1
|
Guo W, Lei Y, Yu X, Wu Y. Ratiometric fluorometric and colorimetric dual-signal sensing platform for rapid analyzing Cr(VI), Ag(I) and HCHO in food and environmental samples based on N-doped carbon nanodots and o-phenylenediamine. Food Chem 2024; 437:137945. [PMID: 37951079 DOI: 10.1016/j.foodchem.2023.137945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/01/2023] [Accepted: 11/05/2023] [Indexed: 11/13/2023]
Abstract
Nitrogen-doped carbon nanodots (N-CNDs) were synthesized simply and efficiently using glutathione. The fluorescence emission of N-CNDs at 430 nm was effectively quenched by the fluorophore 2,3-diaminophenazine (DAP), produced through the oxidation of o-phenylenediamine (OPD) under the catalysis of Cr(VI)/Ag(I). This quenching was attributed to the fluorescence resonance energy transfer effect, while a new fluorescence emission at 560 nm was observed. Furthermore, the redox and chromogenic reaction of Cr(VI) and OPD at pH 5.4 could be effectively inhibited by formaldehyde (HCHO), resulting in the activation of N-CNDs fluorescence and the quenching of DAP fluorescence. Consequently, dual-signal sensing platforms for the rapid analysis of Cr(VI) and Ag(I) using N-CNDs/OPD and HCHO using N-CNDs/OPD/Cr(VI) were successfully constructed. By incorporating a masking reagent such as H2O2 for Cr(VI) and Cl- for Ag(I), the established sensing platform exhibited excellent selectivity and practical applicability for detecting Cr(VI), Ag(I), and HCHO in food and environmental samples.
Collapse
Affiliation(s)
- Wenwen Guo
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Yaya Lei
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Xiaoxiao Yu
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Yiwei Wu
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China.
| |
Collapse
|
2
|
Chen GY, Chai TQ, Wang JL, Yang FQ. Recent advances in the colorimetric and fluorescence analysis of bioactive small-molecule compounds based on the enzyme-like activity of nanomaterials. J Pharm Biomed Anal 2023; 236:115695. [PMID: 37672902 DOI: 10.1016/j.jpba.2023.115695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/24/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023]
Abstract
Nanomaterials with enzyme-like activity have been widely used in the construction of colorimetric and fluorescence sensors due to their advantages of cost-effectiveness, high stability, good biocompatibility, and ease of modification. Furthermore, the colorimetric and fluorescence sensors, which are effective approaches for detecting bioactive small-molecule compounds, have been extensively explored due to their simple operation and high sensitivity. Recent significant researches have focused on designing various sensors based on nanozymes with peroxidase- and oxidase-like activity for the colorimetric and fluorescence analysis of different analytes. In this review, recent developments (from 2018 to present) in the colorimetric and fluorescent analysis of bioactive small-molecule compounds based on the enzyme-like activity of nanomaterials were summarized. In addition, the challenges and design strategies in developing colorimetric and fluorescent assays with high performance and specific sensing were discussed.
Collapse
Affiliation(s)
- Guo-Ying Chen
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Tong-Qing Chai
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Jia-Li Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China.
| |
Collapse
|
3
|
Puranik N, Yadav D, Song M. Advancements in the Application of Nanomedicine in Alzheimer's Disease: A Therapeutic Perspective. Int J Mol Sci 2023; 24:14044. [PMID: 37762346 PMCID: PMC10530821 DOI: 10.3390/ijms241814044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that affects most people worldwide. AD is a complex central nervous system disorder. Several drugs have been designed to cure AD, but with low success rates. Because the blood-brain and blood-cerebrospinal fluid barriers are two barriers that protect the central nervous system, their presence has severely restricted the efficacy of many treatments that have been studied for AD diagnosis and/or therapy. The use of nanoparticles for the diagnosis and treatment of AD is the focus of an established and rapidly developing field of nanomedicine. Recent developments in nanomedicine have made it possible to effectively transport drugs to the brain. However, numerous obstacles remain to the successful use of nanomedicines in clinical settings for AD treatment. Furthermore, given the rapid advancement in nanomedicine therapeutics, better outcomes for patients with AD can be anticipated. This article provides an overview of recent developments in nanomedicine using different types of nanoparticles for the management and treatment of AD.
