1
|
Meng X, Wang Y, Li Z, Yang F, Wang J. Knowledge mapping of links between dendritic cells and allergic diseases: A bibliometric analysis (2004-2023). Heliyon 2024; 10:e30315. [PMID: 38765036 PMCID: PMC11096944 DOI: 10.1016/j.heliyon.2024.e30315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 05/21/2024] Open
Abstract
In this study, bibliometric analysis was carried out to comprehend the global research trends, hotspots, scientific frontiers, and output characteristics of the links between dendritic cells (DCs) and allergic diseases from 2004 to 2023. Publications and their recorded information were retrieved from the Web of Science Core Collection (WoSCC). VOSviewer and Citespace were used to visualize the hotspots and trends of research area. ChemBio 3D, Autodock tools, and Discovery Studio were used to visualize the molecular docking results of hotspots. A total of 4861 articles were retrieved. The number of publications (Np) was in a high and stable state. Years 2011 and 2017 were two peaks in Np. The largest contributor in terms of publications, scholars, and affiliations was the USA. The paper published in NATURE MEDICINE (IF: 82.9) and written by Trompette, A in 2006 had the highest global citation score (GCS). Keywords, such as "asthma," "t-cells," "inflammation," "expression," "atopic dermatitis," "food allergy," "gut microbiota," "murine model," and "cytokines related to immunity" appeared the most frequently. Most of the binding free energy of the key active components of Saposhnikovia divaricata docked with toll-like receptor proteins well. This bibliometric study aimed to help better comprehend the present state and make decisions from a macro viewpoint.
Collapse
Affiliation(s)
- Xianghe Meng
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yi Wang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhuqing Li
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Fan Yang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ji Wang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| |
Collapse
|
2
|
Li J, Lin M, Xie Z, Chen L, Qi J, Yu B. Target Cell Extraction and Spectrum-Effect Relationship Coupled with BP Neural Network Classification for Screening Potential Bioactive Components in Ginseng Extract with a Protective Effect against Myocardial Damage. Molecules 2024; 29:2028. [PMID: 38731522 PMCID: PMC11085743 DOI: 10.3390/molecules29092028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/10/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Cardiovascular disease has become a common ailment that endangers human health, having garnered widespread attention due to its high prevalence, recurrence rate, and sudden death risk. Ginseng possesses functions such as invigorating vital energy, enhancing vein recovery, promoting body fluid and blood nourishment, calming the nerves, and improving cognitive function. It is widely utilized in the treatment of various heart conditions, including palpitations, chest pain, heart failure, and other ailments. Although numerous research reports have investigated the cardiovascular activity of single ginsenoside, there remains a lack of systematic research on the specific components group that predominantly contribute to cardiovascular efficacy in ginseng medicinal materials. In this research, the spectrum-effect relationship, target cell extraction, and BP neural network classification were used to establish a rapid screening system for potential active substances. The results show that red ginseng extract (RGE) can improve the decrease in cell viability and ATP content and inhibit the increase in ROS production and LDH release in OGD-induced H9c2 cells. A total of 70 ginsenosides were identified in RGE using HPLC-Q-TOF-MS/MS analysis. Chromatographic fingerprints were established for 12 batches of RGE by high-performance liquid chromatography (HPLC). A total of 36 common ingredients were found in 12 batches of RGE. The cell viability, ATP, ROS, and LDH of 12 batches RGE were tested to establish gray relationship analysis (GRA) and partial least squares discrimination analysis (PLS-DA). BP neural network classification and target cell extraction were used to narrow down the scope of Spectral efficiency analysis and screen the potential active components. According to the cell experiments, RGE can improve the cell viability and ATP content and reduce the oxidative damage. Then, seven active ingredients, namely, Ginsenoside Rg1, Rg2, Rg3, Rb1, Rd, Re, and Ro, were screened out, and their cardiovascular activity was confirmed in the OGD model. The seven ginsenosides were the main active substances of red ginseng in treating myocardial injury. This study offers a reference for quality control in red ginseng and preparations containing red ginseng for the management of cardiovascular diseases. It also provides ideas for screening active ingredients of the same type of multi-pharmacologically active traditional Chinese medicines.
Collapse
Affiliation(s)
- Junyi Li
- Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (J.L.); (M.L.); (Z.X.); (L.C.)
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Min Lin
- Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (J.L.); (M.L.); (Z.X.); (L.C.)
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Zexin Xie
- Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (J.L.); (M.L.); (Z.X.); (L.C.)
