1
|
Chen W, Han Y, Xu Y, Wang T, Wang Y, Chen X, Qiu X, Li W, Li H, Fan Y, Yao Y, Zhu T. Fine particulate matter exposure and systemic inflammation: A potential mediating role of bioactive lipids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172993. [PMID: 38719056 DOI: 10.1016/j.scitotenv.2024.172993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/20/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024]
Abstract
Inflammation is a key mechanism underlying the adverse health effects of exposure to fine particulate matter (PM2.5). Bioactive lipids in the arachidonic acid (ARA) pathway are important in the regulation of inflammation and are reportedly altered by PM2.5 exposure. Ceramide-1-phosphate (C1P), a class of sphingolipids, is required to initiate ARA metabolism. We examined the role of C1P in the alteration of ARA metabolism after PM2.5 exposure and explored whether changes in the ARA pathway promoted systemic inflammation based on a panel study involving 112 older adults in Beijing, China. Ambient PM2.5 levels were continuously monitored at a fixed station from 2013 to 2015. Serum cytokine levels were measured to assess systemic inflammation. Multiple bioactive lipids in the ARA pathway and three subtypes of C1P were quantified in blood samples. Mediation analyses were performed to test the hypotheses. We observed that PM2.5 exposure was positively associated with inflammatory cytokines and the three subtypes of C1P. Mediation analyses showed that C1P significantly mediated the associations of ARA and 5, 6-dihydroxyeicosatrienoic acid (5, 6-DHET), an ARA metabolite, with PM2.5 exposure. ARA, 5, 6-DHET, and leukotriene B4 mediated systemic inflammatory response to PM2.5 exposure. For example, C1P C16:0 (a subtype of C1P) mediated a 12.9 % (95 % confidence interval: 3.7 %, 32.5 %) increase in ARA associated with 3-day moving average PM2.5 exposure, and ARA mediated a 27.1 % (7.8 %, 61.2 %) change in interleukin-8 associated with 7-day moving average PM2.5 exposure. Our study indicates that bioactive lipids in the ARA and sphingolipid metabolic pathways may mediate systemic inflammation after PM2.5 exposure.
Collapse
Affiliation(s)
- Wu Chen
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China; Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yiqun Han
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China; Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Yifan Xu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Teng Wang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Yanwen Wang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China; National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xi Chen
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China; Hebei Technology Innovation Center of Human Settlement in Green Building (TCHS), Shenzhen Institute of Building Research Co., Ltd., Xiongan, Hebei, China
| | - Xinghua Qiu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Weiju Li
- Peking University Hospital, Peking University, Beijing, China
| | - Haonan Li
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Yunfei Fan
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China; China National Environmental Monitoring Centre, Beijing, China
| | - Yuan Yao
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China; Department of Environmental Health Sciences, Jonathan and Karin Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA
| | - Tong Zhu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China.
| |
Collapse
|
2
|
Shalaby YM, Al-Zohily B, Raj A, Yasin J, Al Hamad S, Antoniades C, Akawi N, Aburawi EH. Circulating ceramide levels and ratios in Emirati youth under 18 years: associations with cardiometabolic risk factors. Lipids Health Dis 2024; 23:93. [PMID: 38561799 PMCID: PMC10983633 DOI: 10.1186/s12944-024-02080-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/17/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Circulating ceramide (Cer) drives various pathological processes associated with cardiovascular diseases, liver illness, and diabetes mellitus. Although recognized as predictors of cardiometabolic diseases (CMD) in research and clinical settings, their potential for predicting CMD risk in individuals under 18 remains unexplored. OBJECTIVES This study was designed to utilize Liquid Chromatography-Mass Spectrometry (LC-MS/MS) methodology to determine the biological reference ranges for Cer in plasma samples of Emirati children and develop a risk assessment score (CERT-1) based on Cer concentrations. METHODS Using LC-MS/MS, we developed a method to measure five Cer species in plasma samples of 582 Emirati participants aged 5-17. We used the circulating concentrations of these Cer to determine their reference intervals in this population. We employed traditional statistical analyses to develop a risk score (CERT-1) and assess the association between Cer levels and conventional biomarkers of CMD. RESULTS We validated a high-throughput methodology using LC-MS/MS to quantify five Cer species in human plasma. Reference values for this population (n = 582) were quantified: CerC16:0 (0.12-0.29 µmol/L), CerC18:0 (0.019-0.067 µmol/L), CerC22:0 (0.102-0.525 µmol/L), CerC24:0 (0.65-1.54 µmol/L) and CerC24:1 (0.212-0.945 µmol/L). We devised a risk assessment score (CERT-1) based on plasma Cer content in the study participants, showing that 72.5% have low to moderate risk and 9.3% are at a higher risk of developing CMD. Our analyses also revealed a significant correlation (P < 0.05) between this score and the conventional risk factors linked to CMD, indicating its potential clinical implication. CONCLUSION This study presents a clinical-scaled LC-MS/MS methodology for assessing clinically relevant Cer, setting reference ranges, and developing a risk score (CERT-1) for young Emirati individuals. Our findings can enhance primary risk prediction and inform the management and follow-up of CMD from an early age.
