1
|
Xing Y, Wang W, Cheng Y, Hu D, Du J, He R, Lv X, Yang Y. Network pharmacology and metabolomics elucidate the underlying effects and mechanisms of maackiain against endometrial cancer. Biochem Biophys Res Commun 2025; 742:151119. [PMID: 39657356 DOI: 10.1016/j.bbrc.2024.151119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/23/2024] [Accepted: 12/02/2024] [Indexed: 12/12/2024]
Abstract
Endometrial carcinoma (EC), a prevalent gynecological cancer, is characterized by rising incidence and mortality rates, highlighting the need for novel treatments to improve patient outcomes. Maackiain (MA) is a natural compound isolated from common herbal medicines, that has been reported to have anti-cancer effects. However, the underlying roles and mechanisms concerning EC remain unclear. This study focused on deeply exploring the potential roles and mechanisms of MA against EC by network pharmacology, experimentally validated, metabolomics, and molecular docking. A total of 86 potential targets of MA against EC were identified by network pharmacology. In vitro experiments further confirmed network pharmacology' predictions. In addition to suppressing EC cell proliferation, MA also paused the cell cycle at the G2/M phase in a dose-dependent manner. This effect is accompanied by increased p21 and phospho-p53 expression, as well as reduced expression of CDK1 and CCNB1. Furthermore, cell metabolomics analysis revealed that 285 metabolites were changed after MA administration, which majorly affects glycerophospholipid metabolism, nucleotide metabolism, choline metabolism in cancer, and purine metabolism. Combination network pharmacology, metabolomics, and molecular docking, PLA2G10, PDE4D, and PDE5A were found to be potential targets for therapeutic intervention. These findings underlined that MA has anti-EC potential by modulating multiple targets including PLA2G10, PDE4D, and PDE5A, inhibiting EC cell proliferation, inducing G2/M phase arrest, and causing metabolic shifts. This study provides theoretical support for advanced experimental research on its clinical applications.
Collapse
Affiliation(s)
- Yijuan Xing
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, China; Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Gansu Provincial Clinical Research Center for Gynecological Oncology, Lanzhou, 730000, Gansu, China
| | - Wenhua Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, China; Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Gansu Provincial Clinical Research Center for Gynecological Oncology, Lanzhou, 730000, Gansu, China
| | - Yuemei Cheng
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, China; Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Gansu Provincial Clinical Research Center for Gynecological Oncology, Lanzhou, 730000, Gansu, China
| | - Dan Hu
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, China; Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Gansu Provincial Clinical Research Center for Gynecological Oncology, Lanzhou, 730000, Gansu, China
| | - Junhong Du
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, China; Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Gansu Provincial Clinical Research Center for Gynecological Oncology, Lanzhou, 730000, Gansu, China
| | - Ruifen He
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, China; Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Gansu Provincial Clinical Research Center for Gynecological Oncology, Lanzhou, 730000, Gansu, China
| | - Xiao Lv
- Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Gansu Provincial Clinical Research Center for Gynecological Oncology, Lanzhou, 730000, Gansu, China; Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China.
| | - Yongxiu Yang
- Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Gansu Provincial Clinical Research Center for Gynecological Oncology, Lanzhou, 730000, Gansu, China; Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
2
|
Albertí-Valls M, Megino-Luque C, Macià A, Gatius S, Matias-Guiu X, Eritja N. Metabolomic-Based Approaches for Endometrial Cancer Diagnosis and Prognosis: A Review. Cancers (Basel) 2023; 16:185. [PMID: 38201612 PMCID: PMC10778161 DOI: 10.3390/cancers16010185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Endometrial cancer, the most prevalent gynecological malignancy in developed countries, is experiencing a sustained rise in both its incidence and mortality rates, primarily attributed to extended life expectancy and lifestyle factors. Currently, the absence of precise diagnostic tools hampers the effective management of the expanding population of women at risk of developing this disease. Furthermore, patients diagnosed with endometrial cancer require precise risk stratification to align with optimal treatment planning. Metabolomics technology offers a unique insight into the molecular landscape of endometrial cancer, providing a promising approach to address these unmet needs. This comprehensive literature review initiates with an overview of metabolomic technologies and their intrinsic workflow components, aiming to establish a fundamental understanding for the readers. Subsequently, a detailed exploration of the existing body of research is undertaken with the objective of identifying metabolite biomarkers capable of enhancing current strategies for endometrial cancer diagnosis, prognosis, and recurrence monitoring. Metabolomics holds vast potential to revolutionize the management of endometrial cancer by providing accuracy and valuable insights into crucial aspects.
Collapse
Affiliation(s)
- Manel Albertí-Valls
- Oncologic Pathology Group, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198 Lleida, Spain; (C.M.-L.); (A.M.); (S.G.); (X.M.-G.)
| | - Cristina Megino-Luque
- Oncologic Pathology Group, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198 Lleida, Spain; (C.M.-L.); (A.M.); (S.G.); (X.M.-G.)
