for the fluorescence-based studies, the organic-based small molecules, such as dyes, show higher sensitivity toward pH. However, they possess several drawbacks, including high photobleaching rate, and autofluorescence background signals. To this end, there are alternative nanomaterials proposed, including semiconductor quantum dots (QDs), carbon QDs, upconversion nanoparticles, and so forth. Moreover, the fluorescence technique allows for ratiometric measurement of pHi, which as a result, offers a reliable calibration curve. This timely review will critically examine the current progression in the existing nanoprobes. In addition, based on our knowledge and available research findings, we provide a brief future outlook that may advance the state-of-the-art methodologies for pHi sensing.
Collapse
Affiliation(s)
- Sandip Ghosh
- Department of Biomedical Engineering, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Jui-Yang Lai
- Department of Biomedical Engineering, Chang Gung University, Taoyuan, 33302, Taiwan; Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taoyuan, 33305, Taiwan; Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan; Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 33303, Taiwan.
| |
Collapse
|
2
|
Lee S, Jiao M, Zhang Z, Yu Y. Nanoparticles for Interrogation of Cell Signaling. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2023; 16:333-351. [PMID: 37314874 PMCID: PMC10627408 DOI: 10.1146/annurev-anchem-092822-085852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cell functions rely on signal transduction-the cascades of molecular interactions and biochemical reactions that relay extracellular signals to the cell interior. Dissecting principles governing the signal transduction process is critical for the fundamental understanding of cell physiology and the development of biomedical interventions. The complexity of cell signaling is, however, beyond what is accessible by conventional biochemistry assays. Thanks to their unique physical and chemical properties, nanoparticles (NPs) have been increasingly used for the quantitative measurement and manipulation of cell signaling. Even though research in this area is still in its infancy, it has the potential to yield new, paradigm-shifting knowledge of cell biology and lead to biomedical innovations. To highlight this importance, we summarize in this review studies that pioneered the development and application of NPs for cell signaling, from quantitative measurements of signaling molecules to spatiotemporal manipulation of cell signal transduction.
Collapse
Affiliation(s)
- Seonik Lee
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA;
| | - Mengchi Jiao
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA;
| | - Zihan Zhang
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA;
| | - Yan Yu
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA;
| |
Collapse
|
3
|
Zhang Y, Chen Y, Wu B, Liu D, Fu L, Huang F. Synthesis of tetrahedron DNA nanostructures for detecting the activation of cell signal transduction via their specific binding to transcriptional factors. NANOSCALE 2022; 14:15101-15110. [PMID: 36205195 DOI: 10.1039/d2nr01954j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A technique for detecting the activation of cell signal transduction is particularly important for disease diagnosis and therapy. Transcriptional factor (TF) activities that could indicate the status of cell signal transduction are a favorable target for cell signal detection. Tetrahedron DNA nanostructures (TDNs) which contain specific binding sequences of TFs were designed and synthesized in this research, and their effects on detecting cell signal transduction were evaluated. We found that FAM-labeled TDNs with the indicated TF binding sequences could specifically bind to activated TFs of hypoxia signaling or TGF-β signaling. Signaling pathway activities detected via TDNs could be exhibited by various methods including fluorescence imaging, flow cytometry and fluorescence spectrometer analysis. The reliability of this new technique is in line with the classical dual luciferase reporter assay system. This work develops a novel and effective tool to examine the activation of intracellular signaling pathways via nanotechnology. In addition, good stability and programmability of TDNs ensure their widespread application in various signaling pathways.
Collapse
Affiliation(s)
- Ying Zhang
- Central Laboratory, Fujian Key Laboratory of Precision Medicine for Cancer, Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China.
| | - Yue Chen
- Central Laboratory, Fujian Key Laboratory of Precision Medicine for Cancer, Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China.
| | - Bing Wu
- Central Laboratory, Fujian Key Laboratory of Precision Medicine for Cancer, Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China.
| | - Danqing Liu
- Central Laboratory, Fujian Key Laboratory of Precision Medicine for Cancer, Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China.
| | - Lengxi Fu
- Central Laboratory, Fujian Key Laboratory of Precision Medicine for Cancer, Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China.
| | - Fei Huang
- Central Laboratory, Fujian Key Laboratory of Precision Medicine for Cancer, Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China.