Collapse
Affiliation(s)
- Youssef M Shalaby
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Egypt
| | - Bashar Al-Zohily
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Anjana Raj
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Javed Yasin
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Sania Al Hamad
- Department of Paediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | | | - Nadia Akawi
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates.
- Division of Cardiovascular Medicine, University of Oxford, Oxford, UK.
| | - Elhadi H Aburawi
- Department of Paediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates.
| |
Collapse
|
3
|
Gerhardtova I, Jankech T, Majerova P, Piestansky J, Olesova D, Kovac A, Jampilek J. Recent Analytical Methodologies in Lipid Analysis. Int J Mol Sci 2024; 25:2249. [PMID: 38396926 PMCID: PMC10889185 DOI: 10.3390/ijms25042249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/09/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
Lipids represent a large group of biomolecules that are responsible for various functions in organisms. Diseases such as diabetes, chronic inflammation, neurological disorders, or neurodegenerative and cardiovascular diseases can be caused by lipid imbalance. Due to the different stereochemical properties and composition of fatty acyl groups of molecules in most lipid classes, quantification of lipids and development of lipidomic analytical techniques are problematic. Identification of different lipid species from complex matrices is difficult, and therefore individual analytical steps, which include extraction, separation, and detection of lipids, must be chosen properly. This review critically documents recent strategies for lipid analysis from sample pretreatment to instrumental analysis and data interpretation published in the last five years (2019 to 2023). The advantages and disadvantages of various extraction methods are covered. The instrumental analysis step comprises methods for lipid identification and quantification. Mass spectrometry (MS) is the most used technique in lipid analysis, which can be performed by direct infusion MS approach or in combination with suitable separation techniques such as liquid chromatography or gas chromatography. Special attention is also given to the correct evaluation and interpretation of the data obtained from the lipid analyses. Only accurate, precise, robust and reliable analytical strategies are able to bring complex and useful lipidomic information, which may contribute to clarification of some diseases at the molecular level, and may be used as putative biomarkers and/or therapeutic targets.
Collapse
Affiliation(s)
- Ivana Gerhardtova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 10 Bratislava, Slovakia
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, SK-842 15 Bratislava, Slovakia
| | - Timotej Jankech
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 10 Bratislava, Slovakia
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, SK-842 15 Bratislava, Slovakia
| | - Petra Majerova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 10 Bratislava, Slovakia
| | - Juraj Piestansky
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 10 Bratislava, Slovakia
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, SK-832 32 Bratislava, Slovakia
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, SK-832 32 Bratislava, Slovakia
| | - Dominika Olesova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 10 Bratislava, Slovakia
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 05 Bratislava, Slovakia
| | - Andrej Kovac
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 10 Bratislava, Slovakia
- Department of Pharmacology and Toxicology, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 68/73, SK-041 81 Kosice, Slovakia
| | - Josef Jampilek
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 10 Bratislava, Slovakia
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, SK-842 15 Bratislava, Slovakia
| |
Collapse
|
4
|
Luque-Córdoba D, Calderón-Santiago M, Rangel-Zúñiga OA, Camargo A, López-Miranda J, Priego-Capote F. Comprehensive profiling of ceramides in human serum by liquid chromatography coupled to tandem mass spectrometry combining data independent/dependent acquisition modes. Anal Chim Acta 2024; 1287:342115. [PMID: 38182388 DOI: 10.1016/j.aca.2023.342115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/26/2023] [Accepted: 12/04/2023] [Indexed: 01/07/2024]
Abstract