- Department of Medicine, Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Anna Macià
- Oncologic Pathology Group, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198 Lleida, Spain; (C.M.-L.); (A.M.); (S.G.); (X.M.-G.)
| | - Sònia Gatius
- Oncologic Pathology Group, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198 Lleida, Spain; (C.M.-L.); (A.M.); (S.G.); (X.M.-G.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)
| | - Xavier Matias-Guiu
- Oncologic Pathology Group, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198 Lleida, Spain; (C.M.-L.); (A.M.); (S.G.); (X.M.-G.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)
- Laboratory of Precision Medicine, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Department of Pathology, Hospital de Bellvitge, Gran via de l’Hospitalet 199, 08908 Barcelona, Spain
| | - Núria Eritja
- Oncologic Pathology Group, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198 Lleida, Spain; (C.M.-L.); (A.M.); (S.G.); (X.M.-G.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)
| |
Collapse
|
3
|
Hishinuma E, Shimada M, Matsukawa N, Shima Y, Li B, Motoike IN, Shibuya Y, Hagihara T, Shigeta S, Tokunaga H, Saigusa D, Kinoshita K, Koshiba S, Yaegashi N. Identification of predictive biomarkers for endometrial cancer diagnosis and treatment response monitoring using plasma metabolome profiling. Cancer Metab 2023; 11:16. [PMID: 37821929 PMCID: PMC10568780 DOI: 10.1186/s40170-023-00317-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Endometrial cancer (EMC) is the most common female genital tract malignancy with an increasing prevalence in many countries including Japan, a fact that renders early detection and treatment necessary to protect health and fertility. Although early detection and treatment are necessary to further improve the prognosis of women with endometrial cancer, biomarkers that accurately reflect the pathophysiology of EMC patients are still unclear. Therefore, it is clinically critical to identify biomarkers to assess diagnosis and treatment efficacy to facilitate appropriate treatment and development of new therapies for EMC. METHODS In this study, wide-targeted plasma metabolome analysis was performed to identify biomarkers for EMC diagnosis and the prediction of treatment responses. The absolute quantification of 628 metabolites in plasma samples from 142 patients with EMC was performed using ultra-high-performance liquid chromatography with tandem mass spectrometry. RESULTS The concentrations of 111 metabolites increased significantly, while the concentrations of 148 metabolites decreased significantly in patients with EMC compared to healthy controls. Specifically, LysoPC and TGs, including unsaturated fatty acids, were reduced in patients with stage IA EMC compared to healthy controls, indicating that these metabolic profiles could be used as early diagnostic markers of EMC. In contrast, blood levels of amino acids such as histidine and tryptophan decreased as the risk of recurrence increased and the stages of EMC advanced. Furthermore, a marked increase in total TG and a decrease in specific TGs and free fatty acids including polyunsaturated fatty acids levels were observed in patients with EMC. These results suggest that the polyunsaturated fatty acids in patients with EMC are crucial for disease progression. CONCLUSIONS Our data identified specific metabolite profiles that reflect the pathogenesis of EMC and showed that these metabolites correlate with the risk of recurrence and disease stage. Analysis of changes in plasma metabolite profiles could be applied for the early diagnosis and monitoring of the course of treatment of EMC patients.
Collapse
Affiliation(s)
- Eiji Hishinuma
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, 980-8573, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Japan
| | - Muneaki Shimada
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, 980-8573, Japan.
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Japan.
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Tohoku University, Sendai, 980-8574, Japan.
| | - Naomi Matsukawa
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Japan
| | - Yoshiko Shima
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Japan
| | - Bin Li
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, 980-8573, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Japan
| | - Ikuko N Motoike
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Japan
- Systems Bioinformatics, Graduate School of Information Sciences, Tohoku University, Sendai, 980-8579, Japan
| | - Yusuke Shibuya
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Tohoku University, Sendai, 980-8574, Japan
| | - Tatsuya Hagihara
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Tohoku University, Sendai, 980-8574, Japan
| | - Shogo Shigeta
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Tohoku University, Sendai, 980-8574, Japan
| | - Hideki Tokunaga
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, 980-8573, Japan
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Tohoku University, Sendai, 980-8574, Japan
| | - Daisuke Saigusa
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Japan
- Laboratory of Biomedical and Analytical Sciences, Faculty of Pharma-Science, Teikyo University, Tokyo, 173-8605, Japan
| | - Kengo Kinoshita
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, 980-8573, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Japan
- Systems Bioinformatics, Graduate School of Information Sciences, Tohoku University, Sendai, 980-8579, Japan
| | - Seizo Koshiba
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, 980-8573, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Japan
| | - Nobuo Yaegashi
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, 980-8573, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Japan
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Tohoku University, Sendai, 980-8574, Japan
| |
Collapse
|
4
|
Wang Y, Zhao L, Zhang K, Liu Y, Guo L, Jing W, Hou H, Shi G, Bin Y, Zhang S, Zhang G, Li Q. Micro-histology combined with cytology improves the diagnostic accuracy of endometrial lesions. Cancer Med 2023; 12:17028-17036. [PMID: 37458126 PMCID: PMC10501300 DOI: 10.1002/cam4.6338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 06/26/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND In the study, we aimed to evaluate the ability of micro-histology combined with cytology to improve the quality of slides and diagnose endometrial lesions. METHODS Endometrial specimens were collected from Li Brushes. Every specimen was prepared for micro-histological and cytological slides, using cell block (CB) and liquid-based cytology (LBC) technologies. Semi-quantitative scoring system was used to evaluate the qualities of slides. CB slides were assessed by 5-category scoring system. Diagnostic accuracy was calculated in LBC, CB, and LBC + CB groups based on the histological gold standard. Endometrial atypical hyperplasia, and endometrial cancer were considered positive, whereas others were considered negative. RESULTS A total of 167 patients were enrolled. CB slides were inferior to LBC slides only in cellularity (p < 0.001), but superior in the other six parameters (all p < 0.001). The satisfaction rate of micro-histology accounted for 92.3%. The accuracy index in the CB group was higher than in the LBC group in terms of sensitivity (85.5% vs. 82.7%) and specificity (98.9% vs. 95.7%). The sensitivity and specificity in the LBC + CB group were increased to 94.2% and 99.0%, respectively. CONCLUSIONS The quality of micro-histological slides was higher than that of cytological slides. By combining micro-histology with cytology, higher accuracy was achieved for endometrial lesions diagnosis.
