1
|
Shaib AH, Chouaib AA, Chowdhury R, Altendorf J, Mihaylov D, Zhang C, Krah D, Imani V, Spencer RKW, Georgiev SV, Mougios N, Monga M, Reshetniak S, Mimoso T, Chen H, Fatehbasharzad P, Crzan D, Saal KA, Alawieh MM, Alawar N, Eilts J, Kang J, Soleimani A, Müller M, Pape C, Alvarez L, Trenkwalder C, Mollenhauer B, Outeiro TF, Köster S, Preobraschenski J, Becherer U, Moser T, Boyden ES, Aricescu AR, Sauer M, Opazo F, Rizzoli SO. One-step nanoscale expansion microscopy reveals individual protein shapes. Nat Biotechnol 2024:10.1038/s41587-024-02431-9. [PMID: 39385007 PMCID: PMC7616833 DOI: 10.1038/s41587-024-02431-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 09/13/2024] [Indexed: 10/11/2024]
Abstract
The attainable resolution of fluorescence microscopy has reached the subnanometer range, but this technique still fails to image the morphology of single proteins or small molecular complexes. Here, we expand the specimens at least tenfold, label them with conventional fluorophores and image them with conventional light microscopes, acquiring videos in which we analyze fluorescence fluctuations. One-step nanoscale expansion (ONE) microscopy enables the visualization of the shapes of individual membrane and soluble proteins, achieving around 1-nm resolution. We show that conformational changes are readily observable, such as those undergone by the ~17-kDa protein calmodulin upon Ca2+ binding. ONE is also applied to clinical samples, analyzing the morphology of protein aggregates in cerebrospinal fluid from persons with Parkinson disease, potentially aiding disease diagnosis. This technology bridges the gap between high-resolution structural biology techniques and light microscopy, providing new avenues for discoveries in biology and medicine.
Collapse
Affiliation(s)
- Ali H Shaib
- Institute for Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany.
| | - Abed Alrahman Chouaib
- Department of Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| | - Rajdeep Chowdhury
- Institute for Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
- Department of Chemistry, GITAM School of Science, GITAM, Hyderabad, India
| | - Jonas Altendorf
- Institute for Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | | | - Chi Zhang
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Neurobiological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Donatus Krah
- Institute for Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Vanessa Imani
- Institute for Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Russell K W Spencer
- Institute for Theoretical Physics, Georg-August University, Göttingen, Germany
| | - Svilen Veselinov Georgiev
- Institute for Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Nikolaos Mougios
- Institute for Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Mehar Monga
- Biochemistry of Membrane Dynamics Group, Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany
| | - Sofiia Reshetniak
- Institute for Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Tiago Mimoso
- Institute for X-Ray Physics, University of Göttingen, Göttingen, Germany
| | - Han Chen
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Parisa Fatehbasharzad
- Institute for Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Dagmar Crzan
- Institute for Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Kim-Ann Saal
- Institute for Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Mohamad Mahdi Alawieh
- Institute for Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Nadia Alawar
- Department of Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| | - Janna Eilts
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Jinyoung Kang
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Neurobiological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alireza Soleimani
- Institute for Theoretical Physics, Georg-August University, Göttingen, Germany
| | - Marcus Müller
- Institute for Theoretical Physics, Georg-August University, Göttingen, Germany
| | - Constantin Pape
- Institute of Computer Science, Georg-August University Göttingen, Göttingen, Germany
| | | | - Claudia Trenkwalder
- Department of Neurosurgery, University Medical Center, Göttingen, Germany
- Paracelsus-Elena-Klinik, Kassel, Germany
| | - Brit Mollenhauer
- Paracelsus-Elena-Klinik, Kassel, Germany
- Department of Neurology, University Medical Center, Göttingen, Germany
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Sarah Köster
- Institute for X-Ray Physics, University of Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Julia Preobraschenski
- Biochemistry of Membrane Dynamics Group, Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Ute Becherer
- Department of Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| | - Tobias Moser
- Biochemistry of Membrane Dynamics Group, Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
- Auditory Neuroscience and Synaptic Nanophysiology Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Edward S Boyden
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Neurobiological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Felipe Opazo
- Institute for Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- NanoTag Biotechnologies GmbH, Göttingen, Germany
| | - Silvio O Rizzoli
- Institute for Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
| |
Collapse
|
2
|
Li K, Ling H, Huang W, Luo W, Gu C, Tao B, Xie Q, Qiu P. Single-cell RNA-sequencing analysis reveals α-syn induced astrocyte-neuron crosstalk-mediated neurotoxicity. Int Immunopharmacol 2024; 139:112676. [PMID: 39053230 DOI: 10.1016/j.intimp.2024.112676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024]
Abstract
Accumulation of alpha-synuclein (α-syn) is a key pathological hallmark of synucleinopathies and has been shown to negatively impact neuronal function and activity. α-syn is an important factor contributing to astrocyte overactivation, though the effect of astrocyte overactivation on neurons remains unclear. Single-cell RNA sequencing data of mouse brain frontal cortex and midbrain from Hua-Syn (A53T) and wild type mice were utilized from the GEO database. Enrichment analysis, protein-protein interaction networks, and cell-cell interaction networks all indicated enhanced communication between astrocytes and neurons, along with the involvement of TNF and inflammation-related signaling pathways. In vitro experiments were performed to further explore the mechanism of neurotoxicity in astrocyte-neuron crosstalk. Astrocytes were treated by α-syn, neuronal TNFR1 receptors were antagonized by R-7050, and the cells were co-cultured after 24 h treatment. ELISA results revealed that cytokines such as TNF-α and IL-6 were significantly upregulated in astrocytes following the endocytosis of α-syn. Immunofluorescence (IF) showed neuronal dendritic reduction, axon elongation and increased co-localisation of TNFR1 receptor expression. Western blot showed up-regulation of PKR, P-eIF2α and ATF4 protein expression. Conversely, after antagonizing neuronal TNFR1 receptors with the R-7050 chemical inhibitor, neuronal synaptic structure was significantly restored and the expression of PKR, P-eIF2α and ATF4 was down-regulated. In summary, TNF-α acts as a signaling molecule mediating the up-regulated astrocyte-neuron crosstalk, providing new insights into the pathogenesis of α-syn-related neurological disorders.