Ceramides are sphingolipids with a structural function in the cell membrane and are involved in cell differentiation, proliferation and apoptosis. Recently, these chemical species have been pointed out as potential biomarkers in different diseases, due to their abnormal levels in blood. In this research, we present an overall strategy combining data-independent and dependent acquisitions (DIA and DDA, respectively) for identification, confirmation, and quantitative determination of ceramides in human serum. By application of liquid chromatography-tandem mass spectrometry (LC-MS/MS) method in DIA mode we identified 49 ceramides including d18:1, d18:0, d18:2, d16:1, d17:1 and t18:0 species. Complementary, quantitative determination of ceramides was based on a high-throughput and fully automated method consisting of solid-phase extraction on-line coupled to LC-MS/MS in DDA to improve analytical features avoiding the errors associated to sample processing. Quantitation limits were at pg mL-1 level, the intra-day and between-days variability were below 20 and 25 %, respectively; and the accuracy, expressed as bias, was always within ±25 %. The proposed method was tested with the CORDIOPREV cohort in order to obtain a qualitative and quantitative profiling of ceramides in human serum. This characterization allowed identifying d18:1 ceramides as the most concentrated with 70.8% of total concentration followed by d18:2 and d18:0 with 13.0 % and 8.8 %, respectively. Less concentrated ceramides, d16:1, d17:1 and t18:0, reported a 7.1 % of the total content. Combination of DIA and DDA LC-MS/MS analysis enabled to profile qualitative and quantitatively ceramides in human serum.
Collapse
Affiliation(s)
- D Luque-Córdoba
- Department of Analytical Chemistry, Annex Marie Curie Building, Campus of Rabanales, University of Córdoba, Córdoba, Spain; Chemical Institute for Energy and Environment (IQUEMA), Campus of Rabanales, University of Córdoba, Córdoba, Spain; Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain; Consortium for Biomedical Research in Frailty & Healthy Ageing, CIBERFES, Carlos III Institute of Health, Spain
| | - M Calderón-Santiago
- Department of Analytical Chemistry, Annex Marie Curie Building, Campus of Rabanales, University of Córdoba, Córdoba, Spain; Chemical Institute for Energy and Environment (IQUEMA), Campus of Rabanales, University of Córdoba, Córdoba, Spain; Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain; Consortium for Biomedical Research in Frailty & Healthy Ageing, CIBERFES, Carlos III Institute of Health, Spain
| | - O A Rangel-Zúñiga
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain; Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, 14004, Cordoba, Spain; Department of Medical and Surgical Science, University of Cordoba, 14004, Córdoba, Spain; CIBER Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - A Camargo
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain; Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, 14004, Cordoba, Spain; Department of Medical and Surgical Science, University of Cordoba, 14004, Córdoba, Spain; CIBER Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - J López-Miranda
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain; Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, 14004, Cordoba, Spain; Department of Medical and Surgical Science, University of Cordoba, 14004, Córdoba, Spain; CIBER Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - F Priego-Capote
- Department of Analytical Chemistry, Annex Marie Curie Building, Campus of Rabanales, University of Córdoba, Córdoba, Spain; Chemical Institute for Energy and Environment (IQUEMA), Campus of Rabanales, University of Córdoba, Córdoba, Spain; Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain; Consortium for Biomedical Research in Frailty & Healthy Ageing, CIBERFES, Carlos III Institute of Health, Spain.
| |
Collapse
|
5
|
Salihovic S, Lamichane S, Hyötyläinen T, Orešič M. Recent advances towards mass spectrometry-based clinical lipidomics. Curr Opin Chem Biol 2023; 76:102370. [PMID: 37473482 DOI: 10.1016/j.cbpa.2023.102370] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023]
Abstract
The objective of this review is to provide a comprehensive summary of the latest methodological advancements and emerging patterns in utilizing lipidomics in clinical research.In this review, we assess the recent advancements in lipidomics methodologies that exhibit high levels of selectivity and sensitivity, capable of generating numerous molecular lipid species from limited quantities of biological matrices. The reviewed studies demonstrate that molecular lipid signatures offer new opportunities for precision medicine by providing sensitive diagnostic tools for disease prediction and monitoring. Moreover, the latest innovations in microsampling techniques have the potential to make a substantial contribution to clinical lipidomics. The review also shows that more work is needed to harmonize results across diverse lipidomics platforms and avoid significant errors in analysis and reporting. The increased implementation of internal standards and standard reference materials in analytical workflows will aid in this direction.