Collapse
Affiliation(s)
| | | | - Minseok Song
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea; (N.P.); (D.Y.)
| |
Collapse
|
4
|
Sannok T, Wechakorn K, Jantra J, Kaewchoay N, Teepoo S. Silica nanoparticle-modified paper strip-based new rhodamine B chemosensor for highly selective detection of copper ions in drinking water. Anal Bioanal Chem 2023:10.1007/s00216-023-04754-z. [PMID: 37222793 DOI: 10.1007/s00216-023-04754-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/27/2023] [Accepted: 05/12/2023] [Indexed: 05/25/2023]
Abstract
A new rhodamine B derivative (RDB) was synthesized and utilized for the colorimetric detection of copper ions (Cu2+). This chemosensor utilized a paper strip as a support and a smartphone as a detector for on-site quantitative detection of Cu2+ in water samples. Silica nanoparticles (SiNPs) were investigated as the modifier nanoparticles to achieve uniform color on the paper strip and showed a color response 1.9-fold higher than the one without SiNPs. The RDB chemosensor-based paper strip provided high selectivity toward Cu2+ with a detection limit of 0.7 mg/L, and the working concentrations for Cu2+ ranged from 1 to 17 mg/L. Parallel analyses of eight drinking water samples were conducted by inductively coupled plasma optical emission spectroscopy. The results were in good agreement, indicating the practical reliability of the established method with a short assay time and high selectivity. These indicate its great potential for on-site detection of Cu2+.
Collapse
Affiliation(s)
- Tadcha Sannok
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Thanyaburi, 12110, Pathum Thani, Thailand
| | - Kanokorn Wechakorn
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Thanyaburi, 12110, Pathum Thani, Thailand
| | - Jongjit Jantra
- King Mongkut's Institute of Technology Ladkrabang, Prince of Chumphon, Chumphon, 86160, Pathiu, Thailand
| | - Netnapit Kaewchoay
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Thanyaburi, 12110, Pathum Thani, Thailand
| | - Siriwan Teepoo
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Thanyaburi, 12110, Pathum Thani, Thailand.
| |
Collapse
|
5
|
Zhou X, Zhang J, Huang D, Yi Y, Wu K, Zhu G. Nitrogen-doped Ti 3C 2 MXene quantum dots as an effective FRET ratio fluorometric probe for sensitive detection of Cu 2+ and D-PA. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 293:122484. [PMID: 36796242 DOI: 10.1016/j.saa.2023.122484] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
In this work, a ratiometric fluorescence sensing platform was established to detect Cu2+ and D-PA (d-penicillamine) based on nitrogen-doped Ti3C2 MXene quantum dots (N-MODs) that was prepared via a simple hydrothermal method and exhibited strong fluorescent and photoluminescence performance as well as excellent stability. Since the oxidation reaction between o-phenylenediamine (OPD) and Cu2+ induced the formation of 2,3-diaminophenazine (ox-OPD) which not only can emerge an emission peak at 570 nm, but also inhibit the fluorescence intensity of N-MQDs at 450 nm, a ratiometric reverse fluorescence sensor via fluorescence resonance energy transfer (FRET) was designed to sensitively detect Cu2+, where N-MQDs acted as energy donor and ox-OPD as energy acceptor. More importantly, another considerably interesting phenomenon was that their catalytic oxidation reaction can be restrained in the presence of D-PA because of the coordination of Cu2+ with D-PA, further triggering the obvious changes in ratio fluorescent signal and color, thus a ratiometric fluorescent sensor of determining D-PA was proposed also in this work. After optimizing various conditions, the ratiometric sensing platform showed rather low detection limits for Cu2+ (3.0 nM) and D-PA (0.115 μM), coupled with excellent sensitivity and stability.
Collapse
Affiliation(s)
- Xun Zhou
- School of the Environment and Safety Engineering, Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang 212013, PR China
| | - Juerui Zhang
- School of the Environment and Safety Engineering, Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang 212013, PR China
| | - Dongyan Huang
- School of the Environment and Safety Engineering, Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang 212013, PR China
| | - Yinhui Yi
- School of the Environment and Safety Engineering, Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, PR China.
| | - Kechen Wu
- Fujian Key Laboratory of Functional Marine Sensing Materials, Ocean College, Minjiang University, PR China
| | - Gangbing Zhu
- School of the Environment and Safety Engineering, Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang 212013, PR China; State Environmental Protection Key Laboratory of Monitoriing for Heavy Metal Pollutants, PR China; Fujian Key Laboratory of Functional Marine Sensing Materials, Ocean College, Minjiang University, PR China.