Collapse
Affiliation(s)
- Kuan Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Haosen Ling
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Wei Huang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Wenyu Luo
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Cihang Gu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Bowen Tao
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Qiqian Xie
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Pingming Qiu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China; Department of Thyroid Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
4
|
Chen Y, Liang Z, Wang Q, Xiao L, Xie S, Yang S, Liu X, Ling D, Li F. Alpha-Synuclein Oligomers Driven T1-T2 Switchable Nanoprobes for Early and Accurate Diagnosis of Parkinson's Disease. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2310404. [PMID: 38149464 DOI: 10.1002/adma.202310404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/28/2023] [Indexed: 12/28/2023]
Abstract
The alpha-synuclein (α-syn) oligomers hold a central role in the pathology of Parkinson's disease (PD). Achieving accurate detection of α-syn oligomers in vivo presents a promising avenue for early and accurate diagnosis of PD. Magnetic resonance imaging (MRI), with non-invasion and exceptional tissue penetration, offers a potent tool for visualizing α-syn oligomers in vivo. Nonetheless, ensuring diagnostic specificity remains a formidable challenge. Herein, a novel MRI probe (ASOSN) is introduced, which encompasses highly sensitive antiferromagnetic nanoparticles functionalized with single-chain fragment variable antibodies, endowing it with the capacity for discerning recognition and binding to α-syn oligomers and triggering a switchable T1-T2 MRI signal. Significantly, ASOSN possesses the unique capability to accurately discriminate α-syn oligomers from neuroinflammation in vivo. Moreover, ASOSN facilitates the non-invasive and precise visualizing of endogenous α-syn oligomers in living systems. This innovative design heralds the development of a non-invasive visualization strategy for α-syn oligomers, marking a pivotal advancement for early and accurate diagnosis of PD.
Collapse
Affiliation(s)
- Ying Chen
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zeyu Liang
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qiyue Wang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, 200240, China
- World Laureates Association (WLA) Laboratories, Shanghai, 201203, China
| | - Lin Xiao
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shangzhi Xie
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shengfei Yang
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xun Liu
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, 200240, China
- World Laureates Association (WLA) Laboratories, Shanghai, 201203, China
| | - Daishun Ling
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, 200240, China
- World Laureates Association (WLA) Laboratories, Shanghai, 201203, China
| | - Fangyuan Li
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- World Laureates Association (WLA) Laboratories, Shanghai, 201203, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310009, China
| |
Collapse
|
6
|
Francucci B, Angeloni S, Dal Ben D, Lambertucci C, Ricciutelli M, Spinaci A, Smirnov A, Volpini R, Buccioni M, Marucci G. Dual Anta-Inhibitors Targeting Protein Kinase CK1δ and A 2A Adenosine Receptor Useful in Neurodegenerative Disorders. Molecules 2023; 28:4762. [PMID: 37375315 DOI: 10.3390/molecules28124762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Currently, the number of patients with neurodegenerative pathologies is estimated at over one million, with consequences also on the economic level. Several factors contribute to their development, including overexpression of A2A adenosine receptors (A2AAR) in microglial cells and up-regulation and post-translational alterations of some casein kinases (CK), among them, CK-1δ. The aim of the work was to study the activity of A2AAR and CK1δ in neurodegeneration using in-house synthesized A2A/CK1δ dual anta-inhibitors and to evaluate their intestinal absorption. Experiments were performed on N13 microglial cells, which were treated with a proinflammatory CK cocktail to simulate an inflammatory state typical of neurodegenerative diseases. Results showed that the dual anta-inhibitors have the ability to counteract the inflammatory state, even if compound 2 is more active than compound 1. In addition, compound 2 displayed an important antioxidant effect similar to the reference compound ZM241385. Since many known kinase inhibitors are very often unable to cross lipid bilayer membranes, the ability of A2A/CK1δ double anta-inhibitors to cross the intestinal barrier was investigated by an everted gut sac assay. HPLC analysis revealed that both compounds are able to cross the intestinal barrier, making them promising candidates for oral therapy.
Collapse
Affiliation(s)
- Beatrice Francucci
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Simone Angeloni
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Diego Dal Ben
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Catia Lambertucci
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Massimo Ricciutelli
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Andrea Spinaci
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Aleksei Smirnov
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Rosaria Volpini
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Michela Buccioni
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Gabriella Marucci
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| |
Collapse
|