| |
Collapse
|
4
|
Gerelkhuu Z, Lee YI, Yoon TH. Upconversion Nanomaterials in Bioimaging and Biosensor Applications and Their Biological Response. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3470. [PMID: 36234598 PMCID: PMC9565472 DOI: 10.3390/nano12193470] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 09/16/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
In recent decades, upconversion nanomaterials (UCNMs) have attracted considerable research interest because of their unique optical properties, such as large anti-Stokes shifts, sharp emissions, non-photobleaching, and long lifetime. These unique properties make them ideal candidates for unified applications in biomedical fields, including drug delivery, bioimaging, biosensing, and photodynamic therapy for specific cancers. This review describes the general mechanisms of upconversion, synthesis methods, and potential applications in biology and their biological responses. Additionally, the biological toxicity of UCNMs is explained and summarized with the associated intracellular association mechanisms. Finally, the prospects and future challenges of UCNMs at the clinical level in biological applications are described, along with a summary of opportunity for biological as well as clinical applications of UCNMs.
Collapse
Affiliation(s)
- Zayakhuu Gerelkhuu
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
- Institute of Next Generation Material Design, Hanyang University, Seoul 04763, Korea
| | - Yong-Ill Lee
- Department of Materials Convergence and System Engineering, Changwon National University, Changwon 51140, Korea
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City 71408, Vietnam
| | - Tae Hyun Yoon
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
- Institute of Next Generation Material Design, Hanyang University, Seoul 04763, Korea
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
5
|
|
6
|
Goryacheva OA, Wegner KD, Sobolev AM, Häusler I, Gaponik N, Goryacheva IY, Resch-Genger U. Influence of particle architecture on the photoluminescence properties of silica-coated CdSe core/shell quantum dots. Anal Bioanal Chem 2022; 414:4427-4439. [PMID: 35303136 DOI: 10.1007/s00216-022-04005-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 12/25/2022]
Abstract
Light-emitting nanoparticles like semiconductor nanocrystals (termed quantum dots, QDs) are promising candidates for biosensing and bioimaging applications based on their bright and stable photoluminescent properties. As high-quality QDs are often synthesized in organic solvents, strategies needed to be developed to render them water-dispersible without affecting their optical properties and prevent changes in postmodification steps like the biofunctionalization with antibodies or DNA. Despite a large number of studies on suitable surface modification procedures, the preparation of water-soluble QDs for nanobiotechnology applications still presents a challenge. To highlight the advantages of surface silanization, we systematically explored the influence of the core/multishell architecture of CdSe/CdS/ZnS QDs and the silanization conditions on the optical properties of the resulting silanized QDs. Our results show that the optical properties of silica-coated CdSe/CdS/ZnS QDs are best preserved in the presence of a thick CdS (6 monolayers (ML)) intermediate shell, providing a high photoluminescence quantum yield (PL QY), and a relatively thick ZnS (4.5 ML) external shell, effectively shielding the QDs from the chemical changes during silica coating. In addition to the QD core/shell architecture, other critical parameters of the silica-coating process, that can have an influence on the optical properties of the QD, include the choice of the surfactant and its concentration used for silica coating. The highest PL QY of about 46% was obtained by a microemulsion silica-coating procedure with the surfactant Brij L4, making these water-dispersible QDs to well-suited optical reporters in future applications like fluorescence immunoassays, biomedicine, and bioimaging.
Collapse
Affiliation(s)
- Olga A Goryacheva
- Department of General and Inorganic Chemistry, Chemistry Institute, Saratov State University, Astrakhanskaya 83, 410012, Saratov, Russia. .,Physical Chemistry, Technische Universität Dresden, Zellescher Weg 19, 01062, Dresden, Germany.
| | - K David Wegner
- Division Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Straße 11, 12489, Berlin, Germany
| | - Aleksandr M Sobolev
- Department of General and Inorganic Chemistry, Chemistry Institute, Saratov State University, Astrakhanskaya 83, 410012, Saratov, Russia.,Division Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Straße 11, 12489, Berlin, Germany
| | - Ines Häusler
- AG Strukturforschung/Elektronenmikroskopie, Institut Für Physik, Humboldt-Universität Zu Berlin, Newtonstraße 15, 12489, Berlin, Germany
| | - Nikolai Gaponik
- Physical Chemistry, Technische Universität Dresden, Zellescher Weg 19, 01062, Dresden, Germany
| | - Irina Y Goryacheva
- Department of General and Inorganic Chemistry, Chemistry Institute, Saratov State University, Astrakhanskaya 83, 410012, Saratov, Russia
| | - Ute Resch-Genger
- Division Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Straße 11, 12489, Berlin, Germany.