Collapse
Affiliation(s)
- Samira Salihovic
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Santosh Lamichane
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | | | - Matej Orešič
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
| |
Collapse
|
6
|
Meikopoulos T, Begou O, Theodoridis G, Gika H. Ceramides biomarkers determination in quantitative dried blood spots by UHPLC-MS/MS. Anal Chim Acta 2023; 1255:341131. [PMID: 37032061 DOI: 10.1016/j.aca.2023.341131] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/10/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023]
Abstract
A method was developed for the analysis of four ceramide species; namely C16:0, C18:0, C24:0 and C24:1 in quantitative Dried Blood Samples (qDBS) by LC-MS/MS and validated with the aim to give prominence to an interesting application of at-home blood microsampling for health monitoring. Ceramides, being key-role metabolites implicated in regulation of diverse cellular processes have been considered as emerging biomarkers for different disease states, such as cardiovascular diseases, type 2 diabetes and others. Here, Capitainer device was utilized to provide accurate and consistent volumes of samples, ideal for accurate determinations. The method requires a 10 μL sample offering duplicate analysis by device, is quick and enables the sample collection by distance as it was proved that ceramides under study were stable at various conditions, including RT. Intra and inter-day accuracy of the determination were estimated between 87.6% - 113% and 90.6% -113%, respectively, while intra- and inter-day precision were calculated from 0.2% to 9.9% %RSD and 0.1% - 8.0% %RSD, respectively. The data acquired by ten healthy individuals indicated that circulating ceramides are at higher levels in whole blood taken from the fingertip in comparison to the reported values in plasma or serum.
Collapse
|
7
|
Chen S, Li X, Liu S, Zhao L, Zhang W, Xiong Z, Luan H. Rapid, sensitive, and high-throughput quantification of broad serological ceramides by using isotope dilution liquid chromatography-negative ion electrospray tandem mass spectrometry. Anal Bioanal Chem 2023; 415:801-808. [PMID: 36482083 DOI: 10.1007/s00216-022-04473-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/19/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022]
Abstract
Ceramides are important intermediates in the metabolism of sphingolipids. High-throughput liquid chromatography-mass spectrometry has been used extensively for monitoring the levels of serological ceramides, but is still limited by inadequate coverage or lack of sensitivity. Herein, a rapid, sensitive, and high-throughput isotope dilution liquid chromatography-negative ion electrospray tandem mass spectrometry (IDLC-nESI-MS/MS) method was developed and verified for accurate quantification of 41 ceramides, involving ceramides with C16-20 sphingosine, dihydro-ceramide, and dehydro-ceramide. This method was validated with excellent linearity (R2 > 0.99) and good recovery in the range of 90-110%. Intra- and inter-day imprecision were below 5.57% and 7.83% respectively. The improved high-throughput quantitative method developed in this study may aid in the accurate characterization of ceramides for understanding ceramide biology and application in disease diagnosis.
Collapse
Affiliation(s)
- Shuailong Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
- School of Medicine, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, 1088 Xueyuan Rd., Shenzhen, China
| | - Xuan Li
- School of Medicine, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, 1088 Xueyuan Rd., Shenzhen, China
| | - Shijia Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Longshan Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China.
| | - Wenyong Zhang
- School of Medicine, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, 1088 Xueyuan Rd., Shenzhen, China.
| | - Zhili Xiong
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China.
| | - Hemi Luan
- School of Medicine, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, 1088 Xueyuan Rd., Shenzhen, China.
