1
|
Brito ALB, Cardoso IF, Viegas LP, Fausto R. Semi-quantitative chemometric models for characterization of mixtures of sugars using infrared spectral data. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125225. [PMID: 39368179 DOI: 10.1016/j.saa.2024.125225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/09/2024] [Accepted: 09/26/2024] [Indexed: 10/07/2024]
Abstract
Sugars (saccharides) are sweet-tasting carbohydrates that are abundant in foods and play very important roles in living organisms, particularly as sources and stores of energy, and as structural elements in cellular membranes. They are desirable therapeutic targets, as they participate in multiple metabolic processes as fundamental elements. However, the physicochemical characterization of sugars is a challenging task, mostly due to the structural similarity shared by the large diversity of compounds of this family. The need for fast, accurate enough, and cost-effective analytical methods for these substances is of extreme relevance, in particular because of the recently increasing importance of carbohydrates in Medicine and food industry. With this in view, this work focused on the development of chemometric models for semi-quantitative analysis of samples of different types of sugars (glucose, galactose, mannitol, sorbose and fructose) using infrared spectra as data, as an example of application of a novel approach, where the Principal Component Analysis (PCA) score plots are used to estimate the composition (weight-%) of the mixtures of the sugars. In these plots, polygonal geometric shapes emerge in the vectorial space of the most significant principal components, that allow grouping different types of samples on the vertices, edges, faces and interior of the polygons according to the composition of the samples. This approach was applied successfully to mixtures of up to 5 sugars and shown to appropriately extract the compositional information from the hyper-redundant complex spectral data. Thought the method has been applied here to a specific problem, it shall be considered as a general procedure for the semi-quantitative analysis of other types of mixtures and applicable to other types of data reflecting their composition. In fact, the methodology appears as an efficient tool to solve three main general problems: (i) use hyper-redundant (in variables) data, as spectral information, directly and with minimum pre-treatment, to evaluate semi-quantitatively the composition of mixtures; (ii) do this for systems which produce data that can be considered rather similar; and (iii) do it for a number of substances present in the mixtures that might be greater than that usually considered in chemistry, which in general is limited to 3 components. In addition, this work also demonstrates that, similarly to the developed analysis based on the PCA score plots, the Multivariate Curve Resolution with Alternating Least Squares (MCR-ALS) chemometric method can also be used successfully for the qualitative (when used without any previous knowledge of the components present in the samples) or semi-quantitative (when the pure components spectral profiles are provided as references) analyses of mixtures of (at least) up to 5 distinct sugars.
Collapse
Affiliation(s)
- Anna Luiza B Brito
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - Inês F Cardoso
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Luís P Viegas
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Rui Fausto
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; Faculty of Sciences and Letters, Department of Physics, Istanbul Kultur University, Ataköy Campus, Bakirköy 34156, Istanbul, Turkey
| |
Collapse
|
2
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2021-2022. MASS SPECTROMETRY REVIEWS 2024. [PMID: 38925550 DOI: 10.1002/mas.21873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 06/28/2024]
Abstract
The use of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the analysis of carbohydrates and glycoconjugates is a well-established technique and this review is the 12th update of the original article published in 1999 and brings coverage of the literature to the end of 2022. As with previous review, this review also includes a few papers that describe methods appropriate to analysis by MALDI, such as sample preparation, even though the ionization method is not MALDI. The review follows the same format as previous reviews. It is divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of computer software for structural identification. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other general areas such as medicine, industrial processes, natural products and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. MALDI is still an ideal technique for carbohydrate analysis, particularly in its ability to produce single ions from each analyte and advancements in the technique and range of applications show little sign of diminishing.
Collapse
|
3
|
McCullagh J, Probert F. New analytical methods focusing on polar metabolite analysis in mass spectrometry and NMR-based metabolomics. Curr Opin Chem Biol 2024; 80:102466. [PMID: 38772215 DOI: 10.1016/j.cbpa.2024.102466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/19/2024] [Accepted: 04/26/2024] [Indexed: 05/23/2024]
Abstract
Following in the footsteps of genomics and proteomics, metabolomics has revolutionised the way we investigate and understand biological systems. Rapid development in the last 25 years has been driven largely by technical innovations in mass spectrometry and nuclear magnetic resonance spectroscopy. However, despite the modest size of metabolomes relative to proteomes and genomes, methodological capabilities for robust, comprehensive metabolite analysis remain a major challenge. Therefore, development of new methods and techniques remains vital for progress in the field. Here, we review developments in LC-MS, GC-MS and NMR methods in the last few years that have enhanced quantitative and comprehensive metabolome coverage, highlighting the techniques involved, their technical capabilities, relative performance, and potential impact.