| |
Collapse
|
7
|
Zheng B, Fan J, Chen B, Qin X, Wang J, Wang F, Deng R, Liu X. Rare-Earth Doping in Nanostructured Inorganic Materials. Chem Rev 2022; 122:5519-5603. [PMID: 34989556 DOI: 10.1021/acs.chemrev.1c00644] [Citation(s) in RCA: 184] [Impact Index Per Article: 92.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Impurity doping is a promising method to impart new properties to various materials. Due to their unique optical, magnetic, and electrical properties, rare-earth ions have been extensively explored as active dopants in inorganic crystal lattices since the 18th century. Rare-earth doping can alter the crystallographic phase, morphology, and size, leading to tunable optical responses of doped nanomaterials. Moreover, rare-earth doping can control the ultimate electronic and catalytic performance of doped nanomaterials in a tunable and scalable manner, enabling significant improvements in energy harvesting and conversion. A better understanding of the critical role of rare-earth doping is a prerequisite for the development of an extensive repertoire of functional nanomaterials for practical applications. In this review, we highlight recent advances in rare-earth doping in inorganic nanomaterials and the associated applications in many fields. This review covers the key criteria for rare-earth doping, including basic electronic structures, lattice environments, and doping strategies, as well as fundamental design principles that enhance the electrical, optical, catalytic, and magnetic properties of the material. We also discuss future research directions and challenges in controlling rare-earth doping for new applications.
Collapse
Affiliation(s)
- Bingzhu Zheng
- State Key Laboratory of Silicon Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jingyue Fan
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Bing Chen
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Xian Qin
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Juan Wang
- Institute of Environmental Health, MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Feng Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Renren Deng
- State Key Laboratory of Silicon Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
8
|
Kniec K, Marciniak L. A ratiometric luminescence pH sensor based on YAG:V 3+,V 5+ nanoparticles. NEW J CHEM 2022. [DOI: 10.1039/d2nj01595a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A new type of ratiometric luminescence-based pH sensor is described.
Collapse
Affiliation(s)
- K. Kniec
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wroclaw, Poland
| | - L. Marciniak
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wroclaw, Poland
| |
Collapse
|
9
|
Gao G, Liu F, Xu Z, Wan D, Han Y, Kuang Y, Wang Q, Zhi Q. Evidence of nigericin as a potential therapeutic candidate for cancers: A review. Biomed Pharmacother 2021; 137:111262. [PMID: 33508621 DOI: 10.1016/j.biopha.2021.111262] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/21/2020] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
Emerging studies have shown that nigericin, an H+, K+ and Pb2+ ionophore, has exhibited a promising anti-cancer activity in various cancers. However, its anti-cancer mechanisms have not been fully elucidated. In this review, the recent progresses on the use of nigericin in human cancers have been summarized. By exchanging H+ and K+ across cell membranes, nigericin shows promising anti-cancer activities in in vitro and in vivo as a single agent or in combination with other anti-cancer drugs through decreasing intracellular pH (pHi). The underlying mechanisms of nigericin also include the inactivation of Wnt/β-catenin signals, blockade of Androgen Receptor (AR) signaling, and activation of Stress-Activated Protein Kinase/c-Jun N-terminal Kinase (SAPK/JNK) signaling pathways. In many cancers, nigericin is proved to specifically target putative Cancer Stem Cells (CSCs), and its synergistic effects on photodynamic therapy are also reported. Other mechanisms of nigericin including influencing the mitochondrial membrane potentials, inducing an increase in drug accumulation and autophagy, controlling insulin accumulation in nuclei, and increasing the cytotoxic activity of liposome-entrapped drugs, are also discussed. Notably, the potential adverse effects such as teratogenic effects, insulin resistance and eryptosis shall not be ignored. Taken together, these reports suggest that treatment of cancer cells with nigericin may offer a novel therapeutic strategy and future potential of translation to clinics.
Collapse
Affiliation(s)
- Guanzhuang Gao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Fei Liu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Zhihua Xu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Daiwei Wan
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Ye Han
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Yuting Kuang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Qiang Wang
- Department of General Surgery, Jiangsu Shengze Hospital, Wujiang, Jiangsu, 215228, China.
| | - Qiaoming Zhi
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| |
Collapse
|