Collapse
Affiliation(s)
- Yiran Wang
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Lanbo Zhao
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Kailu Zhang
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Yu Liu
- Department of PathologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Lin Guo
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Wei Jing
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Huilian Hou
- Department of PathologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Guizhi Shi
- Aviation General Hospital of BeijingMedical University and Beijing Institute of Translational Medicine, University of Chinese Academy of SciencesBeijingChina
| | - Yadi Bin
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Siyi Zhang
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Guanjun Zhang
- Department of PathologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Qiling Li
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| |
Collapse
|
5
|
Masnikosa R, Pirić D, Post JM, Cvetković Z, Petrović S, Paunović M, Vučić V, Bindila L. Disturbed Plasma Lipidomic Profiles in Females with Diffuse Large B-Cell Lymphoma: A Pilot Study. Cancers (Basel) 2023; 15:3653. [PMID: 37509314 PMCID: PMC10377844 DOI: 10.3390/cancers15143653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/01/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Lipidome dysregulation is a hallmark of cancer and inflammation. The global plasma lipidome and sub-lipidome of inflammatory pathways have not been reported in diffuse large B-cell lymphoma (DLBCL). In a pilot study of plasma lipid variation in female DLBCL patients and BMI-matched disease-free controls, we performed targeted lipidomics using LC-MRM to quantify lipid mediators of inflammation and immunity, and those known or hypothesised to be involved in cancer progression: sphingolipids, resolvin D1, arachidonic acid (AA)-derived oxylipins, such as hydroxyeicosatetraenoic acids (HETEs) and dihydroxyeicosatrienoic acids, along with their membrane structural precursors. We report on the role of the eicosanoids in the separation of DLBCL from controls, along with lysophosphatidylinositol LPI 20:4, implying notable changes in lipid metabolic and/or signalling pathways, particularly pertaining to AA lipoxygenase pathway and glycerophospholipid remodelling in the cell membrane. We suggest here the set of S1P, SM 36:1, SM 34:1 and PI 34:1 as DLBCL lipid signatures which could serve as a basis for the prospective validation in larger DLBCL cohorts. Additionally, untargeted lipidomics indicates a substantial change in the overall lipid metabolism in DLBCL. The plasma lipid profiling of DLBCL patients helps to better understand the specific lipid dysregulations and pathways in this cancer.
Collapse
Affiliation(s)
- Romana Masnikosa
- Department of Physical Chemistry, Vinca Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia
| | - David Pirić
- Department of Physical Chemistry, Vinca Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia
| | - Julia Maria Post
- Clinical Lipidomics Unit, Institute of Physiological Chemistry, University Medical Centre of the J.G.U Mainz, Duesbergweg 6, 55128 Mainz, Germany
| | - Zorica Cvetković
- Department of Haematology, Clinical Hospital Centre Zemun, Vukova 9, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Dr. Subotića 8, 11000 Belgrade, Serbia
| | - Snježana Petrović
- Group for Nutritional Biochemistry and Dietology, Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Tadeusa Koscuska 1, 11000 Belgrade, Serbia
| | - Marija Paunović
- Group for Nutritional Biochemistry and Dietology, Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Tadeusa Koscuska 1, 11000 Belgrade, Serbia
| | - Vesna Vučić
- Group for Nutritional Biochemistry and Dietology, Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Tadeusa Koscuska 1, 11000 Belgrade, Serbia
| | - Laura Bindila
- Clinical Lipidomics Unit, Institute of Physiological Chemistry, University Medical Centre of the J.G.U Mainz, Duesbergweg 6, 55128 Mainz, Germany
| |
Collapse
|