Collapse
Affiliation(s)
- James McCullagh
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK.
| | - Fay Probert
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
4
|
Sirén H. Research of saccharides and related biocomplexes: A review with recent techniques and applications. J Sep Sci 2024; 47:e2300668. [PMID: 38699940 DOI: 10.1002/jssc.202300668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/14/2024] [Accepted: 02/26/2024] [Indexed: 05/05/2024]
Abstract
Saccharides and biocompounds as saccharide (sugar) complexes have various roles and biological functions in living organisms due to modifications via nucleophilic substitution, polymerization, and complex formation reactions. Mostly, mono-, di-, oligo-, and polysaccharides are stabilized to inactive glycosides, which are formed in metabolic pathways. Natural saccharides are important in food and environmental monitoring. Glycosides with various functionalities are significant in clinical and medical research. Saccharides are often studied with the chromatographic methods of hydrophilic interaction liquid chromatography and anion exchange chromatograpy, but also with capillary electrophoresis and mass spectrometry with their on-line coupling systems. Sample preparation is important in the identification of saccharide compounds. The cases discussed here focus on bioscience, clinical, and food applications.
Collapse
Affiliation(s)
- Heli Sirén
- Chemicum Building, University of Helsinki, Helsinki, Finland
| |
Collapse
|
5
|
Xue Y, Yu C, Ouyang H, Huang J, Kang X. Uncovering the Molecular Composition and Architecture of the Bacillus subtilis Biofilm via Solid-State NMR Spectroscopy. J Am Chem Soc 2024; 146:11906-11923. [PMID: 38629727 DOI: 10.1021/jacs.4c00889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The complex and dynamic compositions of biofilms, along with their sophisticated structural assembly mechanisms, endow them with exceptional capabilities to thrive in diverse conditions that are typically unfavorable for individual cells. Characterizing biofilms in their native state is significantly challenging due to their intrinsic complexities and the limited availability of noninvasive techniques. Here, we utilized solid-state nuclear magnetic resonance (NMR) spectroscopy to analyze Bacillus subtilis biofilms in-depth. Our data uncover a dynamically distinct organization within the biofilm: a dominant, hydrophilic, and mobile framework interspersed with minor, rigid cores of limited water accessibility. In these heterogeneous rigid cores, the major components are largely self-assembled. TasA fibers, the most robust elements, further provide a degree of mechanical support for the cell aggregates and some lipid vesicles. Notably, rigid cell aggregates can persist even without the major extracellular polymeric substance (EPS) polymers, although this leads to slight variations in their rigidity and water accessibility. Exopolysaccharides are exclusively present in the mobile domain, playing a pivotal role in its water retention property. Specifically, all water molecules are tightly bound within the biofilm matrix. These findings reveal a dual-layered defensive strategy within the biofilm: a diffusion barrier through limited water mobility in the mobile phase and a physical barrier posed by limited water accessibility in the rigid phase. Complementing these discoveries, our comprehensive, in situ compositional analysis is not only essential for delineating the sophisticated biofilm architecture but also reveals the presence of alternative genetic mechanisms for synthesizing exopolysaccharides beyond the known pathway.
Collapse
Affiliation(s)
- Yi Xue
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Chenjie Yu
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Han Ouyang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jiaofang Huang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xue Kang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, China
| |
Collapse
|
6
|
Shi Q, Yu X, Sun S, Wu W, Shi W, Yu Q. Diverse thermal desorption combined with self-aspirating corona discharge ionization for direct mass spectrometry analysis of complex samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2071-2076. [PMID: 38505988 DOI: 10.1039/d4ay00200h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The thermal desorption (TD) technique is widely employed in modern mass spectrometry to facilitate the detection of non-volatile analytes. In this study, we developed a compact TD device based on a small resistance wire and coupled it with a self-aspirating corona discharge ionization (CDI) source to conduct direct MS analysis of various liquid and solid samples. Due to its small size and low heat capacity, the temperature of the TD module can be flexibly and rapidly modulated by controlling the power sequence. Multiple heating modes, including pulse heating (PH), isothermal heating, and step heating (SH), are realized and characterized, and then applied for the detection of different real samples. In particular, the PH mode is suitable for the simultaneous detection of multiple components in samples with relatively simple matrices, while the SH mode is capable of component separation. In addition, the sensitivity and quantitative capability of the TD-CDI system for DEP solutions were tested, showing acceptable stability with a relative standard deviation of about 6.7% and a detection limit of 0.088 ng. Overall, the developed TD-CDI system provides a simple, convenient, and versatile tool for direct mass spectrometry analysis of real samples.