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Liwenyu Chen
- Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (J.L.); (M.L.); (Z.X.); (L.C.)
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jin Qi
- Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (J.L.); (M.L.); (Z.X.); (L.C.)
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Boyang Yu
- Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (J.L.); (M.L.); (Z.X.); (L.C.)
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
3
|
Yang C, Zhang JW, Qi J, Yu BY. A novel method for evaluating pseudoallergy based on β-hexosaminidase and its application for traditional Chinese medicine injections. J Sep Sci 2024; 47:e2300545. [PMID: 38234026 DOI: 10.1002/jssc.202300545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/17/2023] [Accepted: 12/20/2023] [Indexed: 01/19/2024]
Abstract
Pseudoallergy is a typical and common adverse drug reaction to injections, especially in traditional Chinese medicine injections (TCMIs). At present, the evaluation methods for pseudoallergy include cell methods in vitro and animal methods in vivo. The mast cell evaluation method based on the β-hexosaminidase (β-Hex)-catalyzed substrate, 4-nitrophenyl-β-N-acetyl-D-glucosaminide (4-NPG), is an important method for the evaluation of drug-induced pseudoallergy, but it is prone to false positive results and has insufficient sensitivity. In this study, a novel β-Hex evaluation system with rat basophilic leukemia-2H3 cells based on high-performance liquid chromatography-fluorescence detection (HPLC-FLD) was established, which effectively increased the sensitivity and avoided false positive results. Cell viabilities were measured by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl tetrazolium bromide assay. In addition, a method for the determination of histamine, which is another indicator in the development of pseudoallergy, was established to validate the above method. The results of this novel method indicated that two TCMIs (Shuxuening injection and Shenqi Fuzheng injection), which were considered to be pseudoallergenic using 4-NPG, were not pseudoallergenic. Overall, the novel β-Hex/HPLC-FLD evaluation system using Rat basophilic leukemia-2H3 cells established was effective and precise. It could be used for the evaluation of pseudoallergic reactions caused by TCMIs and other injections.
Collapse
Affiliation(s)
- Chen Yang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Jing-Wen Zhang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Jin Qi
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Bo-Yang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| |
Collapse
|
4
|
Wang H, Chen Y, Wang L, Liu Q, Yang S, Wang C. Advancing herbal medicine: enhancing product quality and safety through robust quality control practices. Front Pharmacol 2023; 14:1265178. [PMID: 37818188 PMCID: PMC10561302 DOI: 10.3389/fphar.2023.1265178] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/15/2023] [Indexed: 10/12/2023] Open
Abstract
This manuscript provides an in-depth review of the significance of quality control in herbal medication products, focusing on its role in maintaining efficiency and safety. With a historical foundation in traditional medicine systems, herbal remedies have gained widespread popularity as natural alternatives to conventional treatments. However, the increasing demand for these products necessitates stringent quality control measures to ensure consistency and safety. This comprehensive review explores the importance of quality control methods in monitoring various aspects of herbal product development, manufacturing, and distribution. Emphasizing the need for standardized processes, the manuscript delves into the detection and prevention of contaminants, the authentication of herbal ingredients, and the adherence to regulatory standards. Additionally, it highlights the integration of traditional knowledge and modern scientific approaches in achieving optimal quality control outcomes. By emphasizing the role of quality control in herbal medicine, this manuscript contributes to promoting consumer trust, safeguarding public health, and fostering the responsible use of herbal medication products.
Collapse
Affiliation(s)
- Hongting Wang
- Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Innovative Center for Drug Basic Research of Metabolic Diseases, School of Pharmacy, Wannan Medical College, Wuhu, China
| | | | | | | | | | - Cunqin Wang
- Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Innovative Center for Drug Basic Research of Metabolic Diseases, School of Pharmacy, Wannan Medical College, Wuhu, China
| |
Collapse
|
5
|
Hu G, Liu W, Li L. Identification and quantification of cucurbitacin in watermelon frost using molecular networking integrated with ultra-high-performance liquid chromatography-tandem mass spectrometry. J Sep Sci 2023; 46:e2300019. [PMID: 37269211 DOI: 10.1002/jssc.202300019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 06/04/2023]
Abstract
Watermelon frost, a traditional Chinese medicine produced using watermelon and Glauber's salt, has been widely used for the therapy of oral and throat disorders. Watermelon contains various phytochemical compounds including cucurbitacins and their glycoside derivatives, which have attracted considerable attention because of their medicinal values. However, whether the composition of cucurbitacins existed in watermelon frost was rarely reported. In this study, three cucurbitacins including cucurbitacin B, isocucurbitacin B, and cucurbitacin E were found from watermelon frost extract assisted by ultra-high-performance liquid chromatography-tandem mass spectrometry and molecular networking guided strategy, and the compounds were verified using standard solutions. Furthermore, a quantification method for simultaneously targeted analysis of cucurbitacins was established using ultra-high-performance liquid chromatography-tandem mass spectrometry operating in the multiple reaction monitoring mode. Among them, cucurbitacin B and cucurbitacin E in watermelon frost samples were determined, and the concentrations were 3.78 ± 0.18 and 0.86 ± 0.19 ng/ml, respectively. While isocucurbitacin B was not detected due to the lower content possibly. In conclusion, ultra-high-performance liquid chromatography-tandem mass spectrometry combined with molecular networking is a very useful technique for the rapid identification of unknown cucurbitacin components in watermelon frost.