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen, PR China.
| |
Collapse
|
8
|
Development and validation of a simple and rapid HILIC-MS/MS method for the quantification of low-abundant lysoglycerophospholipids in human plasma. Anal Bioanal Chem 2023; 415:411-425. [PMID: 36370204 DOI: 10.1007/s00216-022-04421-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/15/2022]
Abstract
Lysoglycerophospholipids (Lyso-GPLs) are an essential class of signaling lipids with potential roles in human diseases, such as cancer, central nervous system diseases, and atherosclerosis. Current methods for the quantification of Lyso-GPLs involve complex sample pretreatment, long analysis times, and insufficient validation, which hinder the research of Lyso-GPLs in human studies, especially for Lyso-GPLs with low abundance in human plasma such as lysophosphatidic acid (LPA), lysophosphatidylinositol (LPI), lysophosphatidylglycerol (LPG), lysophosphatidylserine (LysoPS), lyso-platelet-activating factor (LysoPAF), and cyclic phosphatidic acid (cPA). Herein, we report the development and validation of a simple and rapid liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the quantification of Lyso-GPLs with low abundance in plasma. Protein precipitation using MeOH for Lyso-GPL extraction, quick separation (within 18 min) based on hydrophilic interaction liquid chromatography (HILIC), and sensitive MS detection under dynamic multiple reaction monitoring (dMRM) mode enabled efficient quantification of 22 Lyso-GPLs including 2 cPA, 4 LPG, 11 LPA, 2 LysoPS, and 3 LysoPAF in 50 μL of human plasma. The present method showed good linearity (goodness of fit, 0.99823-0.99995), sensitivity (lower limit of quantification, 0.03-14.06 ng/mL), accuracy (73-117%), precision (coefficient of variation ≤ 28%), carryover (≤ 17%), recovery (80-110%), and stability (83-123%). We applied the method in an epidemiological study and report concentrations of 18 Lyso-GPLs in 567 human plasma samples comparable to those of previous studies. Significant negative associations of LysoPAF C18, LysoPAF C18:1, and LysoPAF C16 with homeostatic model assessment for insulin resistance (HOMA-IR) level were observed; this indicates possible roles of LysoPAF in glucose homeostasis. The application of the present method will improve understanding of the roles of circulating low-abundant Lyso-GPLs in health and diseases.
Collapse
|
9
|
Xu Y, Chen X, Han Y, Chen W, Wang T, Gong J, Fan Y, Zhang H, Zhang L, Li H, Wang Q, Yao Y, Xue T, Wang J, Qiu X, Que C, Zheng M, Zhu T. Ceramide metabolism mediates the impaired glucose homeostasis following short-term black carbon exposure: A targeted lipidomic analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154657. [PMID: 35314239 DOI: 10.1016/j.scitotenv.2022.154657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/24/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Ambient particulate matter (PM), especially its carbonaceous composition black carbon (BC) increases cardiometabolic risks, yet the underlying mechanisms are incompletely understood. Ceramides (Cer; a class of sphingolipids) are biological intermediates in glucose metabolism. OBJECTIVES To explore whether Cer metabolism mediates impaired glucose homeostasis following short-term PM exposure. METHODS In a panel study in Beijing, China, 112 participants were followed-up between 2016 and 2017. Targeted lipidomic analyses quantified 26 sphingolipids in 387 plasma samples. Ambient BC and PM with aerodynamic diameter ≤ 2.5 μm (PM2.5) were continuously monitored in a station. We examined the associations of sphingolipid levels with average BC and PM2.5 concentrations 1-14 days before clinical visits using linear mixed-effects models, and explored the mediation effects of sphingolipids on PM-associated fasting blood glucose (FBG) difference using mediation analyses. RESULTS Increased levels of FBG and multiple sphingolipids in Cer metabolic pathways were associated with BC exposure in 1-14-day time window, but not with PM2.5 exposure. For each 10 μg/m3 increase in the average BC concentration 1-14 days before the clinical visits, species in the Cer C24:1 pathway (Cer, dihydroceramide, hexosylceramide, lactosylceramide, and sphingomyelin C24:1) increased in levels ranging from 11.8% (95% confidence interval [CI]: -6.2-33.2) to 48.7% (95% CI: 8.8-103.4), as did the Cer C16:0, C18:0, and C20:0 metabolic pathway species, ranging from 3.2% (95% CI: -5.6-12.9) to 32.4% (95% CI: 7.0-63.8), respectively. The Cer C24:1 metabolic pathway species mediated 6.5-25.5% of the FBG increase associated with BC exposure in 9-day time window. The Cer C16:0, C18:0, and C20:0 metabolic pathway species mediated 5.4-26.2% of the BC-associated FBG difference. CONCLUSIONS In conclusion, Cer metabolism may mediate impaired glucose homeostasis following short-term BC exposure. The current findings are preliminary, which need to be corroborated by further studies.