| |
Collapse
|
6
|
Zhang W, Jiang X, Wu Y, Jiang J, Liu X, Liu Y, Wang W, Lai J, Wang X. Emission enhancement of fluorescent glutathione-capped gold nanoclusters by cerium (III) ion-induced aggregation for sensitive detecting α-glucosidase in human serum using ratiometric fluorometry. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Zhang M, Zhang Y, Gan M, Xie L, Wang J, Jia W, Bian W, Shuang S, Choi MMF. Facile synthesis of sulfur and oxygen co-doped graphitic carbon nitride quantum dots for on-off detection of Cu 2+in real samples and living cells. Methods Appl Fluoresc 2022; 10. [PMID: 35705102 DOI: 10.1088/2050-6120/ac7944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/15/2022] [Indexed: 11/12/2022]
Abstract
A fluorescent sulfur and oxygen co-doped graphitic carbon nitride quantum dots (S,O-CNQDs) were prepared from ethylenediaminetetraacetic acid disodium salt dihydrate and thiourea as the carbon and sulfur sources. The morphology and surface functional groups of S,O-CNQDs were characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The fluorescence of S,O-CNQDs could be quenched efficiently by Cu2+under the optimum conditions. The S,O-CNQDs could function as an excellent fluorescent probe for Cu2+detection with a wide linear range of 0.50-15μM and a low detection limit of 0.58 nM. In addition, this fluorescent probe was employed for monitoring Cu2+in samples of tap water, lake water, human serum and urine with good recoveries from 99.0% to 110.0%. Moreover, the S,O-CNQDs with high cell penetration and low cytotoxicity were utilized for Cu2+detection in living cells. Owing to the excellent properties of S,O-CNQDs, the as-prepared S,O-CNQDs can be a potential candidate for biological applications.
Collapse
Affiliation(s)
- Mengting Zhang
- Department of Medical Chemistry, School of Basic Medical Science, Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Yulu Zhang
- Department of Medical Chemistry, School of Basic Medical Science, Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Mingyu Gan
- Department of Medical Chemistry, School of Basic Medical Science, Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Liping Xie
- General Hospital of Tisco, Sixth Hospital of Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Jing Wang
- Lvliang People's Hospital, Lvliang, 033000, People's Republic of China
| | - Weihua Jia
- General Hospital of Tisco, Sixth Hospital of Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Wei Bian
- Department of Medical Chemistry, School of Basic Medical Science, Shanxi Medical University, Taiyuan, 030001, People's Republic of China.,Lvliang People's Hospital, Lvliang, 033000, People's Republic of China
| | - Shaomin Shuang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, People's Republic of China
| | - Martin M F Choi
- Bristol Chinese Christian Church, c/o Tyndale Baptist Church, 137-139 Whiteladies Road, Bristol, BS8 2QG, United Kingdom
| |
Collapse
|
8
|
Feng Y, Liu G, Zhang C, Li J, Li Y, Liu L. Fluorescent Immunoassay with a Copper Polymer as the Signal Label for Catalytic Oxidation of O-Phenylenediamine. Molecules 2022; 27:3675. [PMID: 35744801 PMCID: PMC9229616 DOI: 10.3390/molecules27123675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/02/2022] [Accepted: 06/02/2022] [Indexed: 01/08/2023] Open
Abstract
This work suggested that Cu2+ ion coordinated by the peptide with a histidine (His or H) residue in the first position from the free N-terminal reveals oxidase-mimicking activity. A biotinylated polymer was prepared by modifying His residues on the side chain amino groups of lysine residues (denoted as KH) to chelate multiple Cu2+ ions. The resulting biotin-poly-(KH-Cu)20 polymer with multiple catalytic sites was employed as the signal label for immunoassay. Prostate specific antigen (PSA) was determined as the model target. The captured biotin-poly-(KH-Cu)20 polymer could catalyze the oxidation of o-phenylenediamine (OPD) to produce fluorescent 2,3-diaminophenazine (OPDox). The signal was proportional to PSA concentration from 0.01 to 2 ng/mL, and the detection limit was found to be eight pg/mL. The high sensitivity of the method enabled the assays of PSA in real serum samples. The work should be valuable for the design of novel biosensors for clinical diagnosis.
Collapse
Affiliation(s)
- Yunxiao Feng
- College of Chemistry and Chemical Engineering, Pingdingshan University, Pingdingshan 467000, China;
| | - Gang Liu
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China;
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang 455000, China; (C.Z.); (J.L.)
| | - Chunhuan Zhang
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang 455000, China; (C.Z.); (J.L.)
| | - Jinrui Li
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang 455000, China; (C.Z.); (J.L.)
| | - Yuanyuan Li
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China;
| | - Lin Liu
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang 455000, China; (C.Z.); (J.L.)
| |
Collapse
|