Collapse
Affiliation(s)
- Guizhou Hu
- Department of Pharmacy, Medical School, Huanghe Science and Technology University, Zhengzhou, P. R. China
| | - Wenya Liu
- Department of Chemical Engineering and Technology, School of Environmental and Bioengineering, Nanjing University of Science and Technology, Nanjing, P. R. China
| | - Liyan Li
- Department of Pharmacy, Medical School, Huanghe Science and Technology University, Zhengzhou, P. R. China
| |
Collapse
|
6
|
Hu G, Wang L, Li X, Qi J. Rapidly and accurately screening histidine decarboxylase inhibitors from Radix Paeoniae alba using ultrafiltration-high performance liquid chromatography/mass spectrometry combined with enzyme channel blocking and directional enrichment technique. J Chromatogr A 2023; 1693:463859. [PMID: 36868086 DOI: 10.1016/j.chroma.2023.463859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023]
Abstract
Histidine Decarboxylase (HDC), an unique enzyme responsible for the synthesis of histamine, which is an important mediator in allergy. Inhibition of HDC activity to decrease histamine production is one way to alleviate allergic symptoms. Traditional Chinese medicines (TCMs) with reported anti-allergy effect is one of important source to search for natural HDC inhibitor. Ultrafiltration combined with high-performance liquid chromatography/mass spectrometry (UF-HPLC/MS) is an effective method for screening HDC inhibitor from TCMs. Nevertheless, false-positive and false-negative results caused by the non-specific binding and the neglection of the trace active compounds are major problems in this method. In this study, an integrated strategy that combined UF-HPLC/MS with enzyme channel blocking (ECB) technique and directional enrichment (DE) technique was developed to seek natural HDC inhibitors from Radix Paeoniae alba (RPA), and at the same time, to reduce false-positive and false-negative results. HDC activity was detected to determine the validity of the screened compounds by RP-HPLC-FD in vitro. Molecular docking was applied to assay the binding affinity and binding sites. As a result, three compounds were screened from low content components of RPA after the DE. Among them, two non-specific compounds were eliminated by ECB, and the specific compound was identified as catechin, which has obvious HDC inhibition activity with IC50 0.52 mM. Furthermore, gallic acid (IC50 1.8 mM) and paeoniflorin (IC50>2 mM) from high content components of RPA were determined having HDC inhibitory activity. In conclusion, the integrated strategy of UF-HPLC/MS combined with ECB and DE technique is an effective mode for rapid and accurate screening and identification of natural HDC inhibitors from TCMs.
Collapse
Affiliation(s)
- Guizhou Hu
- Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Lu Wang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210012, PR China
| | - Xinqi Li
- Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Jin Qi
- Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| |
Collapse
|
7
|
Zhang S, Liu Y, Javeed A, Jian C, Sun J, Wu S, Han B. Treatment of allergy: Overview of synthetic anti-allergy small molecules in medicinal chemistry. Eur J Med Chem 2023; 249:115151. [PMID: 36731273 DOI: 10.1016/j.ejmech.2023.115151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 01/30/2023]
Abstract
The prevalence of allergic diseases has been continuously increasing over the past few decades, affecting approximately 20-30% of the global population. Allergic reactions to infection of respiratory tract, digestive tract, and skin system involve multiple different targets. The main difficulty of anti-allergy research is how to develop drugs with good curative effect and less side effects by adopting new multi-targets and mechanisms according to the clinical characteristics of different allergic populations and different allergens. This review focuses on information concerning potential therapeutic targets as well as the synthetic anti-allergy small molecules with respect to their medicinal chemistry. The structure-activity relationship and the mechanism of compound-target interaction were highlighted with perspective to histamine-1/4 receptor antagonists, leukotriene biosynthesis, Th2 cytokines inhibitors, and calcium channel blockers. We hope that the study of chemical scaffold modification and optimization for different lead compounds summarized in this review not only lays the foundation for improvement of success rate and efficiency of virtual screening of antiallergic drugs, but also can provide valuable reference for the drug design of related promising research such as allergy, inflammation, and cancer.