Collapse
Affiliation(s)
- Yifan Xu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Xi Chen
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China; Hebei Technology Innovation Center of Human Settlement in Green Building, Shenzhen Institute of Building Research Co., Ltd., Xiongan, China
| | - Yiqun Han
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China; Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Wu Chen
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Teng Wang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Jicheng Gong
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Yunfei Fan
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Hanxiyue Zhang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Lina Zhang
- Shi Cha Hai Community Health Service Center, Beijing, China
| | - Haonan Li
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Qi Wang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Yuan Yao
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Tao Xue
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China; School of Public Health, Peking University, Beijing, China
| | - Junxia Wang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Xinghua Qiu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Chengli Que
- Peking University First Hospital, Peking University, Beijing, China
| | - Mei Zheng
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Tong Zhu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China.
| |
Collapse
|
10
|
Xu Y, Han Y, Wang Y, Gong J, Li H, Wang T, Chen X, Chen W, Fan Y, Qiu X, Wang J, Xue T, Li W, Zhu T. Ambient Air Pollution and Atherosclerosis: A Potential Mediating Role of Sphingolipids. Arterioscler Thromb Vasc Biol 2022; 42:906-918. [PMID: 35652334 DOI: 10.1161/atvbaha.122.317753] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The pathophysiological mechanisms of air pollution-induced atherosclerosis are incompletely understood. Sphingolipids serve as biological intermediates during atherosclerosis development by facilitating production of proatherogenic apoB (apolipoprotein B)-containing lipoproteins. We explored whether sphingolipids mediate the proatherogenic effects of air pollution. METHODS This was a prospective panel study of 110 participants (mean age 56.5 years) followed from 2013 to 2015 in Beijing, China. Targeted lipidomic analyses were used to quantify 24 sphingolipids in 579 plasma samples. The mass concentrations of ambient particulate matter ≤2.5 μm in diameter (PM2.5) were continuously monitored by a fixed station. We evaluated the associations between sphingolipid levels and average PM2.5 concentrations 1-30 days before clinic visits using linear mixed-effects models and explored whether sphingolipids mediate PM2.5-associated changes in the levels of proatherogenic apoB-containing lipoproteins (LDL-C [low-density lipoprotein cholesterol] and non-HDL-C [nonhigh-density lipoprotein cholesterol]) using mediation analyses. RESULTS We observed significant increases in the levels of non-HDL-C and fourteen sphingolipids associated with PM2.5 exposure, from short- (14 days) to medium-term (30 days) exposure time windows. The associations exhibited near-monotonic increases and peaked in 30-day time window. Increased levels of the sphingolipids, namely, sphinganine, ceramide C24:0, sphingomyelins C16:0/C18:0/C18:1/C20:0/C22:0/C24:0, and hexosylceramides C16:0/C18:0/C20:0/C22:0/C24:0/C24:1 significantly mediated 32%, 58%, 35% to 93%, and 23% to 86%, respectively, of the positive association between 14-day PM2.5 average and the non-HDL-C level, but not the LDL-C level. Similar mediation effects (19%-91%) of the sphingolipids were also observed in 30-day time window. CONCLUSIONS Our results suggest that sphingolipids may mediate the proatherogenic effects of short- and medium-term PM2.5 exposure.
Collapse
Affiliation(s)
- Yifan Xu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health (Y.X., Y.H., Y.W., J.G., H.L., T.W., X.C., W.C., Y.F., X.Q., J.W., T.Z.), Peking University, Beijing, China
| | - Yiqun Han
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health (Y.X., Y.H., Y.W., J.G., H.L., T.W., X.C., W.C., Y.F., X.Q., J.W., T.Z.), Peking University, Beijing, China
| | - Yanwen Wang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health (Y.X., Y.H., Y.W., J.G., H.L., T.W., X.C., W.C., Y.F., X.Q., J.W., T.Z.), Peking University, Beijing, China.,Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, United Kingdom (Y.H.)