Collapse
Affiliation(s)
- Qinhao Shi
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| | - Xiaohua Yu
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| | - Shuang Sun
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| | - Weilong Wu
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| | - Wenyan Shi
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| | - Quan Yu
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| |
Collapse
|
7
|
Yao Z, Zhu K, Gu T, Schmitz OJ, Li D. An active derivatization detection method for inline monitoring the isolation of carbohydrates by preparative liquid chromatography. J Chromatogr A 2024; 1719:464730. [PMID: 38367394 DOI: 10.1016/j.chroma.2024.464730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/19/2024]
Abstract
Polysaccharides have unique physio-chemical properties and various biological functions and have rapidly expanded interest over the last two decades. The purification of polysaccharides and their degraded oligosaccharides is challenging because carbohydrates have no chromophore and need a proper detector to monitor the chromatographic elution process. This study proposed an active derivatization detection (ADD) method based on active splitting from post-column flow, a microchannel reactor for efficient derivatization of polysaccharide reducing sugars with p-hydroxybenzoic acid hydrazide, and in-line detection by the UV detector of liquid chromatography system. The method and device were validated by the use of 11 monosaccharides, sulfated oligosaccharides (from degraded carrageenan), and polysaccharides (from Zizania latifolia). It has shown much better performance than the traditional phenol-sulfuric acid method (gold standard). Moreover, the ADD module presumes an add-in to the original preparative LC system, independent of the scale of the purification process and type of system. The developed method is versatile for chromatographic separation of carbohydrates and lays the foundation for their subsequent studies.
Collapse
Affiliation(s)
- Zhen Yao
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, PR China
| | - Kehan Zhu
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, PR China
| | - Tianyi Gu
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, PR China
| | - Oliver J Schmitz
- Applied Analytical Chemistry, Faculty of Chemistry, University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45141, Germany
| | - Duxin Li
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
8
|
Kuschmierz L, Meyer M, Bräsen C, Wingender J, Schmitz OJ, Siebers B. Exopolysaccharide composition and size in Sulfolobus acidocaldarius biofilms. Front Microbiol 2022; 13:982745. [PMID: 36225367 PMCID: PMC9549778 DOI: 10.3389/fmicb.2022.982745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Extracellular polymeric substances (EPS) comprise mainly carbohydrates, proteins and extracellular DNA (eDNA) in biofilms formed by the thermoacidophilic Crenarchaeon Sulfolobus acidocaldarius. However, detailed information on the carbohydrates in the S. acidocaldarius biofilm EPS, i.e., the exopolysaccharides (PS), in terms of identity, composition and size were missing. In this study, a set of methods was developed and applied to study the PS in S. acidocaldarius biofilms. It was initially shown that addition of sugars, most significantly of glucose, to the basal N-Z-amine-based growth medium enhanced biofilm formation. For the generation of sufficient amounts of biomass suitable for chemical analyses, biofilm growth was established and optimized on the surface of membrane filters. EPS were isolated and the contents of carbohydrates, proteins and eDNA were determined. PS purification was achieved by enzymatic digestion of other EPS components (nucleic acids and proteins). After trifluoroacetic acid-mediated hydrolysis of the PS fraction, the monosaccharide composition was analyzed by reversed-phase liquid chromatography (RP-LC) coupled to mass spectrometry (MS). Main sugar constituents detected were mannose, glucose and ribose, as well as minor proportions of rhamnose, N-acetylglucosamine, glucosamine and galactosamine. Size exclusion chromatography (SEC) revealed the presence of one single PS fraction with a molecular mass of 4-9 × 104 Da. This study provides detailed information on the PS composition and size of S. acidocaldarius MW001 biofilms and methodological tools for future studies on PS biosynthesis and secretion.
Collapse
Affiliation(s)
- Laura Kuschmierz
- Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - Martin Meyer
- Applied Analytical Chemistry, University of Duisburg-Essen, Essen, Germany
- Teaching and Research Center for Separation, University of Duisburg-Essen, Essen, Germany
| | - Christopher Bräsen
- Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - Jost Wingender
- Aquatic Microbiology, Environmental Microbiology and Biotechnology, Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - Oliver J. Schmitz
- Applied Analytical Chemistry, University of Duisburg-Essen, Essen, Germany
- Teaching and Research Center for Separation, University of Duisburg-Essen, Essen, Germany
- Oliver J. Schmitz,
| | - Bettina Siebers
- Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
- *Correspondence: Bettina Siebers,
| |
Collapse
|
9
|
Ul'yanovskii NV, Falev DI, Kosyakov DS. Highly sensitive ligand exchange chromatographic determination of apiose in plant biomass. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|