Collapse
Affiliation(s)
- Shanshan Zhang
- Zhejiang Key Laboratory of Silkworm Bioreactor and Biomedicine, Laboratory of Antiallergy Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yi Liu
- Hangzhou Zheda Dixun Biological Gene Engineering Co., LTD., Hangzhou, China
| | - Ansar Javeed
- Zhejiang Key Laboratory of Silkworm Bioreactor and Biomedicine, Laboratory of Antiallergy Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Cuiqin Jian
- Zhejiang Key Laboratory of Silkworm Bioreactor and Biomedicine, Laboratory of Antiallergy Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jinlyu Sun
- Department of Allergy, Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment of Allergic Diseases, National Clinical Research Center for Dermatologic and Immunologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China
| | - Shandong Wu
- Hangzhou Zheda Dixun Biological Gene Engineering Co., LTD., Hangzhou, China
| | - Bingnan Han
- Zhejiang Key Laboratory of Silkworm Bioreactor and Biomedicine, Laboratory of Antiallergy Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
8
|
Wang C, Pang X, Zhu T, Ma S, Liang Y, Zhang Y, Lan X, Wang T, Han L. Rapid discovery of potential ADR compounds from injection of total saponins from Panax notoginseng using data-independent acquisition untargeted metabolomics. Anal Bioanal Chem 2021; 414:1081-1093. [PMID: 34697654 DOI: 10.1007/s00216-021-03734-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 11/24/2022]
Abstract
Injection of total saponins from Panax notoginseng (ISPN) is a modern preparation derived from traditional Chinese medicine (TCM) and is widely applied in the treatment of cardiovascular, cerebrovascular, ophthalmology, and endocrine system diseases. With the increase in the clinical application of ISPN, its adverse drug reactions (ADRs) and related safety issues have attracted much attention. In the present study, a data-independent acquisition (DIA) strategy was proposed to comprehensively characterize the saponins contained in ISPN based on the ultra-high-performance liquid chromatography/quadrupole-Orbitrap MS (UHPLC/Q-Orbitrap MS) platform. As many as 276 saponins were detected, and 250 compounds were identified or tentatively identified based on the retention times and MS/MS data. Furthermore, a metabolomic strategy was utilized to discover the discriminative saponins between normal and ADR batches. The results showed that six saponins, including ginsenoside Rh4, ginsenoside Rk3, ginsenoside Rg5, ginsenoside Rk1, ginsenoside Rg6, and 20(S)-ginsenoside Rh2, were significantly different between the two groups. According to cytotoxicity analysis and degranulation detection of RBL-2H3 cells, ginsenoside Rg5, ginsenoside Rk1, and 20(S)-ginsenoside Rh2 were considered the potential compounds responsible for clinical ADRs, ultimately. In addition, the quantitative analysis showed that the content of these three compounds in ISPN samples with ADRs was generally higher than that in samples without ADRs. This study demonstrated that it is advisable to screen out potential markers related to ADRs for developing the quality standard of ISPN by the integration of untargeted metabolomic analysis and cell biology study, and thus reduce its ADRs in the clinic.
Collapse
Affiliation(s)
- Chenxi Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Xu Pang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Tongtong Zhu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Shuhua Ma
- Beijing Key Laboratory of TCM Basic Research on Prevention and Treatment of Major Disease, Experimental Research Center, China Academy of Chinese Medical Sciences, 16 Nanxiao Road, Dongzhimen, Beijing, 100700, People's Republic of China
| | - Yunfei Liang
- Guangxi Wuzhou Pharmaceutical (Group) Co., LTD., No.1 Industrial Avenue, Wuzhou Industrial Park, Guangxi, 543002, People's Republic of China
| | - Yi Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Xing Lan
- Guangxi Wuzhou Pharmaceutical (Group) Co., LTD., No.1 Industrial Avenue, Wuzhou Industrial Park, Guangxi, 543002, People's Republic of China
| | - Tao Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China.
| | - Lifeng Han
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China.
| |
Collapse
|