| | - Jicheng Gong
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health (Y.X., Y.H., Y.W., J.G., H.L., T.W., X.C., W.C., Y.F., X.Q., J.W., T.Z.), Peking University, Beijing, China
| | - Haonan Li
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health (Y.X., Y.H., Y.W., J.G., H.L., T.W., X.C., W.C., Y.F., X.Q., J.W., T.Z.), Peking University, Beijing, China
| | - Teng Wang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health (Y.X., Y.H., Y.W., J.G., H.L., T.W., X.C., W.C., Y.F., X.Q., J.W., T.Z.), Peking University, Beijing, China
| | - Xi Chen
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health (Y.X., Y.H., Y.W., J.G., H.L., T.W., X.C., W.C., Y.F., X.Q., J.W., T.Z.), Peking University, Beijing, China
| | - Wu Chen
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health (Y.X., Y.H., Y.W., J.G., H.L., T.W., X.C., W.C., Y.F., X.Q., J.W., T.Z.), Peking University, Beijing, China
| | - Yunfei Fan
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health (Y.X., Y.H., Y.W., J.G., H.L., T.W., X.C., W.C., Y.F., X.Q., J.W., T.Z.), Peking University, Beijing, China
| | - Xinghua Qiu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health (Y.X., Y.H., Y.W., J.G., H.L., T.W., X.C., W.C., Y.F., X.Q., J.W., T.Z.), Peking University, Beijing, China
| | - Junxia Wang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health (Y.X., Y.H., Y.W., J.G., H.L., T.W., X.C., W.C., Y.F., X.Q., J.W., T.Z.), Peking University, Beijing, China
| | - Tao Xue
- School of Public Health (T.X.), Peking University, Beijing, China
| | - Weiju Li
- Peking University Hospital (W.L.), Peking University, Beijing, China
| | - Tong Zhu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health (Y.X., Y.H., Y.W., J.G., H.L., T.W., X.C., W.C., Y.F., X.Q., J.W., T.Z.), Peking University, Beijing, China
| |
Collapse
|
11
|
Morano C, Zulueta A, Caretti A, Roda G, Paroni R, Dei Cas M. An Update on Sphingolipidomics: Is Something Still Missing? Some Considerations on the Analysis of Complex Sphingolipids and Free-Sphingoid Bases in Plasma and Red Blood Cells. Metabolites 2022; 12:metabo12050450. [PMID: 35629954 PMCID: PMC9147510 DOI: 10.3390/metabo12050450] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 02/01/2023] Open
Abstract
The main concerns in targeted “sphingolipidomics” are the extraction and proper handling of biological samples to avoid interferences and achieve a quantitative yield well representing all the sphingolipids in the matrix. Our work aimed to compare different pre-analytical procedures and to evaluate a derivatization step for sphingoid bases quantification, to avoid interferences and improve sensitivity. We tested four protocols for the extraction of sphingolipids from human plasma, at different temperatures and durations, and two derivatization procedures for the conversion of sphingoid bases into phenylthiourea derivatives. Different columns and LC-MS/MS chromatographic conditions were also tested. The protocol that worked better for sphingolipids analysis involved a single-phase extraction in methanol/chloroform mixture (2:1, v/v) for 1 h at 38 °C, followed by a 2 h alkaline methanolysis at 38 °C, for the suppression of phospholipids signals. The derivatization of sphingoid bases promotes the sensibility of non-phosphorylated species but we proved that it is not superior to a careful choice of the appropriate column and a full-length elution gradient. Our procedure was eventually validated by analyzing plasma and erythrocyte samples of 20 volunteers. While both extraction and methanolysis are pivotal steps, our final consideration is to analyze sphingolipids and sphingoid bases under different chromatographic conditions, minding the interferences.
Collapse
Affiliation(s)
- Camillo Morano
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (C.M.); (G.R.)
| | - Aida Zulueta
- Neurorehabilitation Department, IRCCS Istituti Clinici Scientifici Maugeri di Milano, 20138 Milan, Italy;
| | - Anna Caretti
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (A.C.); (R.P.)
| | - Gabriella Roda
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (C.M.); (G.R.)
| | - Rita Paroni
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (A.C.); (R.P.)
| | - Michele Dei Cas
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (A.C.); (R.P.)
- Correspondence:
| |
Collapse
|